

Physics 21900 General Physics II

Electricity, Magnetism and Optics Lecture 11 – Chapter 17.3 The Lorentz Force

Fall 2015 Semester

Prof. Matthew Jones

Magnetic Forces

 A connection between electricity and magnetism was first observed in about 1820 by Hans Christian Ørsted:

 The current through the wire caused a deflection in the nearby compass needle.

Magnetic Forces

Conclusion: the current must generate a magnetic field

This particular version of "the right-hand rule" shows how to get the direction of the magnetic field right.

Magnetic Field Lines

- With electric fields, we could describe them using projections onto a 2-dimensional plane.
- Magnetic fields involve 3-dimensional geometries.
- We need some new notation to explain these ideas:

Magnetic Flux

- Another term for the "magnetic field" is magnetic flux density
- Magnetic flux is the "number" of magnetic field lines intersecting a surface:

Uniform magnetic field \overrightarrow{B} , surface area A produces magnetic flux $\Phi_B = B \cdot A$ MKS units for magnetic flux is the Weber (Wb)

Magnetic Flux

- The orientation of the surface is important!
- Surfaces have two sides...
 - Draw a loop around the boundary
 - Use the right-hand rule to see what direction your thumb is pointing
 - If your thumb points in the same direction as \overrightarrow{B} then the flux is positive
 - If your thumb points in the direction opposite \vec{B} then the flux is negative

Magnetic Flux

$$\Phi_B > 0$$

Lorentz Force

- A magnetic field exerts a force on a moving charge
- The magnitude of the force is depends on:
 - The magnetic field, \vec{B}
 - The charge, Q
 - The velocity, \vec{v}
 - The direction of \vec{v} relative to \vec{B}

 $ec{v}$ perpendicular to B $Maximum\ force!$ Perpendicular to both \overrightarrow{B} and \overrightarrow{v}

Comparison with Electric Field

- The force on a test charge is in the same direction as the field, \vec{E} .
- The force on a moving charge in a magnetic field is perpendicular to both \vec{v} and \vec{B} ...

The Lorentz Force (1892)

Always choose the smallest angle between \vec{v} and \vec{B} .

$$\vec{F} = q \vec{v} \times \vec{B}$$
$$|\vec{F}| = |q|v B \sin \theta$$

Focus on the plane containing \vec{v} and \vec{B}

The force on a charge of 1 C moving with a velocity of 1 m/s in a field of 1 T will be 1 N.

Direction of Magnetic Force on a Charged Particle in a Uniform B Field

There are actually lots of "right-hand rules"... the important thing is to always use your right hand!

Understanding the Lorentz Force

Only the component of \vec{v} that is **perpendicular** to \vec{B} is important!

Examples

Note: Use the right-hand rule to determine the <u>direction</u> of the force on a positive charge +q. If the charge is negative, just reverse the direction.

What is the magnetic force on the charged particle?

$$|\vec{F}| = |q|vB \sin \theta$$

= $|-1.3 \times 10^{-6} C| \cdot (12 m/s) \cdot (1.5 T) \cdot \sin 90^{\circ}$
= $2.34 \times 10^{-5} N$

Direction??? Use the right-hand rule... but q is negative, so reverse the direction of \vec{F} ... It points down.

Force on a current carrying wire in a B field

1. An electric current is a collection of moving charges:

$$I = \Delta Q / \Delta t$$

2. Lorentz force:

$$F = qvB \sin \theta$$
$$\theta = \angle (\vec{v}, \vec{B})$$

Let $q = \Delta Q$ and $v = L/\Delta t$.

3. Force on the wire carrying current $I = \Delta Q/\Delta t$ should be:

$$F = I B L \sin \theta$$

4. Direction of the force is given by the right-hand rule.

Example

A 1.5 m long piece of wire is in a uniform magnetic field of 2 T. If the wire is carrying a current of 1.3 A, what force will it feel?

$$|\vec{F}| = I L B \sin \theta$$

$$= (1.3 C/s) \cdot (1.5 \text{ m}) \cdot (2.0 T) \cdot \sin 90^{\circ}$$

$$= 3.9 N$$

Direction?

-x direction.

Force on Two Current Carrying Wires

- A current carrying wire creates a magnetic field
- Another current carrying wire in a magnetic field experiences a force

$$F \propto \frac{I_1 I_2}{R} L$$

$$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{R} L$$

$$\mu_0 = 4\pi \times 10^{-7} N/A^2$$

Parallel currents attract, anti-parallel currents repel.