

Physics 21900 General Physics II

Electricity, Magnetism and Optics Lecture 4 – Chapter 15.1-2 The Electric Field

Fall 2015 Semester

Prof. Matthew Jones

Electrostatic Force and Potential Energy

 So far we have seen that charges exert forces on one another:

$$F_q = k \frac{q_1 q_2}{r^2}$$
 Coulomb's Law

Energy can be stored in a configuration of charges:

$$U_q = k \frac{q_1 q_2}{r}$$
 Electric potential energy

 How does one charge "know" about another charge when they are not in direct contact?

The Electric Field

- Michael Faraday was very good at coming up with ways to describe electric and magnetic fields that did not rely on just mathematical definitions and equations.
- There is no "right way" to describe how charges influence each other.
- The concept of a "field" turns out to be one of the most fundamental ways of describing Nature...

The Electric Field

- This time, consider a single charge, q_1 .
- This charge "creates" an *electric field* in the space surrounding it... it modifies the properties of space itself in some way.
- Another charge, q_2 , when placed in the electric field, feels a force.

The Electric Field

- The electric field produced by a charge Q is a property only of Q and not of other charges we place in its vicinity.
- We define the electric field in terms of the electric force that acts on a "test charge":

$$\vec{F}_Q = k \frac{q_{test}Q}{r^2} \hat{r}$$

$$\vec{E}_Q = \frac{\vec{F}_Q}{q_{test}}$$

The Electric Field produced by a Positive Point Charge

The Electric Field produced by a Negative Point Charge

Electric Field

- Now we can talk about electric fields that occupy a region of space.
- We do **not** need to specify the source of the electric field. \overrightarrow{E}

$$\vec{F} = q \vec{E}$$

- Any charge that is placed in the electric field will experience a force.
- Units for electric field: Newtons/Coulomb.

Electric Fields

- When we have multiple sources, the principle of superposition says that we get to add their electric fields.
- Just remember that they are vectors:

$$\vec{E}(\vec{x}) = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \cdots$$

• Each \overrightarrow{E}_i is for a single point charge calculated using

$$\vec{E}_i = k \frac{Q_i}{r_i^2} \hat{r}_i$$

where \vec{r}_i is a vector from the source Q_i to the observation point \vec{x} .

Electric Field Line Diagrams

Electric Field Line Diagrams

Electric Field Lines

Electric Dipole: opposite signs but equal magnitude

Two Positive Charges: with equal magnitude

Electric Field Lines

Opposite charges with unequal magnitudes:

At very large distances, the electric field is the same as one produced by a single point charge with magnitude

$$Q = +2q - q = +q.$$

Density of lines is proportional to the magnitude of the electric field.

Another Example

- What if it isn't a point charge?
- If the charge distribution is spherically symmetric, the E-field is the same
 - At least it is outside the charge distribution...

$$|\vec{E}| = k \frac{Q}{r^2}$$
(when $r > R$)

Another Example

 What is the electric field produced by a large (ie, "infinitely" large) uniform sheet of charge?

Except near the edges (which we assume are very far away) the electric field is uniform and perpendicular to the surface.

Calculating The Electric Field

• For a single point charge (the source) located at a position \vec{x}_S calculate the electric field at a point \vec{x}_f :

 $\vec{\chi}_f$

This is one way to calculate the individual components of the electric field vector.

Summary

Electric field due to a point charge:

$$\vec{E} = k \frac{Q}{r^2} \,\hat{r}$$

Force on a charge in an electric field:

$$\vec{F} = q \vec{E}$$

- Some special cases to remember
 - Spherically symmetric charge distributions
 - Infinite uniform sheet of charge
- Remember that the electric field is a vector
 - Principle of superposition
 - In practice, it is good to be lazy... get a computer to do all the arithmetic for you.