

Physics 21900 General Physics II

Electricity, Magnetism and Optics
Lecture 8 – Chapter 16.5-6 **DC Circuits**

Fall 2015 Semester

Prof. Matthew Jones

Reminder

- The first mid-term exam will be on Thursday,
 September 24th.
- Material to be covered is chapters 14 and 15
 - Coulomb's law
 - Electric potential energy
 - Electric field
 - Electric potential
 - Capacitors

FIG 29. CIRCUIT DIAGRAM OF RECORDER

Circuit Diagrams

 There are a limited number of simple principles that underlie all circuit diagrams.

We will use circuit diagrams to discuss the

ideas rather than the details.

ideas rather than the details

"Wires" and "Components"

- Lines in circuit diagrams represent "wires"
 - But they are wires with no resistance
- All parts of a conductor have the same electrical potential
- All parts of a circuit connected by lines, without passing through any "components" have the same electric potential.

$$egin{aligned} V_A &= V_C \ V_B &= V_D \ \Delta oldsymbol{V_{AB}} &= \Delta oldsymbol{V_{CD}} \end{aligned}$$

"Wires" and "Components"

- The electrical potential at all points in a circuit connected by "wires" is the same.
- The "components" in a circuit may add to or subtract from the electrical potential energy of charge carriers
 - Sources of Electromotive Force (EMF) provide energy
 - Resistors dissipate energy in the form of heat

In general,

$$V_A \neq V_B$$

but sometimes they can be equal, like when

$$V = 0 \text{ or } R = 0.$$

Analyzing Circuits

- What question are we trying to answer?
 - What are the voltages at all points in the circuit?
 - What currents flow through each part of the circuit?
- These are not independent questions and if we can answer one, we can usually answer the other.
- What is the relation between potential difference across a "component" and current that flows through it?

"Wires" A → I B

- Potential difference $\Delta V_{AB} = 0$
- Independent of current, I.
- This is sort of trivial, and usually we don't even think about it this way.
- But this is exactly what we mean and one way to define the characteristics of a wire.

"Switches"

 Sometimes it is convenient to "modify" a circuit using a switch:

 $\xrightarrow{\longrightarrow I}$

Open switch:

$$I = 0$$

independent of ΔV .

Closed switch:

$$\Delta V = 0$$

independent of I.

A closed switch is exactly the same as a wire.

Electromotive Force

• Something that "pushes" charge carriers, i.e. increases their electrical potential energy.

- A battery uses its stored chemical energy to increase the electrical potential of charge carriers in the circuit.
- For an ideal EMF, $\mathcal E$ is independent of the current, I.
- An EMF with $\mathcal{E} = \mathbf{0}$ is exactly the same as a wire.

Resistors

- Ohm's law: $\Delta V_{AB} = V_A V_B = IR$
- Resistors dissipate energy in the form of heat.
 - When current flows from left to right (the direction of the arrow), then $V_B < V_A$ because some of the electrical potential energy has been converted to heat.
- Algebraic signs matter!
 - If I < 0 then the current is really flowing in the direction opposite that shown by the arrow.
 - In this case, $V_B > V_A$.

- As far as the physics is concerned, the only thing that matters is the potential difference across different parts of a circuit.
- It is convenient to define the potential at one part of the circuit to be V=0.
 - We usually call this point "ground" potential.
- All "voltages" in the circuit are measured with respect to this particular choice of ground.
- Now we can talk about the specific voltages V_A , V_B rather than just ΔV_{AB} .

Simple question:

What is the current through the resistor?

• The ground symbol tells us that the electrical potential of the negative terminal of the battery and the bottom end of the resistor have the electric potential V=0.

I is positive as shown because $V_c > V_d$ when we assume that V > 0.

- Definition of the EMF: $V_a V_b = V$
- Definition of the wires: $V_c = V_a$ and $V_b = V_d$
- Ohm's law: $\Delta V_{cd} = I R$

$$I = \frac{\Delta V_{cd}}{R} = \frac{\Delta V_{ab}}{R} = \frac{V}{R}$$

What direction?

Another Example

- The same current, I, flows through both resistors.
- $\Delta V_{ac} + \Delta V_{cd} = \Delta V_{ab} = V$
- Ohm's law: $\Delta V_{ac}=I~R_1$ and $\Delta V_{cd}=I~R_2$ $I(R_1+R_2)=V$ $I=V/(R_1+R_2)$

Actually it was a very important example...

$$I = \frac{V}{R_1 + R_2}$$

$$V_c = V \frac{R_2}{R_1 + R_2}$$

• What is V_c , the voltage at point ©?

$$V_c = V_a - I R_1 = V - \frac{V R_1}{R_1 + R_2}$$

$$= \frac{V(R_1 + R_2) - V R_1}{R_1 + R_2} = V \frac{R_2}{R_1 + R_2}$$

It's called a voltage divider circuit and it is really useful.

Resistors in Series

$$I = \frac{V}{R_1 + R_2} = \frac{V}{R}$$

$$R_{equiv} = R_1 + R_2$$

Resistors in Parallel

- Total current is the sum of the current through both resistors.
- Potential difference across each resistor is the same.

$$I_1 = \frac{V}{R_1}$$
 $I_2 = \frac{V}{R_2}$ $I = I_1 + I_2 = \frac{V}{R_{equiv}}$

• Resistors in parallel:
$$\frac{1}{R_{equiv}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Generalizing

Measuring Voltage and Current

Voltmeter: measures voltage difference *across* a component... connect in parallel.

Ammeter: measures current through a component... connect in series.

(Usually requires breaking the circuit in order to insert the ammeter in series.)

Always remember:

- Voltmeters connected in parallel
- Ammeters connected in series.

Real vs Ideal Batteries

- The chemical reaction will always produce a potential difference of $1.5\ V$ (that's chemistry).
- So why does the battery die?
- The internal resistance r gradually increases with time.

Real vs Ideal Batteries

- In an ideal battery, the voltage across the load is the same as the battery voltage and $I=V/R_L$.
- In a real battery, the voltage across the load is

$$oldsymbol{V_L} = oldsymbol{V} rac{oldsymbol{R_L}}{oldsymbol{r} + oldsymbol{R_L}}$$

• When r is large, $V_L \ll V$.

This is not a new formula...

This is not a new formula...

it's just the result from divider analyzing the voltage divider analyzing the circuit.

Power Dissipation

- Charge flowing in time Δt : $q = I \Delta t$
- Energy decrease: $q \Delta V = I V \Delta t$
- Energy decrease = Energy dissipated in R
- Power dissipated = Energy dissipated per unit time

$$P = \frac{\Delta E}{\Delta t} = I V$$

- Ohm's law: V = I R
- Power dissipated: $P = I^2 R$ or $P = V^2 / R$

How much power is dissipated in

the load?

How much power is dissipated in the resistor?

$$P = \frac{\mathcal{E}^2}{R} = \frac{V^2}{R}$$
$$= \frac{(1.5 V)^2}{20 \Omega} = 0.113 W$$

$$P = I V$$

= $(0.360 A)(9.0 V)$
= $3.24 W$

Power Dissipation Fuses and Circuit Breakers

- In a fuse, current passes through a metal strip.
- The strip acts as a resistor with a small resistance.

$$P = I^2 R$$

- If a fault causes the current to become large, the increased power causes the strip to melt (open circuit) and the current stops.
- A circuit breaker "opens" a switch that can be reset.

Open Circuit Breakers and Blown Fuses

- Reasons why circuits can draw too much current:
 - Too many devices plugged into one circuit
 - One device draws too much current
 - Short circuit (accidental creation of an alternate path for current to flow)
 - Ground fault (accidental creation of a path for current to ground)

