
Kevin Berwick Page 1 
 

Computational 

Physics using 

MATLAB® 

 
 

 

 



Kevin Berwick Page 2 
 

Table of Contents 
 

Preface........................................................................................................................................ 6 

1. Uranium Decay ....................................................................................................................... 7 

3. The Pendulum ........................................................................................................................ 9 

3.1 Solution using the Euler method ...................................................................................... 9 

3.1.1 Solution using the Euler-Cromer method. ................................................................... 10 

3.1.2  Simple Harmonic motion example using a variety of numerical approaches ............. 11 

3.2  Solution for a damped pendulum using the Euler-Cromer method. ............................ 16 

3.3 Solution for a non-linear, damped, driven  pendulum :- the Physical pendulum,  using 

the Euler-Cromer method. ................................................................................................... 18 

3.4  Bifurcation diagram for the pendulum ......................................................................... 24 

3.6 The Lorenz Model .......................................................................................................... 26 

4. The Solar System ................................................................................................................. 28 

4.1 Kepler’s Laws .................................................................................................................. 28 

4.1.1 Ex 4.1 Planetary motion results using different time steps .........................................30 

4.2 Orbits using different force laws .................................................................................... 35 

4.3  Precession of the perihelion of  Mercury. .................................................................... 40 

4.4 The three body problem and the effect of Jupiter on Earth .......................................... 48 

4.6  Chaotic tumbling of Hyperion ....................................................................................... 53 

5. Potentials and Fields ........................................................................................................... 60 

5.1  Solution of Laplace’s equation using the Jacobi relaxation method. ........................... 60 

5.1.1  Solution of Laplace’s equation for  a hollow metallic prism with a solid, metallic inner 

conductor. ............................................................................................................................ 63 

5.1.2  Solution of Laplace’s equation for  a finite sized capacitor ........................................ 66 

5.1.3 Exercise 5.7 and the Successive Over Relaxation Algorithm ....................................... 70 

5.2 Potentials and fields near Electric charges, Poisson’s Equation .................................... 75 

6. Waves ................................................................................................................................... 78 

6.1  Waves on a string ........................................................................................................... 78 

6.1.1 Waves on a string with free ends ................................................................................. 81 

6.2  Frequency spectrum of waves on a string ..................................................................... 83 

7. Random Systems .................................................................................................................. 87 

7.1 Random walk simulation ................................................................................................ 87 

7.1.1 Random walk simulation with random path lengths. ..................................................89 

10. Quantum Mechanics .......................................................................................................... 91 

10.2 Time independent Schrodinger equation. Shooting method. ...................................... 91 



Kevin Berwick Page 3 
 

10.5 Wavepacket construction ............................................................................................. 93 

10.3 Time Dependent Schrodinger equation in One dimension. Leapfrog method. ........... 95 

10.4 Time Dependent Schrodinger equation in two dimensions. Leapfrog method. .......... 99 

 

 

 

  



Kevin Berwick Page 4 
 

 

Table of Figures 
 

 

Figure 1.  Uranium decay as a function of time ......................................................................... 8 

Figure 2. Simple Pendulum - Euler Method .............................................................................. 9 

Figure 3. Simple Pendulum: Euler - Cromer method .............................................................. 10 

Figure 4. Simple pendulum solution using Euler, Euler Cromer, Runge Kutta and Matlab 

ODE45 solver. .......................................................................................................................... 15 

Figure 5. The damped pendulum using the Euler-Cromer method ........................................ 17 

Figure 6. Results from Physical pendulum,  using the Euler-Cromer method, F_drive =0.5 19 

Figure 7.Results from Physical pendulum,  using the Euler-Cromer method, F_drive =1.2 ..20 

Figure 8. Results from Physical pendulum,  using the Euler-Cromer method, F_drive =0.5 21 

Figure 9. Results from Physical pendulum,  using the Euler-Cromer method, F_Drive=1.2 . 21 

Figure 10. Increase resolution with npoints=15000.Results from Physical pendulum,  using 

the Euler-Cromer method, F_Drive=1.2 ................................................................................. 22 

Figure 11. Poincare section (Strange attractor) Omega as a function of theta. F_Drive =1.2 . 23 

Figure 12. Bifurcation diagram for the pendulum ................................................................... 25 

Figure 13. Variation of z as a function of time and corresponding strange attractor .............. 27 

Figure 14. Simulation of Earth orbit around the Sun .............................................................. 29 

Figure 15. Simulation of Earth orbit with time step of 0.05 .................................................... 31 

Figure 16. Simulation of Earth orbit, initial y velocity of 4, time step  is 0.002. ..................... 32 

Figure 17.Simulation of Earth orbit, initial y velocity of 4, time step  is 0.05 ......................... 33 

Figure 18. Simulation of Earth orbit, initial y velocity of 8, time step  is 0.002. 2500 points 

and Runge Kutta method ......................................................................................................... 33 

Figure 19.Plot for an initial y velocity of 8, dt is 0.05, npoints=2500. The Runge Kutta 

Method is used here ................................................................................................................. 35 

Figure 20. Orbit for a force law with β=2. The time step is 0.001 years. ................................ 37 

Figure 21. Orbit for a force law with β=2.5. The time step is 0.001 years. .............................. 39 

Figure 22. Orbit for a force law with β=3. .............................................................................. 40 

Figure 23. Orbit orientation as a function of time ................................................................... 45 

Figure 24. Calculated precession rate of Mercury ................................................................... 47 

Figure 25. Simulation of solar system containing  Jupiter and  Earth. Actual mass of Jupiter 

used. ......................................................................................................................................... 50 

Figure 26. Simulation of solar system containing  Jupiter and  Earth. Jupiter mass is 10 X 

actual value. ............................................................................................................................. 51 

Figure 27.Simulation of solar system containing  Jupiter and  Earth. Jupiter mass is 1000 X 

actual value, ignoring perturbation of the Sun. ....................................................................... 52 

Figure 28.Motion of Hyperion. The initial velocity in the y direction was 1 HU/Hyperion 

year. This gave a circular orbit. Note from the results that the tumbling is not chaotic under 

these conditions. ...................................................................................................................... 56 

Figure 29.Motion of Hyperion. The initial velocity in the y direction was 5 HU/Hyperion 

year. This gave a circular orbit. Note from the results that the tumbling is chaotic under these 

conditions. ............................................................................................................................... 59 

Figure 30. Equipotential surface for geometry depicted in Figure 5.2 in the book ................ 62 



Kevin Berwick Page 5 
 

Figure 31.Equipotential surface for hollow metallic prism with a solid metallic  inner 

conductor held at V=1. ............................................................................................................. 66 

Figure 32.Equipotential surface for a finite sized capacitor. ................................................... 69 

Figure 33. Equipotential contours near a finite sized capacitor. ............................................. 69 

Figure 34.Equipotential surface in region of a simple capacitor as calculated using the SOR 

code for a 60 X 60 grid. The convergence criterion was that the simulation was halted when 

the difference in successively calculated surfaces was less than 10-5 per site.......................... 73 

Figure 35.Number of iterations required for Jacobi method vs L for a simple capacitor.  The 

convergence criterion was that the simulation was halted when the difference in successively 

calculated surfaces was less than 10-5 per site. ........................................................................ 74 

Figure 36.Number of iterations required for SOR method vs L for a simple capacitor.  The 

convergence criterion was that the simulation was halted when the difference in successively 

calculated surfaces was less than 10-5 per site. ........................................................................ 74 

Figure 37. Equipotential surface near a point charge at the center of a 20X20 metal box. The 

Jacobi relaxation method was used . The plot on the right compares the numerical and 

analytical (as obtained from Coulomb’s Law). ........................................................................ 77 

Figure 38. Waves propagating on a string with fixed ends ..................................................... 79 

Figure 39. Signal from a vibrating string and Power spectrum. Signal excited with Gaussian 

pluck centred at the middle of the string and the displacement 5% from the end of the string 

was recorded. ...........................................................................................................................86 

Figure 40. x^2 as a function of step number. Step length = 1. Average of 500 walks. Also 

shown is a linear fit to the data. .............................................................................................. 88 

Figure 41. x^2 as a function of step number. Step length = random value betwen +/-1. 

Average of 500 walks. Also shown is a linear fit to the data. .................................................. 90 

Figure 42. Calculated wavefunction  using the shooting method. The wall(s) of the box are at 

x=(-)1. The value of Vo used was 1000 giving ground-state energy of 1.23. Analytical value is 

1.233. Wavefunctions are not normalised. .............................................................................. 93 

Figure 43. Composition of wavepacket. ko = 500, x0=0.4, sigma^2=0.001. ......................... 94 

Figure 44. Wavepacket reflection from potential cliff at x=0.6. The potential was V=0 for 

x<0.6 and V=-1e6 for x>0.6. Values used for initial wavepacket were x_0=0.4,C=10, 

sigma_squared=1e-3, k_0=500. Simulation used delta_x=1e-3, delta_t=5e-8. Time 

progresses left to right. ............................................................................................................98 

Figure 45. Wavepacket reflection from potential wall at x=0.6. The potential was V=0 for 

x<0.6 and V=1e6 for x>0.6. Values used for initial wavepacket were x_0=0.4,C=10, 

sigma_squared=1e-3, k_0=500. Simulation used delta_x=1e-3, delta_t=5e-8. Time 

progresses left to right. ............................................................................................................98 

Figure 46.Wavepacket reflection from potential cliff at x=0.5. The potential was V=0 for 

x<0.5 and V=-1e3 for x>0.5. Values used for initial wavepacket were x_0=0.25, 

y_0=0.5,C=10, sigma_squared=0.01, k_0=40. Simulation used delta_x=0.005, 

delta_t=0.00001. ................................................................................................................... 102 

Figure 47. Wavepacket reflection from potential wall at x=0.5. The potential was V=0 for 

x<0.5 and V=1e3 for x>0.5. Values used for initial wavepacket were x_0=0.25, 

y_0=0.5,C=10, sigma_squared=0.01, k_0=40. Simulation used delta_x=0.005, 

delta_t=0.00001. ................................................................................................................... 103 

  



Kevin Berwick Page 6 
 

Preface 
 

I came across the book, ‘Computational Physics’, in the library here in the Dublin Institute of 

Technology in early 2012. Although I was only looking for one, quite specific piece of 

information, I had a quick look at the Contents page and decided it was worth a more detailed 

examination. I hadn’t looked at using numerical methods since leaving College almost a 

quarter century ago. I cannot remember much attention being paid to the fact that this stuff 

was meant to be done on a computer, presumably since desktop computers were still a bit of 

a novelty back then. And while all the usual methods, Euler, Runge-Kutta and others were 

covered, we didn’t cover applications in much depth at all. 

It is very difficult to anticipate what will trigger an individual’s intellectual curiosity but this  

book certainly gripped me. The applications were particularly well chosen and interesting. 

Since then, I have been working through the exercises intermittently for my own interest and 

have documented my efforts in this book, still a work in progress. 

Coincidentally, I had started to use MATLAB® for teaching several other subjects around this 

time. MATLAB® allows you to develop mathematical models quickly, using powerful 

language constructs, and is used in almost every Engineering School on Earth. MATLAB® has 

a particular strength in data visualisation, making it ideal for use for implementing the 

algorithms in this book.  

The Dublin Institute of Technology has existing links with Purdue University since, together 

with UPC Barcelona, it offers a joint Master's Degree with Purdue in Sustainability, 

Technology and Innovation via the Atlantis Programme. I travelled to Purdue for two weeks 

in Autumn 2012 to accelerate the completion of this personal project.  

I would like to thank a number of people who assisted in the production of this book. The 

authors of ‘Computational Physics’, Nick Giordano and Hisao Nakanishi from the Department 

of Physics at Purdue must be first on the list. I would like to thank both of them sincerely for 

their interest, hospitality and many useful discussions while I was at Purdue. They provided 

lot of useful advice on the physics, and their enthusiasm for the project when initially proposed 

was very encouraging. 

I would like to thank the School of Electronics and Communications Engineering at the Dublin 

Institute of Technology for affording me the opportunity to write this book. I would also like 

to thank the U.S. Department of Education and the European Commission's Directorate 

General for Education and Culture for funding the Atlantis Programme, and a particular 

thanks to Gareth O’ Donnell from the DIT for cultivating this link.   

Suggestions for improvements, error reports and additions to the book are always welcome 

and can be sent to me at kevin.berwick@dit.ie. Any errors are, of course, my fault entirely.  

Finally, I would like to thank my family, who tolerated my absence when, largely self imposed, 

deadlines loomed. 

Kevin Berwick  
West Lafayette, Indiana,  

USA, 
 September  2012  



Kevin Berwick Page 7 
 

 
1. Uranium Decay 
 

%  
%  1D radioactive decay 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 1.2 p2 
  
%   Solve the  Equation       dN/dt = -N/tau 
  
  
  
N_uranium_initial = 1000;     %initial number of uranium atoms 
npoints = 100;               %Discretize time into 100 intervals 
dt = 1e7;                      % time step in years 
tau=4.4e9;                       % mean lifetime of 238 U  
  
N_uranium = zeros(npoints,1);   % initializes N_uranium, a vector of dimension npoints X 1,to being 
all zeros  
time = zeros(npoints,1);            % this initializes the vector time to being all zeros  
  
N_uranium(1) = N_uranium_initial; % the initial condition, first entry in the vector N_uranium is 
N_uranium_initial 
time(1) =  0; %Initialise time 
  
for step=1:npoints-1 % loop over the timesteps and calculate the numerical solution              
N_uranium(step+1) = N_uranium(step) - (N_uranium(step)/tau)*dt; 
time(step+1) = time(step) + dt;  
end  
% For comparison , calculate analytical solution 
t=0:1e8:10e9; 
N_analytical=N_uranium_initial*exp(-t/tau); 
% Plot both numerical and analytical solution   
plot(time,N_uranium,'r',t,N_analytical,'b'); %plots the numerical solution in red and the analytical 
solution in blue 
xlabel('Time in years') 
ylabel('Number of atoms') 



Kevin Berwick Page 8 
 

 
Figure 1.  Uranium decay as a function of time 

  
 
Note that the analytical and numerical solution are coincident in this diagram. It 

uses real data on Uranium and so the scales are slightly different than those used in 

the book.  

  

0 1 2 3 4 5 6 7 8 9 10

x 10
9

100

200

300

400

500

600

700

800

900

1000

Time in years

N
u
m

b
e
r 

o
f 

a
to

m
s



Kevin Berwick Page 9 
 

 
3. The Pendulum 

3.1 Solution using the Euler method  

Here is the code for the numerical solution of the equations of motion for a simple 

pendulum using the Euler method. Note the oscillations grow with time. !!  

%  
%  Euler calculation of motion of simple pendulum 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 
% 
  
clear; 
length= 1;                                      %pendulum length in metres 
g=9.8                                             % acceleration due to gravity 
npoints = 250;               %Discretize time into 250 intervals 
dt = 0.04;                      % time step in seconds 
omega = zeros(npoints,1);   % initializes omega, a vector of dimension npoints X 1,to being all zeros 
theta = zeros(npoints,1);   % initializes theta, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
theta(1)=0.2;                     % you need to have some initial displacement, otherwise the pendulum will 
not swing 
  
for step = 1:npoints-1 % loop over the timesteps              
omega(step+1) = omega(step) - (g/length)*theta(step)*dt; 
theta(step+1) = theta(step)+omega(step)*dt 
time(step+1) = time(step) + dt;  
end  
   
plot(time,theta,'r' ); %plots the numerical solution in red  
xlabel('time (seconds) '); 
ylabel('theta (radians)'); 

 
 

 

Figure 2. Simple Pendulum - Euler Method 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

time (seconds) 

th
e
ta

 (
ra

d
ia

n
s
)



Kevin Berwick Page 10 
 

3.1.1 Solution using the Euler-Cromer method.  

This problem with growing oscillations is addressed by performing the solution using 

the Euler - Cromer method. The code is below 

%  
%  Euler_cromer calculation of motion of simple pendulum 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 
% 
  
clear; 
length= 1;                                      %pendulum length in metres 
g=9.8;                                             % acceleration due to gravity 
npoints = 250;               %Discretize time into 250 intervals 
dt = 0.04;                      % time step in seconds 
omega = zeros(npoints,1);   % initializes omega, a vector of dimension npoints X 1,to being all zeros 
theta = zeros(npoints,1);   % initializes theta, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
theta(1)=0.2;                     % you need to have some initial displacement, otherwise the pendulum will 
not swing 
  
for step = 1:npoints-1 % loop over the timesteps              
omega(step+1) = omega(step) - (g/length)*theta(step)*dt; 
theta(step+1) = theta(step)+omega(step+1)*dt;    %note that 
% this line is the only change between  
% this program and the standard Euler method 
time(step+1) = time(step) + dt;  
end; 
  
plot(time,theta,'r' ); %plots the numerical solution in red  
xlabel('time (seconds) '); 
ylabel('theta (radians)'); 

  

   
Figure 3. Simple Pendulum: Euler - Cromer method 

  

0 1 2 3 4 5 6 7 8 9 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time (seconds) 

th
e
ta

 (
ra

d
ia

n
s
)



Kevin Berwick Page 11 
 

  
 3.1.2  Simple Harmonic motion example using a variety of numerical approaches  
 

In this example I use a variety of approaches in order to solve the following, very simple,  

equation of motion. It is based on Equation 3.9, with k and α =1.  

𝑑2𝑦

𝑑𝑡2
=  −𝑦 

I take 4 approaches to solving the equation, illustrating the use of the Euler, Euler 
Cromer, Second order Runge-Kutta and finally the built in MATLAB® solver ODE23.  
 
The solution using the built in MATLAB® solver ODE23 is somewhat less 
straightforward than those using the other techniques. A discussion of the technique 
follows. 
 
The first step is to take the second order ODE equation and split it into 2 first order 
ODE equations. 

These are                         
𝑑𝑦

𝑑𝑡
=  𝑣                      

𝑑𝑣

𝑑𝑡
=  −𝑦 

 
Next you create a MATLAB®  function that describes your system of differential 
equations. You get back a vector of times, T, and a matrix Y that has the values of 
each variable in your system of equations over the times in the time vector. Each 
column of Y is a different variable.  
MATLAB®  has a very specific way to define a differential equation, as a function that 
takes one vector of variables in the differential equation, plus a time vector, as an 
argument and returns the derivative of that vector. The only way that MATLAB® 
keeps track of which variable is which inside the vector is the order you choose to use 
the variables in. You define your differential equations based on that ordering of 
variables in the vector, you define your initial conditions in the same order, and the 
columns of your answer are also in that order. 
 
In order to do this, you create a state vector y. Let element 1 be the vertical 
displacement, y1, and element 2 is the velocity,v. Next, we write down the state 
equations, dy1 and dy2. These are   
 
dy1=v;  
dy2=-y1 
 
Next, we create a vector dy, with 2 elements, dy1 and dy2. Finally we call the 
MATLAB® ODE solver ODE23. We take the output of the function called my_shm. 
We perform the calculation for time values range from 0 to 100. The initial velocity is 
0, the initial displacement is 10. The code to do this is here 
 
[t,y]=ode45(@my_shm,[0,100],[0,10]); 
 
Finally, we need to plot the second column of the y matrix, containing the 
displacement against time. The code to do this is   
 



Kevin Berwick Page 12 
 

plot(t,y(:,2),'r'); 
 
Here is the top level code to do the comparison 

%  
%  Simple harmonic motion - comparison of Euler, Euler Cromer  
%  and 2nd order Runge Kutta and built in MATLAB Runge Kutta 
%  function ODE45to solve ODEs. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 
% Equation is d2y/dt2 = -y  
  
% Calculate the numerical solution using Euler method in red  
[time,y] = SHM_Euler (10); 
  
subplot(2,2,1); 
plot(time,y,'r' );  
axis([0 100 -100 100]); 
xlabel('Time'); 
ylabel('Displacement');  
legend ('Euler method'); 
  
  
% Calculate the numerical solution using Euler Cromer method in blue 
[time,y] = SHM_Euler_Cromer (10); 
  
subplot(2,2,2); 
plot(time,y,'b' );  
axis([0 100 -20 20]); 
xlabel('Time'); 
ylabel('Displacement');  
legend ('Euler Cromer method'); 
  
% Calculate the numerical solution using Second order Runge-Kutta method in green 
[time,y] = SHM_Runge_Kutta (10); 
  
subplot(2,2,3); 
plot(time,y,'g' );  
axis([0 100 -20 20]); 
xlabel('Time'); 
ylabel('Displacement');  
legend ('Runge-Kutta method'); 
  
% Use the built in MATLAB ODE45 solver to solve the ODE 
% The function describing the SHM equations is called my_shm 
% The time values range from 0 to 100 
% The initial velocity is 0, the initial displacement is 10 
  
[t,y]=ode23(@SHM_ODE45_function,[0,100],[0,10]); 
  
% We need to plot the second column of the y matrix, containing the  
% displacement against time in black 
  
subplot(2,2,4); 
plot(t,y(:,2),'k'); 
axis([0 100 -20 20]); 
xlabel('Time'); 
ylabel('Displacement'); 
legend ('ODE45 Solver'); 



Kevin Berwick Page 13 
 

Here are the functions to do the individual calculations 

%  
%  Simple harmonic motion -  Euler method 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 
% Equation is d2y/dt2 = -y  
  
function [time,y] = SHM_Euler (initial_displacement); 
  
npoints = 2500;               %Discretize time into 250 intervals 
dt = 0.04;                      % time step in seconds 
  
v = zeros(npoints,1);   % initializes v, a vector of dimension npoints X 1,to being all zeros 
y = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1); % this initializes the vector time to being all zeros  
y(1)=initial_displacement;                        % need some initial displacement 
  
% Euler solution 
for step = 1:npoints-1 % loop over the timesteps              
v(step+1) = v(step) - y(step)*dt; 
y(step+1) = y(step)+v(step)*dt; 
time(step+1) = time(step) + dt;  
end; 
  
  

 
%  
%  Simple harmonic motion -  Euler Cromer method 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 
% Equation is d2y/dt2 = -y  
  
function [time,y] = SHM_Euler_Cromer (initial_displacement); 
  
npoints = 2500;               %Discretize time into 250 intervals 
dt = 0.04;                      % time step in seconds 
  
v = zeros(npoints,1);   % initializes v, a vector of dimension npoints X 1,to being all zeros 
y = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1); % this initializes the vector time to being all zeros  
y(1)=initial_displacement;                        % need some initial displacement 
  
% Euler Cromer solution 
for step = 1:npoints-1 % loop over the timesteps              
v(step+1) = v(step) - y(step)*dt; 
y(step+1) = y(step)+v(step+1)*dt; 
time(step+1) = time(step) + dt;  
end;  

  
 
  
%  
%  Simple harmonic motion -  Second order Runge Kutta method 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 



Kevin Berwick Page 14 
 

% Equation is d2y/dt2 = -y  
function [time,y] = SHM_Runge_Kutta(initial_displacement); 
  
% 2nd order Runge Kutta solution 
  
npoints = 2500;               %Discretize time into 250 intervals 
dt = 0.04;                      % time step in seconds 
  
v = zeros(npoints,1);   % initializes v, a vector of dimension npoints X 1,to being all zeros 
y = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1); % this initializes the vector time to being all zeros  
y(1)=initial_displacement;                        % need some initial displacement 
  
  
v = zeros(npoints,1);   % initializes v, a vector of dimension npoints X 1,to being all zeros 
y = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros  
v_dash = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros 
y_dash = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1); % this initializes the vector time to being all zeros  
y(1)=10;                        % need some initial displacement 
  
for step = 1:npoints-1              % loop over the timesteps              
  
    v_dash=v(step)-0.5*y(step)*dt; 
    y_dash=y(step)+0.5*v(step)*dt; 
         
   v(step+1) = v(step)-y_dash*dt; 
   y(step+1) = y(step)+v_dash*dt; 
    time(step+1) = time(step)+dt;  
end;  

 
 

 

 

 

%  
%  Simple harmonic motion -  Built in MATLAB ODE45 method 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.1 
% Equation is d2y/dt2 = -y  
  
function dy = SHM_ODE45_function(t,y); 
  
% y is the state vector 
  
y1 = y(1);      % y1 is displacement 
v =  y(2);     % y2 is velocity 
  
% write down the state equations 
  
dy1=v;  
dy2=-y1; 
  
% collect the equations into a column vector, velocity in column 1, 
% displacement in column 2 



Kevin Berwick Page 15 
 

  
dy = [dy1;dy2]; 
  

  

 
Figure 4. Simple pendulum solution using Euler, Euler Cromer, Runge Kutta and 
Matlab ODE45 solver. 

 

 
  

0 50 100
-100

-50

0

50

100

Time

D
is

p
la

c
e
m

e
n
t

 

 

0 50 100
-20

-10

0

10

20

Time

D
is

p
la

c
e
m

e
n
t

 

 

0 50 100
-20

-10

0

10

20

Time

D
is

p
la

c
e
m

e
n
t

 

 

0 50 100
-20

-10

0

10

20

Time

D
is

p
la

c
e
m

e
n
t

 

 

Euler method Euler Cromer method

Runge-Kutta method ODE45 Solver



Kevin Berwick Page 16 
 

3.2  Solution for a damped pendulum using the Euler-Cromer method.  

 

This solution uses q=1 

 

%  
%  Euler_cromer calculation of motion of simple pendulum with damping 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.2 
% 
  
clear; 
length= 1;                                      %pendulum length in metres 
g=9.8;                                            % acceleration due to gravity 
q=1;                                          % damping strength 
  
npoints = 250;               %Discretize time into 250 intervals 
dt = 0.04;                      % time step in seconds 
  
omega = zeros(npoints,1);   % initializes omega, a vector of dimension npoints X 1,to being all zeros 
theta = zeros(npoints,1);   % initializes theta, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
  
theta(1)=0.2;                     % you need to have some initial displacement, otherwise the pendulum will 
not swing 
  
for step = 1:npoints-1 % loop over the timesteps              
omega(step+1) = omega(step) - (g/length)*theta(step)*dt-q*omega(step)*dt; 
theta(step+1) = theta(step)+omega(step+1)*dt;    
  
% In the Euler method, , the previous value of omega  
% and the previous value of theta are used to calculate the  new values of omega and theta.  
% In the Euler Cromer method, the previous value of omega  
% and the previous value of theta are used to calculate the the new value 
% of omega. However, the NEW value of omega is used to calculate the new 
% theta 
%  
time(step+1) = time(step) + dt;  
end; 
  
plot(time,theta,'r' ); %plots the numerical solution in red 
xlabel('time (seconds) '); 
ylabel('theta (radians)'); 



Kevin Berwick Page 17 
 

 
Figure 5. The damped pendulum using the Euler-Cromer method 

 

 

  

0 1 2 3 4 5 6 7 8 9 10
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time (seconds) 

th
e
ta

 (
ra

d
ia

n
s
)



Kevin Berwick Page 18 
 

3.3 Solution for a non-linear, damped, driven  pendulum :- the Physical pendulum,  

using the Euler-Cromer method.  

All of the next five plots were produced using the code below with slight modifications in 

either the input parameters or the plots.  

%  Euler Cromer Solution for non-linear, damped, driven  pendulum 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.3 
% 
clear; 
length= 9.8;                                  %pendulum length in metres 
g=9.8;                                             % acceleration due to gravity 
q=0.5; 
  
F_Drive=1.2;                                % damping strength 
Omega_D=2/3; 
npoints =15000;               %Discretize time  
dt = 0.04;                      % time step in seconds 
 omega = zeros(npoints,1);   % initializes omega, a vector of dimension npoints X 1,to being all zeros 
theta = zeros(npoints,1);   % initializes theta, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
  
theta(1)=0.2;                     % you need to have some initial displacement, otherwise the pendulum will 
not swing 
omega(1)=0; 
  
for step = 1:npoints-1;  
  
% loop over the timesteps              
% Note error in book in Equation for Example  3.3 
omega(step+1)=omega(step)+(-(g/length)*sin(theta(step))-
q*omega(step)+F_Drive*sin(Omega_D*time(step)))*dt; 
temporary_theta_step_plus_1 = theta(step)+omega(step+1)*dt; 
  
% We need to adjust theta after each iteration so as to keep it between +/-pi 
% The pendulum can now swing right around the pivot, corresponding to theta>2*pi.  
% Theta is an angular variable so values of theta that differ by 2*pi correspond to the same position. 
% For plotting purposes it is nice to keep (-pi<theta<pi).  
% So, if theta is <-pi, add 2*pi.If theta is > pi, subtract 2*pi 
% If the lines below between the ****** are commented out you get 3.6 (b)% bottom 
  
  %********************************************************************************************  
   if (temporary_theta_step_plus_1 < -pi) 
         temporary_theta_step_plus_1= temporary_theta_step_plus_1+2*pi;     
   elseif (temporary_theta_step_plus_1 > pi) 
      temporary_theta_step_plus_1= temporary_theta_step_plus_1-2*pi;    
  end; 
    
%********************************************************************************************  
  % Update theta array         
         theta(step+1)=temporary_theta_step_plus_1; 
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%  
   
  
% In the Euler method, , the previous value of omega  
% and the previous value of theta are used to calculate the  new values of omega and theta.  



Kevin Berwick Page 19 
 

% In the Euler Cromer method, the previous value of omega  
% and the previous value of theta are used to calculate the the new value 
% of omega. However, the NEW value of omega is used to calculate the new 
% theta 
%  
time(step+1) = time(step) + dt;  
end;  
  
plot (theta,omega,'r' ); %plots the numerical solution   
  
xlabel('theta (radians)'); 
ylabel('omega (seconds)'); 

 

 

 

Figure 6. Results from Physical pendulum,  using the Euler-Cromer method, F_drive 
=0.5 

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time (seconds) 

th
e
ta

 (
ra

d
ia

n
s
)



Kevin Berwick Page 20 
 

 

 

Figure 7.Results from Physical pendulum,  using the Euler-Cromer method, F_drive 
=1.2 

0 10 20 30 40 50 60
-4

-3

-2

-1

0

1

2

3

4

time (seconds) 

th
e
ta

 (
ra

d
ia

n
s
)



Kevin Berwick Page 21 
 

 

Figure 8. Results from Physical pendulum,  using the Euler-Cromer method, F_drive 
=0.5 

 

Figure 9. Results from Physical pendulum,  using the Euler-Cromer method, 
F_Drive=1.2 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

theta (radians)

o
m

e
g
a
 (

ra
d
ia

n
s
/s

e
c
o
n
d
)

-4 -3 -2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

theta (radians)

o
m

e
g
a
 (

ra
d
ia

n
s
/s

e
c
o
n
d
)



Kevin Berwick Page 22 
 

 

 
 If you want higher resolution, simply increase the resolution by changing npoints. 
Note that this figure was produced using npoints = 15000. F_Drive =1.2.

 
Figure 10. Increase resolution with npoints=15000.Results from Physical pendulum,  
using the Euler-Cromer method, F_Drive=1.2 

 
%  Euler Cromer Solution for non-linear, damped, driven  pendulum 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.3 
%I modified the code in order to produce the Poincare section shown in Fig 3.9.  
% It uses a little MATLAB trick in order to prevent plotting of any points that were not in 
% phase with the driving force.  
  
clear; 
length= 9.8;                                  %pendulum length in metres 
g=9.8;                                             % acceleration due to gravity 
q=0.5; 
F_Drive=1.2;                                % damping strength 
Omega_D=2/3; 
npoints =1500000;               %Discretize time  
dt = 0.04;                      % time step in seconds 
 omega = zeros(npoints,1);   % initializes omega, a vector of dimension npoints X 1,to being all zeros 
theta = zeros(npoints,1);   % initializes theta, a vector of dimension npoints X 1,to being all zeros  
time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
 theta(1)=0.2;                     % you need to have some initial displacement, otherwise the pendulum will 
not swing 
omega(1)=0; 
  
for step = 1:npoints-1;  

-4 -3 -2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

theta (radians)

o
m

e
g
a
 (

ra
d
ia

n
s
/s

e
c
o
n
d
)



Kevin Berwick Page 23 
 

  
% loop over the timesteps              
% Note error in book in Equation for Example  3.3 
omega(step+1)=omega(step)+(-(g/length)*sin(theta(step))-
q*omega(step)+F_Drive*sin(Omega_D*time(step)))*dt; 
temporary_theta_step_plus_1 = theta(step)+omega(step+1)*dt; 
  
   if (temporary_theta_step_plus_1 < -pi) 
         temporary_theta_step_plus_1= temporary_theta_step_plus_1+2*pi;     
   elseif (temporary_theta_step_plus_1 > pi) 
      temporary_theta_step_plus_1= temporary_theta_step_plus_1-2*pi;    
  end; 
      
  % Update theta array         
theta(step+1)=temporary_theta_step_plus_1; 
time(step+1) = time(step) + dt;  
end;  
  
% Only plot omega and theta point when omega is in phase with the driving force Omega_D 
I=find(abs(rem(time, 2*pi/Omega_D)) > 0.02); 
omega(I)=NaN; 
theta(I)=NaN; 
scatter (theta,omega,2 ); %plots the numerical solution   
  
plot (theta,omega,'k' ); %plots the numerical solution   
xlabel('theta (radians)'); 
ylabel('omega (radians/second)'); 

 

 

 
Figure 11. Poincare section (Strange attractor) Omega as a function of theta. F_Drive 
=1.2 

  

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

theta (radians)

o
m

e
g
a
 (

ra
d
ia

n
s
/s

e
c
o
n
d
)



Kevin Berwick Page 24 
 

3.4  Bifurcation diagram for the pendulum 

 
%  Program to perform Euler_cromer calculation of motion of physical pendulum 
%  by Kevin Berwick,  and calculate the bifurcation diagram. You need to 
%  have the function 'pendulum_function' available in order to run this.  
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.4.  
  
Omega_D=2/3; 
for F_Drive_step=1:0.1:13; 
 F_Drive=1.35+F_Drive_step/100; 
%  Calculate the plot of theta as a function of time for the current drive step 
% using the function :- pendulum_function 
[time,theta]= pendulum_function(F_Drive, Omega_D); 
  
%Filter the results to exclude initial transient of 300 periods, note 
% that the period is 3*pi.  
  
I=find (time< 3*pi*300); 
time(I)=NaN; 
theta(I)=NaN; 
  
%Further filter the results so that only results in phase with the driving force 
% F_Drive are displayed.  
% Replace all those values NOT in phase with NaN 
  
Z=find(abs(rem(time, 2*pi/Omega_D)) > 0.01); 
time(Z)=NaN; 
theta(Z)=NaN; 
  
% Remove all NaN values from the array to reduce dataset size 
  
time(isnan(time)) = []; 
theta(isnan(theta)) = []; 
  
% Now plot the results  
  
plot(F_Drive,theta,'k'); 
hold on; 
axis([1.35 1.5 1 3]); 
xlabel('F Drive'); 
ylabel('theta (radians)');     
end; 
     

   
%  Euler_cromer calculation of motion of physical pendulum 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.3 
  
function [time,theta] = pendulum_function(F_Drive,Omega_D); 
  
length= 9.8;                                  %pendulum length in metres 
g=9.8;                                             % acceleration due to gravity 
q=0.5;                                          % damping strength 
npoints =100000;               %Discretize time  
dt = 0.04;                          % time step in seconds 
  
omega = zeros(npoints,1);   % initializes omega, a vector of dimension npoints X 1,to being all zeros 
theta = zeros(npoints,1);   % initializes theta, a vector of dimension npoints X 1,to being all zeros  



Kevin Berwick Page 25 
 

time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
  
theta(1)=0.2;                     % you need to have some initial displacement, otherwise the pendulum will 
not swing 
omega(1)=0; 
  
for step = 1:npoints-1;  
% loop over the timesteps              
omega(step+1)=omega(step)+(-(g/length)*sin(theta(step))-
q*omega(step)+F_Drive*sin(Omega_D*time(step)))*dt; 
temporary_theta_step_plus_1 = theta(step)+omega(step+1)*dt; 
 % Make corrections to keep theta between pi and -pi 
if (temporary_theta_step_plus_1 < -pi) 
         temporary_theta_step_plus_1= temporary_theta_step_plus_1+2*pi;     
elseif (temporary_theta_step_plus_1 > pi) 
      temporary_theta_step_plus_1= temporary_theta_step_plus_1-2*pi;    
 end; 
% Update theta array         
theta(step+1)=temporary_theta_step_plus_1;   
% Increment time  
time(step+1) = time(step) + dt;  
end; 

  

 
Figure 12. Bifurcation diagram for the pendulum 

 
  
  

  

1.35 1.4 1.45 1.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

F Drive

th
e
ta

 (
ra

d
ia

n
s
)



Kevin Berwick Page 26 
 

3.6 The Lorenz Model  

 

The equations are the same as those as in 3.29  

𝑑𝑥

𝑑𝑡
=  𝜎(𝑦 − 𝑥) 

𝑑𝑦

𝑑𝑡
=  −𝑥𝑧 + 𝑟𝑥 − 𝑦 

𝑑𝑧

𝑑𝑡
=  𝑥𝑦 − 𝑏𝑧 

 

The equations I used in the numerical solution are 

𝑥𝑖+1 = 𝑥𝑖 + 𝜎(𝑦𝑖− 𝑥𝑖)∆𝑡 

𝑦𝑖+1 = 𝑦𝑖 + (− 𝑥𝑖 𝑧𝑖+ 𝑟𝑥𝑖 − 𝑦𝑖)∆𝑡 

𝑧𝑖+1 = 𝑧𝑖 + ( 𝑥𝑖 𝑦𝑖− 𝑏𝑧𝑖)∆𝑡 

 

%  
%  Euler calculation of Lorenz equations 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi, 
%  section 3.6 
% 
clear 
a=10; 
b=8/3; 
r=25; 
sigma=10; 
npoints =500000;               %Discretize time  
dt = 0.0001;                      % time step in seconds 
x = zeros(npoints,1);   % initializes x, a vector of dimension npoints X 1,to being all zeros 
y = zeros(npoints,1);   % initializes y, a vector of dimension npoints X 1,to being all zeros 
z = zeros(npoints,1);   % initializes z, a vector of dimension npoints X 1,to being all zeros 
time = zeros(npoints,1);    % this initializes the vector time to being all zeros  
x(1)=1; 
   
for step = 1:npoints-1  
  
% loop over the timesteps and solve the difference equations             
  
x(step+1)=x(step)+sigma*(y(step)-x(step))*dt; 
y(step+1)=y(step)+(-x(step)*z(step)+r*x(step)-y(step))*dt; 
z(step+1)=z(step)+(x(step)*y(step)-b*z(step))*dt; 
  
   % Update time array         
  
time(step+1) = time(step) + dt;  
end; 
   
subplot (2,1,1); 



Kevin Berwick Page 27 
 

plot(time,z,'b' ); 
xlabel('time'); 
ylabel('z'); 
subplot (2,1,2); 
plot (x,z,'g' );  
xlabel('x'); 
ylabel('z') 
 

 
  
Figure 13. Variation of z as a function of time and corresponding strange attractor 

 

 

  

 

 

 

  

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

time

z

-20 -15 -10 -5 0 5 10 15 20
0

20

40

60

x

z



Kevin Berwick Page 28 
 

4. The Solar System 
 

4.1 Kepler’s Laws 

 
%  
%  Planetary orbit using Euler Cromer methods. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.1 
% 
  
npoints=500; 
dt = 0.002;                     % time step in years 
  
x=1;                     %  initialise position of planet in AU 
y=0;                     
v_x=0;                   % initialise velocity of planet in AU/yr 
v_y=2*pi;   
  
% Plot the Sun at the origin 
plot(0,0,'oy','MarkerSize',30, 'MarkerFaceColor','yellow'); 
axis([-1 1 -1 1]); 
xlabel('x(AU)'); 
ylabel('y(AU)');  
hold on; 
  
for step = 1:npoints-1;  
% loop over the timesteps              
radius=sqrt(x^2+y^2); 
% Compute new velocities in the x and y directions 
v_x_new=v_x - (4*pi^2*x*dt)/(radius^3); 
v_y_new=v_y - (4*pi^2*y*dt)/(radius^3); 
  
% Euler Cromer Step - update positions using newly calculated velocities 
  
x_new=x+v_x_new*dt; 
y_new=y+v_y_new*dt; 
  
% Plot planet position immediately  
 plot(x_new,y_new,'-k'); 
 drawnow;    
  
 % Update x and y velocities  with new velocities 
v_x=v_x_new; 
v_y=v_y_new; 
% Update x and y with new positions 
x=x_new; 
y=y_new; 
  
end; 



Kevin Berwick Page 29 
 

   
Figure 14. Simulation of Earth orbit around the Sun 

 
Here is the code using a second order Runge Kutta method giving the same results. 
%  
% 
%  Planetary orbit using second order Runge-Kutta method. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.1 
% 
% 
npoints=500; 
dt = 0.002;                     % time step in years 
t=0; 
x=1;                     %  initialise position of planet in AU 
y=0;                     
v_x=0;                   % initialise x velocity of planet in AU/yr 
v_y=2*pi;              % initialise y velocity of planet in AU/yr 
  
% Plot the Sun at the origin 
plot(0,0,'oy','MarkerSize',30, 'MarkerFaceColor','yellow'); 
axis([-1 1 -1 1]); 
xlabel('x(AU)'); 
ylabel('y(AU)');  
hold on; 
  
for step = 1:npoints-1;  
  
 % loop over the timesteps              
radius=sqrt(x^2+y^2); 
  
% Compute Runge Kutta values for the y equations 
  
y_dash=y+0.5*v_y*dt; 
v_y_dash=v_y - 0.5*(4*pi^2*y*dt)/(radius^3); 
  
% update positions and new  y velocity 
  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x(AU)

y
(A

U
)



Kevin Berwick Page 30 
 

y_new=y+v_y_dash*dt; 
v_y_new=v_y-(4*pi^2*y_dash*dt)/(radius^3); 
  
% Compute Runge Kutta values for the x equations 
x_dash=x+0.5*v_x*dt; 
v_x_dash=v_x - 0.5*(4*pi^2*x*dt)/(radius^3); 
  
% update positions using newly calculated velocity 
  
x_new=x+v_x_dash*dt; 
v_x_new=v_x-(4*pi^2*x_dash*dt)/(radius^3); 
% Plot planet position immediately  
 plot(x_new,y_new,'-k'); 
 drawnow;    
 % Update x and y velocities  with new velocities 
v_x=v_x_new; 
v_y=v_y_new; 
% Update x and y with new positions 
x=x_new; 
y=y_new; 
  
end; 

 
 

4.1.1 Ex 4.1 Planetary motion results using different time steps 

 

In Exercise 4.1 we are asked to change the time step to show that for dt > 0.01 years, 
you get an unsatisfactory result. I chose dt=0.05 and got the Figure below. Clearly 
the orbit is unstable. This is in accordance with the rule of thumb that the time step 
should be less than 1% of the characteristic time scale of the problem. 



Kevin Berwick Page 31 
 

 

 

Figure 15. Simulation of Earth orbit with time step of 0.05 

I also looked at changing the velocity to look at the effect of increasing the value of 

the initial velocity, while returning the time step to 0.002.  Here is the plot, below, 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x(AU)

y
(A

U
)



Kevin Berwick Page 32 
 

with an initial y velocity of 4, dt is 0.002. 

 

Figure 16. Simulation of Earth orbit, initial y velocity of 4, time step  is 0.002. 

Here is the plot with the same initial y velocity of 4, but dt is increased to 0.05. 

Clearly, the instability is apparent.  

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x(AU)

y
(A

U
)



Kevin Berwick Page 33 
 

 

Figure 17.Simulation of Earth orbit, initial y velocity of 4, time step  is 0.05 

 

 Here is the result for an initial y velocity of 8, dt is 0.002., npoints=2500. The Runge 
Kutta Method is used here. Note the relative stability of the orbit.  
 

 
Figure 18. Simulation of Earth orbit, initial y velocity of 8, time step  is 0.002. 2500 
points and Runge Kutta method 

 
Here is the code and Plot for an initial y velocity of 8, dt is 0.05, npoints=2500. The 
Runge Kutta Method is used here.  

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(AU)

y
(A

U
)

-5 -4 -3 -2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(AU)

y
(A

U
)



Kevin Berwick Page 34 
 

 
%  
% 
%  Planetary orbit using second order Runge-Kutta method. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.1 
% 
% 
% npoints=500; 
npoints=2500; 
dt = 0.05;                     % time step in years 
  
t=0; 
x=1;                     %  initialise position of planet in AU 
y=0;                     
v_x=0;                   % initialise x velocity of planet in AU/yr 
% v_y=2*pi;              % initialise y velocity of planet in AU/yr 
v_y=8;              % initialise y velocity of planet in AU/yr 
  
% Plot the Sun at the origin 
plot(0,0,'oy','MarkerSize',30, 'MarkerFaceColor','yellow'); 
% axis([-1 1 -1 1]);    remove in order to see effect of changing time step 
xlabel('x(AU)'); 
ylabel('y(AU)');  
hold on; 
  
for step = 1:npoints-1;  
  
 % loop over the timesteps              
radius=sqrt(x^2+y^2); 
  
% Compute Runge Kutta values for the y equations 
  
y_dash=y+0.5*v_y*dt; 
v_y_dash=v_y - 0.5*(4*pi^2*y*dt)/(radius^3); 
  
% update positions and new  y velocity 
  
y_new=y+v_y_dash*dt; 
v_y_new=v_y-(4*pi^2*y_dash*dt)/(radius^3); 
  
% Compute Runge Kutta values for the x equations 
x_dash=x+0.5*v_x*dt; 
v_x_dash=v_x - 0.5*(4*pi^2*x*dt)/(radius^3); 
  
% update positions using newly calculated velocity 
  
x_new=x+v_x_dash*dt; 
v_x_new=v_x-(4*pi^2*x_dash*dt)/(radius^3); 
% Plot planet position immediately  
 plot(x_new,y_new,'-k'); 
 drawnow;    
 % Update x and y velocities  with new velocities 
v_x=v_x_new; 
v_y=v_y_new; 
% Update x and y with new positions 
x=x_new; 
y=y_new; 
  
end; 



Kevin Berwick Page 35 
 

 
 

 
Figure 19.Plot for an initial y velocity of 8, dt is 0.05, npoints=2500. The Runge Kutta 
Method is used here 

4.2 Orbits using different force laws 

 

Here is the code to calculate the elliptical orbit for a force law with β=2. The time 
step is 0.001 years.   
 
 
%  
% 
%  Planetary orbit using second order Runge-Kutta method. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.2 
% 
% 
  
npoints=1000; 
dt = 0.001;                     % time step in years 
  
t=0; 
x=1;                     %  initialise position of planet in AU 
y=0;                     
v_x=0;                   % initialise x velocity of planet in AU/yr 
% v_y=2*pi;              % initialise y velocity of planet in AU/yr 
v_y=5;              % initialise y velocity of planet in AU/yr 
  
% Plot the Sun at the origin 

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(AU)

y
(A

U
)



Kevin Berwick Page 36 
 

plot(0,0,'oy','MarkerSize',30, 'MarkerFaceColor','yellow'); 
title('Beta = 2') 
 axis([-1 1 -1 1]); 
xlabel('x(AU)');  
ylabel('y(AU)');  
hold on; 
  
for step = 1:npoints-1;  
  
 % loop over the timesteps              
radius=sqrt(x^2+y^2); 
  
% Compute Runge Kutta values for the y equations 
  
y_dash=y+0.5*v_y*dt; 
v_y_dash=v_y - 0.5*(4*pi^2*y*dt)/(radius^3); 
  
% update positions and new  y velocity 
  
y_new=y+v_y_dash*dt; 
v_y_new=v_y-(4*pi^2*y_dash*dt)/(radius^3); 
  
% Compute Runge Kutta values for the x equations 
x_dash=x+0.5*v_x*dt; 
v_x_dash=v_x - 0.5*(4*pi^2*x*dt)/(radius^3); 
  
% update positions using newly calculated velocity 
  
x_new=x+v_x_dash*dt; 
v_x_new=v_x-(4*pi^2*x_dash*dt)/(radius^3); 
% Plot planet position immediately  
 plot(x_new,y_new,'-k'); 
 drawnow;    
 % Update x and y velocities  with new velocities 
v_x=v_x_new; 
v_y=v_y_new; 
% Update x and y with new positions 
x=x_new; 
y=y_new; 
  
end; 

 



Kevin Berwick Page 37 
 

 
Figure 20. Orbit for a force law with β=2. The time step is 0.001 years. 

Here is the code to calculate the elliptical orbit for a force law with β=2.5. The time 
step is 0.001 years.   
 
 
%  Planetary orbit using second order Runge-Kutta method. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.2 
% 
% 
  
npoints=1000; 
dt = 0.001;                     % time step in years 
  
t=0; 
x=1;                     %  initialise position of planet in AU 
y=0;                     
v_x=0;                   % initialise x velocity of planet in AU/yr 
% v_y=2*pi;              % initialise y velocity of planet in AU/yr 
v_y=5;              % initialise y velocity of planet in AU/yr 
  
% Plot the Sun at the origin 
plot(0,0,'oy','MarkerSize',30, 'MarkerFaceColor','yellow'); 
title('Beta = 2.5') 
 axis([-1 1 -1 1]); 
xlabel('x(AU)');  
ylabel('y(AU)');  
hold on; 
  
for step = 1:npoints-1;  
  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Beta = 2

x(AU)

y
(A

U
)



Kevin Berwick Page 38 
 

 % loop over the timesteps              
radius=sqrt(x^2+y^2); 
  
% Compute Runge Kutta values for the y equations 
  
y_dash=y+0.5*v_y*dt; 
v_y_dash=v_y - 0.5*(4*pi^2*y*dt)/(radius^3.5); 
  
% update positions and new  y velocity 
  
y_new=y+v_y_dash*dt; 
v_y_new=v_y-(4*pi^2*y_dash*dt)/(radius^3.5); 
  
% Compute Runge Kutta values for the x equations 
x_dash=x+0.5*v_x*dt; 
v_x_dash=v_x - 0.5*(4*pi^2*x*dt)/(radius^3.5); 
  
% update positions using newly calculated velocity 
  
x_new=x+v_x_dash*dt; 
v_x_new=v_x-(4*pi^2*x_dash*dt)/(radius^3.5); 
% Plot planet position immediately  
 plot(x_new,y_new,'-k'); 
 drawnow;    
 % Update x and y velocities  with new velocities 
v_x=v_x_new; 
v_y=v_y_new; 
% Update x and y with new positions 
x=x_new; 
y=y_new; 
  
end; 
 



Kevin Berwick Page 39 
 

 
Figure 21. Orbit for a force law with β=2.5. The time step is 0.001 years. 

Here is the Figure for β=3. Check out the planet being ejected from the solar system!! 
The Sun is at the origin 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Beta = 2.5

x(AU)

y
(A

U
)



Kevin Berwick Page 40 
 

 
Figure 22. Orbit for a force law with β=3. 

4.3  Precession of the perihelion of  Mercury. 

 

Let’s do the Maths here. 
 
 

𝐹𝐺 =  
𝐺𝑀𝑠𝑀𝑒

𝑟2
(1 +

𝛼

𝑟2
)            𝑠𝑜           

𝑑2𝑥

𝑑𝑡2
=  

𝐹𝐺,𝑥

𝑀𝐸
                

𝑑2𝑦

𝑑𝑡2
=  

𝐹𝐺,𝑦

𝑀𝐸
 

 
 

𝐹𝐺,𝑥 = − 
𝐺𝑀𝑠𝑀𝑒

𝑟2
 (1 +

𝛼

𝑟2
) 𝑐𝑜𝑠𝜃           𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚   𝑐𝑜𝑠𝜃 =

𝑥

𝑟
   𝑠𝑜       

 

 𝐹𝐺,𝑥 = − 
𝐺𝑀𝑠𝑀𝑒𝑥

𝑟3
 (1 +

𝛼

𝑟2
) 

 

𝐹𝐺,𝑦 = − 
𝐺𝑀𝑠𝑀𝑒

𝑟2
(1 +

𝛼

𝑟2
)  𝑠𝑖𝑛𝜃           𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚   𝑠𝑖𝑛𝜃 =

𝑦

𝑟
   𝑠𝑜    

 

𝐹𝐺,𝑦 = − 
𝐺𝑀𝑠𝑀𝑒𝑦

𝑟3
(1 +

𝛼

𝑟2
) 

 

 
Now, write each 2nd order differential equations as two, first order, differential 
equations. 
  

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Beta =3

x(AU)

y
(A

U
)



Kevin Berwick Page 41 
 

𝑑𝑣𝑥

𝑑𝑡
=  −

𝐺𝑀𝑠 𝑥

𝑟3
(1 +

𝛼

𝑟2
) 

 
𝑑𝑥

𝑑𝑡
=  𝑣𝑥 

 
 

𝑑𝑣𝑦

𝑑𝑡
=  −

𝐺𝑀𝑠 𝑦

𝑟3
(1 +

𝛼

𝑟2
) 

 
𝑑𝑦

𝑑𝑡
=  𝑣𝑦 

 
 
So, the difference equation set using the Euler Cromer method is  
 

𝑣𝑥,𝑖+1 =  𝑣𝑥,𝑖 −
4𝜋2𝑥𝑖

𝑟𝑖
3 Δ𝑡 (1 +

𝛼

𝑟𝑖
2)   

 
𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑥,𝑖+1 Δ𝑡 

 

𝑣𝑦,𝑖+1 =  𝑣𝑦,𝑖 −
4𝜋2𝑦𝑖

𝑟𝑖
3 Δ𝑡 (1 +

𝛼

𝑟𝑖
2)   

 
𝑦𝑖+1 = 𝑦𝑖 + 𝑣𝑦,𝑖+1 Δ𝑡 

 
We could go ahead and code this, but what about if we chose to attack the problem 
using the Runge Kutta method. The relevant equations are  
 

𝑦′ = 𝑦𝑖 + 𝑣𝑦,𝑖  
Δ𝑡

2
 

 

𝑣𝑦
′ =  𝑣𝑦,𝑖 −

4𝜋2𝑦𝑖

𝑟𝑖
3

Δ𝑡

2
(1 +

𝛼

𝑟𝑖
2)   

 
𝑦𝑖+1 = 𝑦𝑖 + 𝑣𝑦

′  Δ𝑡 

 

𝑣𝑦,𝑖+1 =  𝑣𝑦,𝑖 −
4𝜋2𝑦𝑖

𝑟𝑖
3 Δ𝑡 (1 +

𝛼

𝑟𝑖
2)   

 
 
 

𝑥′ = 𝑥𝑖 + 𝑣𝑥,𝑖  
Δ𝑡

2
 

 

𝑣𝑥
′ =  𝑣𝑥,𝑖 −

4𝜋2𝑥𝑖

𝑟𝑖
3

Δ𝑡

2
(1 +

𝛼

𝑟𝑖
2)   

 
𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑥

′  Δ𝑡 
 

𝑣𝑥,𝑖+1 =  𝑣𝑥,𝑖 −
4𝜋2𝑥𝑖

𝑟𝑖
3 Δ𝑡 (1 +

𝛼

𝑟𝑖
2)   

 



Kevin Berwick Page 42 
 

In the case of the y equations for example, y’ and v’ is evaluated by the Euler method 

at 
Δt

2
. Then to get the new values of y and v, we simply use the Euler method but using 

y’ and v’ in the equations.  
 
So, here is the code for an alpha value of 0.0008 
 
  



Kevin Berwick Page 43 
 

 
%  
% 
%  Precession of mercury using second order Runge-Kutta method. 
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.3 
% 
% 
  
npoints=30000; 
dt = 0.0001;                     % time step in years 
time = zeros(npoints,1);   % initializes time, a vector of dimension npoints X 1,to being all zeros  
angleInDegrees = zeros(npoints,1);   % initializes angleInDegrees, a vector of dimension npoints X 1,to 
being all zeros  
x=0.47;                     %  initialise x position of planet in AU 
y=0;                          %  initialise x position of planet in AU 
v_x=0;                     % initialise x velocity of planet in AU/yr 
v_y=8.2;                   % initialise y velocity of planet in AU/yr 
  
alpha=0.0008; 
  
for step = 1:npoints-1;         % loop over the timesteps     
     
    time(step+1) = time(step) + dt;                   % Increment total elapsed time 
     
    radius=sqrt(x^2+y^2);        % Calculate radius 
     
    relativity_factor=1+alpha/radius^2; 
     
    % Compute Runge Kutta values for the y equations 
     
    y_dash=y+0.5*v_y*dt; 
    v_y_dash=v_y - 0.5*(4*pi^2*y*dt)*relativity_factor/(radius^3); 
     
    % Update positions and new y velocity 
     
    y_new=y+v_y_dash*dt; 
    v_y_new=v_y-(4*pi^2*y_dash*dt)*relativity_factor/(radius^3); 
     
    % Compute Runge Kutta values for the x equations 
     
    x_dash=x+0.5*v_x*dt; 
    v_x_dash=v_x - 0.5*(4*pi^2*x*dt)*relativity_factor/(radius^3); 
     
    % Update positions using newly calculated velocity 
     
    x_new=x+v_x_dash*dt; 
    v_x_new=v_x-(4*pi^2*x_dash*dt)*relativity_factor/(radius^3); 
     
    % Update x and y velocities  with new velocities 
    v_x=v_x_new; 
    v_y=v_y_new; 
     
    % Identify semi-major axes in the planetary orbit and draw them on the 
    % plot. I need to monitor the time derivative of the radius and identify when it 
    % changes from positive to negative.  Then calculate the angle made 
    % by the vector joining the origin and this point with the x axis. 
     
    new_radius=sqrt(x_new^2+y_new^2); 
    time_derivative=(new_radius-radius)/dt; 



Kevin Berwick Page 44 
 

     
    %  Update x and y with new positions 
    x=x_new; 
    y=y_new; 
     
     
    if abs(time_derivative) <0.0025;     % This is a way of identifying the long axis of the orbit. Note that 
if this is not the case,the value 
                                                                    % angle_In_Degrees will remain zero 
         
            [theta,rho] = cart2pol(x_new,y_new);      %Convert Cartesian coordinates to polar,  noting that 
the result is in radians 
            angleInDegrees(step)= 180*(theta/pi);  % convert to degrees 
         
    end; 
     
  end; 
   
% Plot Orbit orientation versus time. Remove data with angles = zero or 
% less,  this means we only plot the angles of the long axes of the orbit 
  
I=find(angleInDegrees < 0.01); 
time(I)=NaN; 
angleInDegrees(I)=NaN; 
  
% Remove all NaN values from the array to reduce dataset size 
  
time(isnan(time)) = []; 
angleInDegrees(isnan(angleInDegrees)) = []; 
  
  axis([0 3 0 20]); 
  xlabel('time(year)'); 
  ylabel('theta(degrees)'); 
  hold on; 
  scatter (time, angleInDegrees, 'or'); 
   
 % Perform a linear fit to the data, degree N=1, 
 % returning the coefficient, or slope, to the variable slope 
  
poly_matrix = polyfit(time,angleInDegrees,1) ; 
slope=poly_matrix(1); 
title(['Orbit orientation versus time for alpha=',num2str(alpha), ' and slope = ', num2str(slope)]); 
  
% Plot the fit  
  
time_for_fit=[0:0.1:3]; 
Polynomial_values = polyval(poly_matrix,time_for_fit);      % Evaluate the polynomial at times from 
0 to 2.5 
plot(time_for_fit,Polynomial_values, 'g', 'LineWidth',2); 

 
 

 



Kevin Berwick Page 45 
 

 
Figure 23. Orbit orientation as a function of time 

 
 
If we rerun the code for various values of alpha. All we do is change one line in the code 
above, circled red. We note the value of the slope each time. The slope is just the time 
derivative of theta. We get the following values. 
 
 

alpha Time derivative of theta (precession 
rate) 

0.0005 5.3 
0.0007 7.4 
0.001 10.7 
0.002 21.9 
0.003 33.6 
0.004 45.9 

 
We can use this next script to plot this data and then do a fit to finally calculate the 
precession rate of Mercury. 
 
  

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

time(year)

th
e
ta

(d
e
g
re

e
s
)

Orbit orientation versus time for alpha=0.0008 and slope = 8.5115



Kevin Berwick Page 46 
 

%  
% 
%  Precession of mercury using second order Runge-Kutta method. 
%  Data plotting and fitting routines  
%  by Kevin Berwick,   
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.3 
% 
% 
alpha_relativity=1.1e-8;        % predicted alpha value from General Relativity 
                                                                                                                                          % Load up data  
alpha=[0.0005 0.0007 0.001 0.002 0.003 0.004]; 
precession_rate=[5.3 7.4 10.7 21.9 33.6 45.9]; 
                                                                                                                                          % Format graph 
axis([0 0.004 0 40]); 
xlabel('alpha'); 
ylabel('Precession rate (degrees/year)'); 
hold on; 
                                                                                                                                            % Plot graph 
scatter(alpha, precession_rate,  'ko') 
  
  
%  Perform a linear fit to the data, degree N=1, 
%  returning the coefficient, or slope. Note you can't use the MATLAB function polyval as the 
%  intercept value of the fitted line would dominate the precession rate.  
% 
poly_matrix = polyfit(alpha, precession_rate, 1); % Perform the fit 
                                                                                    % Plot the fit on the data 
alpha_for_fit=[0:0.0001:0.004]; 
Polynomial_values = polyval(poly_matrix,alpha_for_fit);      % Evaluate the polynomial at points in 
the vector 
plot(alpha_for_fit,Polynomial_values, 'g', 'LineWidth',2); 
; 
Mercury_rate = poly_matrix(1)*alpha_relativity; % Extract the slope from the fit and multiply it by 
the predicted alpha  
                                                                                    % value from General Relativity. Answer is in degrees 
per year 
  
 Mercury_rate_arc_sec_century =  Mercury_rate*100 *3600;    % Convert to arc/s per century                                                                            
  
title(['Calculated precession rate of Mercury for alpha = ', num2str(alpha_relativity),' AU^2 is 
',num2str(Mercury_rate_arc_sec_century,'%.1f'),' arc/s per century']); 

 
Finally, here are the results 
 



Kevin Berwick Page 47 
 

 
Figure 24. Calculated precession rate of Mercury 

  

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

0

5

10

15

20

25

30

35

40

alpha

P
re

c
e
s
s
io

n
 r

a
te

 (
d
e
g
re

e
s
/y

e
a
r)

Calculated precession rate of Mercury for alpha = 1.1e-008 AU2 is 45.8 arc/s per century



Kevin Berwick Page 48 
 

4.4 The three body problem and the effect of Jupiter on Earth 

 

A couple of points on this problem. Firstly, the direction of the various forces 
between the 3 bodies is elegantly captured in the pseudocode given in Ex 4.2. Do not 
be tempted to start taking absolute values of the subtracted positions in a naïve bid to 
‘correct’ the equations.  
Here is the code 
% 

% 3 body simulation of Jupiter, Earth and Sun. Use Euler Cromer method 

% based on 'Computational Physics' book by N Giordano and H Nakanishi 

% Section 4.4 

% by Kevin Berwick 

% 

% 

npoints=1000000; 

dt = 0.0001; % time step in years. 

M_s=2e30; % Mass of the Sun in kg 

M_e=6e24; % Mass of the Earth in kg 

Mj_actual=1.9e27; % Actual mass of Jupiter 

M_j=1500*Mj_actual                  % Mass of Jupiter in kg this allows you to vary the value of Jupiter's mass in 

                                                %order to explore the effect of this on the simulation 

x_e_initial=1; % Initial position of Earth in AU 

y_e_initial=0; 

v_e_x_initial=0; % Initial velocity of Earth in AU/yr 

v_e_y_initial=2*pi; 

x_j_initial=5.2; % Initial position of Jupiter in AU, assume at opposition initially 

y_j_initial=0; 

v_j_x_initial=0; % Initial velocity of Jupiter in AU/yr 

v_j_y_initial= 2.7549; % This is 2*pi*5.2 AU/11.85 years = 2.75 AU/year 

% Create arrays to store position and velocity of Earth 

x_e=zeros(npoints,1); 

y_e=zeros(npoints,1); 

v_e_x=zeros(npoints,1); 

v_e_y=zeros(npoints,1); 

% Create arrays to store position and velocity of Jupiter 

x_j=zeros(npoints,1); 

y_j=zeros(npoints,1); 

v_j_x=zeros(npoints,1); 

v_j_y=zeros(npoints,1); 

r_e=zeros(npoints,1); 

r_j=zeros(npoints,1); 

r_e_j=zeros(npoints,1); 

% Initialise positions and velocities of Earth and Jupiter 

x_e(1)=x_e_initial; 

y_e(1)=y_e_initial; 

v_e_x(1)=v_e_x_initial; 

v_e_y(1)=v_e_y_initial; 

x_j(1)=x_j_initial; 

y_j(1)=y_j_initial; 

v_j_x(1)=v_j_x_initial; 

v_j_y(1)=v_j_y_initial; 

for i = 1:npoints-1; % loop over the timesteps 

% Calculate distances to Earth from Sun, Jupiter from Sun and Jupiter 

% to Earth for current value of i 

r_e(i)=sqrt(x_e(i)^2+y_e(i)^2); 

r_j(i)=sqrt(x_j(i)^2+y_j(i)^2); 

r_e_j(i)=sqrt((x_e(i)-x_j(i))^2 +(y_e(i)-y_j(i))^2); 

% Compute x and y components for new velocity of Earth 



Kevin Berwick Page 49 
 

v_e_x(i+1)=v_e_x(i)-4*pi^2*x_e(i)*dt/r_e(i)^3-4*pi^2*(M_j/M_s)*(x_e(i)-x_j(i))*dt/r_e_j(i)^3; 

v_e_y(i+1)=v_e_y(i)-4*pi^2*y_e(i)*dt/r_e(i)^3-4*pi^2*(M_j/M_s)*(y_e(i)-y_j(i))*dt/r_e_j(i)^3; 

% Compute x and y components for new velocity of Jupiter 

v_j_x(i+1)=v_j_x(i)-4*pi^2*x_j(i)*dt/r_j(i)^3-4*pi^2*(M_e/M_s)*(x_j(i)-x_e(i))*dt/r_e_j(i)^3; 

v_j_y(i+1)=v_j_y(i)-4*pi^2*y_j(i)*dt/r_j(i)^3-4*pi^2*(M_e/M_s)*(y_j(i)-y_e(i))*dt/r_e_j(i)^3; 

% 

% Use Euler Cromer technique to calculate the new positions of Earth and 

% Jupiter. Note the use of the NEW vlaue of velocity in both equations 

x_e(i+1)=x_e(i)+v_e_x(i+1)*dt; 

y_e(i+1)=y_e(i)+v_e_y(i+1)*dt; 

x_j(i+1)=x_j(i)+v_j_x(i+1)*dt; 

y_j(i+1)=y_j(i)+v_j_y(i+1)*dt; 

end; 

plot(x_e,y_e, 'r', x_j,y_j, 'k'); 

axis([-7 7 -7 7]); 

xlabel('x(AU)'); 

ylabel('y(AU)'); 

title('3 body simulation - Jupiter Earth'); 

 
 
  



Kevin Berwick Page 50 
 

Here are the results using the actual mass of Jupiter  

 
Figure 25. Simulation of solar system containing  Jupiter and  Earth. Actual mass of 
Jupiter used.  



Kevin Berwick Page 51 
 

By changing the value of M_j, circled in red, you get the plot below for a mass of 
Jupiter = 10*M_j, that is, 10 times it’s actual value.   

 
 
Figure 26. Simulation of solar system containing  Jupiter and  Earth. Jupiter mass is 10 
X actual value. 

If the mass of Jupiter is increased to 1000 times the actual value and the 
perturbation of Jupiter on the Sun is ignored then we get the plot below, 



Kevin Berwick Page 52 
 

 
Figure 27.Simulation of solar system containing  Jupiter and  Earth. Jupiter mass is 
1000 X actual value, ignoring perturbation of the Sun. 

  



Kevin Berwick Page 53 
 

4.6  Chaotic tumbling of Hyperion 

 

The model of the moon consists of two particles, m1 and m2 joined by a massless rod. This 

orbits around a massive object, Saturn, at the origin. We need to extend our original 

planetary motion program to include the rotation of the object.  First we need to recall the 

maths  in Section 4.1, we used in order to calculate the motion of the Earth around the Sun.  

        
𝑑2𝑥

𝑑𝑡2
=  

𝐹𝐺,𝑥

𝑀𝐸
                

𝑑2𝑦

𝑑𝑡2
=  

𝐹𝐺,𝑦

𝑀𝐸
 

 
 

𝐹𝐺,𝑥 = − 
𝐺𝑀𝑠𝑀𝑒

𝑟2
 𝑐𝑜𝑠𝜃           𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚   𝑐𝑜𝑠𝜃 =

𝑥

𝑟
   𝑠𝑜       

 

 𝐹𝐺,𝑥 = − 
𝐺𝑀𝑠𝑀𝑒𝑥

𝑟3
 

 

𝐹𝐺,𝑦 = − 
𝐺𝑀𝑠𝑀𝑒

𝑟2
 𝑠𝑖𝑛𝜃           𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚   𝑠𝑖𝑛𝜃 =

𝑦

𝑟
   𝑠𝑜    

 

𝐹𝐺,𝑦 = − 
𝐺𝑀𝑠𝑀𝑒𝑦

𝑟3
 

 
 
Now, write each 2nd order differential equations as two, first order, differential 
equations. 

𝑑𝑣𝑥

𝑑𝑡
=  −

𝐺𝑀𝑠 𝑥

𝑟3
 

 
𝑑𝑥

𝑑𝑡
=  𝑣𝑥 

 
𝑑𝑣𝑦

𝑑𝑡
=  −

𝐺𝑀𝑠 𝑦

𝑟3
 

 
𝑑𝑦

𝑑𝑡
=  𝑣𝑦 

 
 
We need suitable units of mass. Not that the Earth’s orbit is circular. For circular 

motion we know that the centripetal force is given by    
𝑀𝐸 𝑣

2

𝑟
   , where v is the velocity of 

the Earth.  
 
 

𝑀𝐸 𝑣
2

𝑟
=  𝐹𝐺 =  

𝐺𝑀𝑠 𝑀𝐸 

𝑟2
 

𝐺𝑀𝑠 = 𝑣2𝑟 = 4𝜋2𝐴𝑈3/𝑦𝑟2 

Since the velocity of Earth is 2πr/yr=2π1AU/yr 

 



Kevin Berwick Page 54 
 

So, the difference equation set using the Euler Cromer method is  
 

𝑣𝑥,𝑖+1 =  𝑣𝑥,𝑖 −
4𝜋2𝑥𝑖

𝑟𝑖
3 Δ𝑡 

 
𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑥,𝑖+1 Δ𝑡 

 

𝑣𝑦,𝑖+1 =  𝑣𝑦,𝑖 −
4𝜋2𝑦𝑖

𝑟𝑖
3 Δ𝑡  

 
𝑦𝑖+1 = 𝑦𝑖 + 𝑣𝑦,𝑖+1 Δ𝑡 

 
We can use this equation set to model the motion of the centre of mass of Hyperion.  
Now, from the analysis of the motion of Hyperion.  
 

𝜔 =
𝑑𝜃

𝑑𝑡
 

 
𝑑𝜔

𝑑𝑡
 ≈ −

3𝐺𝑀𝑠𝑎𝑡

𝑟𝑐
5

(𝑥𝑐𝑠𝑖𝑛𝜃 − 𝑦𝑐𝑐𝑜𝑠𝜃)(𝑥𝑐𝑐𝑜𝑠𝜃 + 𝑦𝑐𝑠𝑖𝑛𝜃) 

 
So we need to add two more difference equations to our program, and noting that  
 
𝐺𝑀𝑠𝑎𝑡 = 4𝜋2 as noted in the book,  
 

𝜔𝑖+1 = 𝜔𝑖 −
3(4𝜋2)

𝑟𝑐
5

(𝑥𝑖𝑠𝑖𝑛𝜃𝑖 − 𝑦𝑖𝑐𝑜𝑠𝜃𝑖)(𝑥𝑖𝑐𝑜𝑠𝜃𝑖 + 𝑦𝑖𝑠𝑖𝑛𝜃𝑖)Δ𝑡 

 
 

𝜃𝑖+1 = 𝜃𝑖 + 𝜔𝑖+1Δ𝑡 
 
 
 
 

Here is the code for the motion of Hyperion. The initial velocity in the y direction was 
1 HU/Hyperion year as explained in the book. This gave a circular orbit. Note from 
the results that the tumbling is not chaotic under these conditions.  
  



Kevin Berwick Page 55 
 

% 
%  Simulation of chaotic tumbing of Hyperion, the moon of Saturn . Use Euler Cromer method 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.6 
%  by Kevin Berwick   
% 
% 
  
  
npoints=100000; 
dt = 0.0001;                     % time step in years 
  
time=zeros(npoints,1); 
r_c=zeros(npoints,1); 
                                       % Create arrays to store position, velocity and angle and angular velocity of 
                                       % centre of mass 
x=zeros(npoints,1); 
y=zeros(npoints,1); 
  
v_x=zeros(npoints,1); 
v_y=zeros(npoints,1); 
  
theta=zeros(npoints,1); 
omega=zeros(npoints,1); 
  
x(1)=1;                     %  initialise position of centre of mass of Hyperion  in HU 
y(1)=0;                     
v_x(1)=0;                   % initialise velocity of centre of mass of Hyperion   
v_y(1)=2*pi;      
  
% initialise  theta and omega of Hyperion   
  
for i= 1:npoints-1;  
     
        % loop over the timesteps      
  
        r_c(i)=sqrt(x(i)^2+y(i)^2); 
  
        % Compute new velocities in the x and y directions 
  
        v_x(i+1)=v_x(i) - (4*pi^2*x(i)*dt)/(r_c(i)^3); 
        v_y(i+1)=v_y(i) - (4*pi^2*y(i)*dt)/(r_c(i)^3); 
  
        % Euler Cromer Step - update positions of centre of mass of Hyperion using NEWLY calculated 
velocities 
  
        x(i+1)=x(i)+v_x(i+1)*dt; 
        y(i+1)=y(i)+v_y(i+1)*dt; 
  
% Calculate new angular velocity omega and angle theta. Note that GMsaturn=4*pi^2, see book for 
details 
  
  
Term1=3*4*pi^2/(r_c(i)^5); 
Term2=x(i)*sin(theta(i))- y(i)*cos(theta(i)); 
Term3=x(i)*cos(theta(i)) +y(i)*sin(theta(i)); 
  
omega(i+1)=omega(i) -Term1*Term2*Term3*dt; 
  
%Theta is an angular variable so values of theta that differ by 2*pi correspond to the same position.  
%We need to adjust theta after each iteration so as to keep it between 



Kevin Berwick Page 56 
 

%+/-pi for plotting purposes. We do that here 
  
temporary_theta_i_plus_1= theta(i)+omega(i+1)*dt; 
   if (temporary_theta_i_plus_1 < -pi) 
         temporary_theta_i_plus_1= temporary_theta_i_plus_1+2*pi;     
   elseif (temporary_theta_i_plus_1 > pi) 
      temporary_theta_i_plus_1= temporary_theta_i_plus_1-2*pi;    
  end; 
  
  % Update theta array         
         theta(i+1)=temporary_theta_i_plus_1; 
  
time(i+1)=time(i)+dt; 
  
end;    
  
subplot(2,1,1); 
plot(time, theta,'-g'); 
 axis([0 8 -4 4]); 
xlabel('time(year)'); 
ylabel('theta(radians)'); 
title('theta versus time for Hyperion'); 
  
subplot(2,1,2); 
plot(time, omega,'-k'); 
 axis([0 8 0 15]); 
xlabel('time(year)'); 
ylabel('omega(radians/yr)'); 
title('omega versus time for Hyperion'); 
 

 
Figure 28.Motion of Hyperion. The initial velocity in the y direction was 1 HU/Hyperion 
year. This gave a circular orbit. Note from the results that the tumbling is not chaotic 
under these conditions. 

0 1 2 3 4 5 6 7 8
-4

-2

0

2

4

time(year)

th
e
ta

(r
a
d
ia

n
s
)

theta versus time for Hyperion

0 1 2 3 4 5 6 7 8
0

5

10

15

time(year)

o
m

e
g
a
(r

a
d
ia

n
s
/y

r)

omega versus time for Hyperion



Kevin Berwick Page 57 
 

If we change the initial velocity in the  y direction to 5 HU/Hyperion year as 
explained in the book. This gave an elliptical orbit. Here is the new code and below 
this code are the results from running this code. Note that now the motion is chaotic.  
% 
%  Simulation of chaotic tumbing of Hyperion, the moon of Saturn . Use Euler Cromer method 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 4.6 
%  by Kevin Berwick   
% 
% 
  
  
npoints=100000; 
dt = 0.0001;                     % time step in years 
  
time=zeros(npoints,1); 
r_c=zeros(npoints,1); 
                                       % Create arrays to store position, velocity and angle and angular velocity of 
                                       % centre of mass 
x=zeros(npoints,1); 
y=zeros(npoints,1); 
  
v_x=zeros(npoints,1); 
v_y=zeros(npoints,1); 
  
theta=zeros(npoints,1); 
omega=zeros(npoints,1); 
  
x(1)=1;                     %  initialise position of centre of mass of Hyperion  in HU 
y(1)=0;                     
v_x(1)=0;                   % initialise velocity of centre of mass of Hyperion   
v_y(1)=5;      
  
% initialise  theta and omega of Hyperion   
  
for i= 1:npoints-1;  
     
        % loop over the timesteps      
  
        r_c(i)=sqrt(x(i)^2+y(i)^2); 
  
        % Compute new velocities in the x and y directions 
  
        v_x(i+1)=v_x(i) - (4*pi^2*x(i)*dt)/(r_c(i)^3); 
        v_y(i+1)=v_y(i) - (4*pi^2*y(i)*dt)/(r_c(i)^3); 
  
        % Euler Cromer Step - update positions of centre of mass of Hyperion using NEWLY calculated 
velocities 
  
        x(i+1)=x(i)+v_x(i+1)*dt; 
        y(i+1)=y(i)+v_y(i+1)*dt; 
  
% Calculate new angular velocity omega and angle theta. Note that GMsaturn=4*pi^2, see book for 
details 
  
  
Term1=3*4*pi^2/(r_c(i)^5); 
Term2=x(i)*sin(theta(i))- y(i)*cos(theta(i)); 
Term3=x(i)*cos(theta(i)) +y(i)*sin(theta(i)); 
  



Kevin Berwick Page 58 
 

omega(i+1)=omega(i) -Term1*Term2*Term3*dt; 
  
%Theta is an angular variable so values of theta that differ by 2*pi correspond to the same position.  
%We need to adjust theta after each iteration so as to keep it between 
%+/-pi for plotting purposes. We do that here 
  
temporary_theta_i_plus_1= theta(i)+omega(i+1)*dt; 
   if (temporary_theta_i_plus_1 < -pi) 
         temporary_theta_i_plus_1= temporary_theta_i_plus_1+2*pi;     
   elseif (temporary_theta_i_plus_1 > pi) 
      temporary_theta_i_plus_1= temporary_theta_i_plus_1-2*pi;    
  end; 
  
  % Update theta array         
         theta(i+1)=temporary_theta_i_plus_1; 
  
time(i+1)=time(i)+dt; 
  
end;    
  
subplot(2,1,1); 
plot(time, theta,'-g'); 
 axis([0 10 -4 4]); 
xlabel('time(year)'); 
ylabel('theta(radians)'); 
title('theta versus time for Hyperion'); 
  
subplot(2,1,2); 
plot(time, omega,'-k'); 
 axis([0 10 -20 60]); 
xlabel('time(year)'); 
ylabel('omega(radians/yr)'); 
title('omega versus time for Hyperion'); 
 



Kevin Berwick Page 59 
 

 
Figure 29.Motion of Hyperion. The initial velocity in the y direction was 5 HU/Hyperion 
year. This gave a circular orbit. Note from the results that the tumbling is chaotic under 
these conditions. 

  
   
 
  

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

time(year)

th
e
ta

(r
a
d
ia

n
s
)

theta versus time for Hyperion

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

40

60

time(year)

o
m

e
g
a
(r

a
d
ia

n
s
/y

r)

omega versus time for Hyperion



Kevin Berwick Page 60 
 

5. Potentials and Fields 

5.1  Solution of Laplace’s equation using the Jacobi relaxation method.  

There are 3 files required here 

1. Laplace_calculate_Jacobi_metal_box 

2. Initialise_V_Jacobi_metal_box; 

3. Update_V_Jacobi_Metal_box 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Jacobi method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
% Load array into V 
 
 [V] =Initialise_V_Jacobi_metal_box; 
  
% run update routine and estimate convergence 
  
%Initialise loop counter 
 loops=1; 
[V_new, delta_V_new]=Update_V_Jacobi_Metal_box(V); 
  
%  While we have not met the convergence criterion and the number of loops is <10 so that we 
give the relaxation  
% algorithm time to converge 
  
 while (delta_V_new > 49e-5 & loops < 10); 
     loops=loops+1; 
    [V_new, delta_V_new]=Update_V_Jacobi_Metal_box(V_new);    
    % draw the  surface using the mesh function  
    mesh (V_new); 
    title('Potential Surface'); 
    drawnow;   
    % insert a pause here so we see the evolution of the potential 
    % surface 
    pause(1); 
  end; 
   

  



Kevin Berwick Page 61 
 

 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 
%  Jacobi method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
  
% This function creates the intial voltage array V  
  
function[V] =Initialise_V_Jacobi_metal_box; 
% clear variables 
clear; 
V = [-1 -0.67 -0.33 0 0.33 0.67 1; 
         -1       0       0    0    0       0    1; 
         -1       0       0    0    0       0    1; 
         -1       0       0    0    0       0    1; 
         -1       0       0    0    0       0    1; 
         -1       0       0    0    0       0    1; 
         -1 -0.67 -0.33   0   0.33   0.67 1];      
          
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

function [ V_new, delta_V_new] = Update_V_Jacobi_Metal_box(V); 
  
% This function takes a matrix V and applies Eq 5.10 to it. Only the values inside the boundaries are 
changed. It returns the 
% processed matrix to the  calling function, together with the value of delta_V, the total accumulated 
amount by which the elements 
% of the matrix have changed   
  
row_size = size(V,1); 
column_size=size(V,2); 
  
% preallocate memory for speed  
  
V_new=V; 
delta_V_new=0; 
  
% Move along the matrix, element by element  computing  Eq 5.10, ignoring 
% boundaries 
  
    for j =2:column_size-1; 
        for i=2:row_size -1;     
             
           V_new(i,j) = (V(i-1,j)+V(i+1,j)+V(i,j-1)+V(i,j+1))/4;   
             
           % Calculate delta_V_new value, the cumulative change in V during this update call,  to test for 
convergence         
     
          delta_V_new=delta_V_new+abs(V_new(i,j)-V(i,j)); 
        end; 
    end; 
  
  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 



Kevin Berwick Page 62 
 

 
Figure 30. Equipotential surface for geometry depicted in Figure 5.2 in the book 

 
 

  

0

2

4

6

8

0

2

4

6

8
-1

-0.5

0

0.5

1

Potential Surface



Kevin Berwick Page 63 
 

5.1.1  Solution of Laplace’s equation for  a hollow metallic prism with a solid, metallic 

inner conductor.  

 

This is the solution for the situation shown in Figure 5.4. There are 3 files required 

here and the code is listed in order below, together with the output.  

1. Laplace_prism 

2. Initialise_prism 

3. Update_prism 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% 
%  Jacobi method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
% Load array into V 
 [V] =Initialise_prism; 
  
% run update routine and estimate convergence 
  
[V_new, delta_V_new]=Update_prism(V); 
  
%Initialise loop counter 
 loops=0; 
%  While we have not met the convergence criterion and the number of loops is <10 so that we give the 
relaxation  
% algorithm time to converge 
% while (delta_V_new > & loops < 30); 
    while (delta_V_new>4e-5  | loops < 20); 
      loops=loops+1; 
      [V_new, delta_V_new]=Update_prism(V_new);    
    % draw the  surface using the mesh function  
%      mesh (V_new,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 
          mesh (V_new,'FaceColor','interp'); 
  
     title('Potential Surface'); 
      axis([0 20 0 20 0 1]); 
    drawnow;   
    % insert a pause here so we see the evolution of the potential 
    % surface 
    pause(0.5); 
  end; 
   
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  Jacobi method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
  
% This function creates the intial voltage array V  
  
function[V] =Initialise_prism; 



Kevin Berwick Page 64 
 

% clear variables 
clear; 
  
V = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0  0 1  1  1  1  1  1 0 0 0 0 0 0 0 
        0 0 0 0 0 0  0 1  1  1  1  1  1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 1  1  1  1  1  1 0 0 0 0 0 0 0 
        0 0 0 0 0 0  0 1  1  1  1  1  1 0 0 0 0 0 0 0 
        0 0 0 0 0 0  0 1  1  1  1  1  1 0 0 0 0 0 0 0 
        0 0 0 0 0 0  0 1  1  1  1  1  1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
       ]; 
     
          
  



Kevin Berwick Page 65 
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ V_new, delta_V_new] = Update_prism(V); 
  
% This function takes a matrix V and applies Eq 5.10 to it. Only the values inside the boundaries are 
changed. It returns the 
% processed matrix to the  calling function, together with the value of delta_V, the total accumulated 
amount by which the elements 
% of the matrix have changed   
  
row_size = size(V,1); 
column_size=size(V,2); 
  
% preallocate memeory for speed  
  
V_new=V; 
delta_V_new=0; 
  
% Move along the matrix, element by element  computing  Eq 5.10, ignoring 
% boundaries 
  
    for j =2:column_size-1; 
        for i=2:row_size -1;     
          
            % Do not update V in metal bar 
            if  V(i,j) ~=1; 
                % If the value of V is not =1, calculate V_new and 
                % delta_V_new to test for convergence  
                        V_new(i,j) = (V(i-1,j)+V(i+1,j)+V(i,j-1)+V(i,j+1))/4;     
                        delta_V_new=delta_V_new+abs(V_new(i,j)-V(i,j)) 
            else   
                % otherwise, leave value unchanged 
                            V_new(i,j)=V(i,j); 
            end; 
        end; 
    end;  
 



Kevin Berwick Page 66 
 

 
Figure 31.Equipotential surface for hollow metallic prism with a solid metallic  inner 
conductor held at V=1. 

5.1.2  Solution of Laplace’s equation for  a finite sized capacitor 

 

This is the solution for the situation shown in Figure 5.6 and 5.7. There are 3 files 

required here and the code is listed in order below, together with the output.  

1. capacitor_laplace 

2. capacitor_initialise 

3. capacitor_update 

 
% 
%  Jacobi method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
% Load array into V 
  
 [V] =capacitor_initialise; 
  
% run update routine and estimate convergence 
  
[V_new, delta_V_new]=capacitor_update(V); 
  
%Initialise loop counter 
 loops=1; 
%  While we have not met the convergence criterion and the number of loops is <20 so that we give 
the relaxation  
% algorithm time to converge 
  
    while (delta_V_new>400e-5  | loops < 20); 
         loops=loops+1; 
         [V_new, delta_V_new]=capacitor_update(V_new);    

0

5

10

15

20

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Potential Surface



Kevin Berwick Page 67 
 

  
         % draw the  surface using the mesh function  
          mesh (V_new,'Facecolor','interp'); 
          title('Potential Surface'); 
          axis([0 20 0 20 -1 1]); 
          drawnow;   
             % insert a pause here so we see the evolution of the potential 
               % surface 
           pause(0.5); 
  end; 
   
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% 
%  Jacobi method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
  
% This function creates the intial voltage array V  
  
function[V] =capacitor_initialise; 
% clear variables 
clear; 
  
V = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
       ]; 
     
          
  



Kevin Berwick Page 68 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [ V_new, delta_V_new] = capacitor_update(V); 
  
% This function takes a matrix V and applies Eq 5.10 to it. Only the values inside the boundaries are 
changed. It returns the 
% processed matrix to the  calling function, together with the value of delta_V, the total accumulated 
amount by which the elements 
% of the matrix have changed   
  
row_size = size(V,1); 
column_size=size(V,2); 
  
% preallocate memory for speed  
  
V_new=zeros(row_size, column_size); 
delta_V_new=0; 
  
% Move along the matrix, element by element  computing  Eq 5.10, ignoring 
% boundaries 
  
    for j =2:column_size-1; 
        for i=2:row_size -1;     
          
            % Do not update V on the plates 
            if  V(i,j)~=1 & V(i,j) ~=-1; 
                % If the value of V is not =1 or -1, calculate V_new and 
                % cumulative delta_V_new to test for convergence  
                        V_new(i,j) = (V(i-1,j)+V(i+1,j)+V(i,j-1)+V(i,j+1))/4;     
                        delta_V_new=delta_V_new+abs(V_new(i,j)-V(i,j)) 
            else   
                % otherwise, leave value unchanged 
                            V_new(i,j)=V(i,j); 
            end; 
        end; 
    end; 
  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 



Kevin Berwick Page 69 
 

 
Figure 32.Equipotential surface for a finite sized capacitor. 

 
Figure 33. Equipotential contours near a finite sized capacitor. 

 
  

0
5

10
15

20

0

5

10

15

20

-1

-0.5

0

0.5

1

Potential Surface

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
Potential Surface



Kevin Berwick Page 70 
 

5.1.3 Exercise 5.7 and the Successive Over Relaxation Algorithm 

 

There are 3 files required here and the code for the SOR algorithm used in order to 

sole Laplaces equation for the capacitor is listed in order below, together with the 

output.  

1. capacitor_laplace_SOR 

2. capacitor_initialise_SOR 

3. capacitor_update_SOR 
 
% 
%  SOR method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
% Load array into V 
  
 [V] =capacitor_initialise_SOR; 
  
% run update routine and estimate convergence 
  
[V, delta_V_total]=capacitor_update_SOR(V); 
  
%Initialise loop counter 
 loops=1; 
%  While we have not met the convergence criterion and the number of loops is <20 so that we give 
the relaxation  
% algorithm time to converge.Note convergence for 1e-5 * No of sites 
  
    while (delta_V_total>1e-5*size(V,2)^2  | loops < 20); 
         loops=loops+1 
         [V, delta_V_total]=capacitor_update_SOR(V);    
  
         % draw the  surface using the mesh function  
          mesh(V,'Facecolor','interp'); 
          title('Potential Surface'); 
          axis([0 60 0 60 -1 1]); 
          drawnow;   
             % insert a pause here so we see the evolution of the potential 
               % surface 
           pause(0.5); 
  end; 
   
  
 
  



Kevin Berwick Page 71 
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  SOR method to solve Laplace equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 5.1 
%  by Kevin Berwick   
% 
  
% This function creates the intial voltage array V  
  
function[V] =capacitor_initialise_SOR; 
% clear variables 
clear; 
  
V = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
       ]; 
     
  



Kevin Berwick Page 72 
 

 
          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [V, delta_V_total] = capacitor_update_SOR(V); 
% This function takes a matrix V and applies Eq 5.14 to it. Only the values inside the boundaries are 
changed. It returns the 
% processed matrix to the  calling function, together with the value of delta_V, the total accumulated 
amount by which the elements 
% of the matrix have changed   
  
row_size = size(V,1); 
column_size=size(V,2); 
L=column_size;        % grid size, for a square grid 20 X 20 , L=20 
alpha = 2/(1+pi/L); % use recommended value for book for alpha 
            % intialise convergence metric 
delta_V_total=0; 
  
% Move along the matrix, in a raster scan, element by element  computing  Eq 5.14, ignoring 
% boundaries 
  
  for i=2:row_size -1;     
    for j =2:column_size-1; 
           % Do not update V on the plates 
              if  V(i,j)~=1 & V(i,j) ~=-1; 
                                 
                % If the value of V is not =1 or -1, calculate the new value of the cell and 
                % delta_V_new to test for convergence  
                 
                         V_star = (V(i-1,j)+V(i+1,j)+V(i,j-1)+V(i,j+1))/4;    % This is the Gauss Siedel updated 
value for the cell 
                         delta_V =V_star-V(i,j);% delta_V is the difference between the Gauss Siedel updated 
value for the cell  
                         % and the original value of the cell  
                        % Update Matrix V , in place, so latest values will be used 
                        % for SOR 
                        V(i,j)=alpha*delta_V+V(i,j);  % add a multiple of delta_V to the original value in the cell, 
that is, 'over-relax'  
                         % Update convergence metric for this update 
                       delta_V_total= delta_V_total+abs(delta_V); 
               end; 
        end; 
    end; 

  
  
 

 
 

  



Kevin Berwick Page 73 
 

 

 
Note that when you run the SOR code, it creates a movie of the potential surface. You 
can see waves moving across the potential surface as the surface ‘over relaxes’ and 
then corrects itself.  

 
Figure 34.Equipotential surface in region of a simple capacitor as calculated using the 
SOR code for a 60 X 60 grid. The convergence criterion was that the simulation was 
halted when the difference in successively calculated surfaces was less than 10-5 per 
site. 

 
The code was ran for both  the Jacobi method and the SOR method, for the L X L 
grids  shown. The convergence criterion was that the simulation was halted when the 
difference in successively calculated surfaces was less than 10-5 per site. 
The results are summarised in the Table below.  
 
 
 

L 20 (400 
elements) 

40 (1600 
elements) 

60 (3600 
elements) 

N Jacobi 128 492 884 
N_SOR 33 60 84 

 
 
 
 
 

0

10

20

30

40

50

60

0

10

20

30

40

50

60

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Potential Surface



Kevin Berwick Page 74 
 

 
Here are plots comparing the number of iterations required to give the same 
accuracy for each algorithm. 

 

 
Figure 35.Number of iterations required for Jacobi method vs L for a simple capacitor.  
The convergence criterion was that the simulation was halted when the difference in 
successively calculated surfaces was less than 10-5 per site. 
 

 

 
Figure 36.Number of iterations required for SOR method vs L for a simple capacitor.  
The convergence criterion was that the simulation was halted when the difference in 
successively calculated surfaces was less than 10-5 per site. 

  

0 500 1000 1500 2000 2500 3000 3500 4000
100

200

300

400

500

600

700

800

900

L2

N
 J

a
c
o
b
i

Number of iterations of Jacobi method vs L2

20 25 30 35 40 45 50 55 60
30

40

50

60

70

80

90
No of iterations of SOR method vs L

L

N
 

S
O

R



Kevin Berwick Page 75 
 

5.2 Potentials and fields near Electric charges, Poisson’s Equation 

Here we use the standard Jacobi method to calculate the potential surface near a point 

charge in the centre of a box, as outlined in Section 5.2  

There are 3 files here 

1. point_charge_Jacobi 

2. point_charge_update 

3. point_charge_coulomb 

 

%  Jacobi method to solve Poisson's  equation 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
  
  
% This code creates the intial potential and charge 3D matrices and 
% definitions. The matrix  is 3D of length 20 
clear; 
  
delta_x=0.2;    % spatial step size 
convergence_per_site=1e-6; 
 rho=zeros(20,20,20);     % Create box to contain charge 
rho(10,10,10)=(1/delta_x^3);  % place charge of 1 at centre of box shaped volume 
% Create Potential matrix 
V_matrix=zeros(20,20,20); 
  
% run Update routine for the first time and calculate convergence metric 
  
[V_new, delta_V_new]=point_charge_update(V_matrix, rho, delta_x); 
  
%Initialise loop counter 
 loops=1; 
%  While we have not met the convergence criterion and the number of loops is <20 so that we give 
the   
% algorithm time to converge 
  
    while (delta_V_new>convergence_per_site*size(V_matrix,2)^3 || loops < 20); 
             loops=loops+1; 
            [V_new, delta_V_new]=point_charge_update(V_new,rho, delta_x);    
       end; 
% Run the routine to plot the potential as calculated analytically using Coulomb's Law 
       [coulomb, r]=point_charge_coulomb;        
% Visualise result by taking a slice half way up the cube.  
       slice = V_new(:, :, 10);  
       subplot(1,2,1); 
       surf(slice);   
       title('Potential'); 
       view(3); 
        axis on; 
        grid on; 
        light; 
        lighting phong; 
        camlight('left'); 
        shading interp; 
         
  % take a cutline across the slice surface and plot 
        
       subplot(1,2,2); 



Kevin Berwick Page 76 
 

       cut_slice=slice(10, 10:20); 
       rescale=[0:0.2:2]; 
  
       plot(rescale,cut_slice,'og'); 
       xlabel('x'); 
       ylabel('V');      
       axis([0 2 0 0.8]); 
       title('Numerical result and Coulombs Law') 
       hold on; 
        
       % Plot Coulomb's law result for comparison 
        
       plot(r,coulomb,'k'); 
       legend('Numerical results','Coulomb'); 
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [V_new, delta_V_new] = point_charge_update(V, rho, delta_x); 
  
% This function takes a matrix V and solves Poisson's equation. It needs rho and delta_x  
%the charge distribution and spatial step size also. It returns the 
% processed matrix to the  calling function, together with the value of delta_V, 
% the total accumulated amount by which the elements 
% of the matrix have changed   
  
x_size = size(V,1); 
y_size = size(V,2); 
z_size = size(V,3); 
  
% preallocate memory for speed  
  
V_new=zeros(x_size, y_size, z_size); 
delta_V_new=0; 
  
% Move along the matrix, element by element  computing  Eq 5.20, ignoring 
% boundaries. Note the use of a,b,c instead of i,j,k since i and j are 
% already defined in MATLAB 
  
for c=2:z_size-1; 
    for b =2:y_size-1; 
        for a=2:x_size -1;     
          
           % calculate V_new and cumulative delta_V_new to test for convergence 
                V_new(a,b,c) = (V(a-1,b,c)+V(a+1,b,c)+V(a,b+1,c)+V(a,b-1,c)+V(a,b,c+1)+V(a,b,c-1))/6 + 
rho(a,b,c)*delta_x^2/6 ;  
                delta_V_new=delta_V_new+abs(V_new(a,b,c)-V(a,b,c)); 
  
            end; 
        end; 
    end; 
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [V,x] = point_charge_coulomb 
% This function takes a matrix V and solves Poisson's equation. It needs rho and delta_x  
%the charge distribution and spatial step size also. It returns the 
% processed matrix to the  calling function, together with the value of delta_V, 
% the total accumulated amount by which the elements 
% of the matrix have changed   
  



Kevin Berwick Page 77 
 

x=[0:0.05:2]; 
% Since q/epsillon_zero=1  
V=1./(4*pi*x); 

 
Here is the result of running the code 

 

 

Figure 37. Equipotential surface near a point charge at the center of a 20X20 metal box. 
The Jacobi relaxation method was used . The plot on the right compares the numerical 
and analytical (as obtained from Coulomb’s Law).   

  

0

5

10

15

20

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Potential

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

V

Numerical result and Coulombs Law

 

 

Numerical results

Coulomb



Kevin Berwick Page 78 
 

6. Waves 

6.1  Waves on a string 

Here we simulate the motion of a string using the wave equation.  

There are 2 files here 

1. waves 

2. propagate 

 
% Solution of wave equation for string 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
clear; 
string_dimension=100; 
% Preallocate matrices for speed; 
x=1/string_dimension:1/string_dimension:1; 
x_scale=1:1:string_dimension; 
y_next =zeros(1,string_dimension); 
% Initialise string position  
k=1000; 
x_0=0.3; 
initial_position=exp(-k.*(x-x_0).^2); 
y_current =initial_position; 
y_previous = initial_position; 
  
for time_step = 1:500; 
            [y_next]=propagate(y_current, y_previous);    
            y_previous=y_current; 
            y_current=y_next; 
%             pause(0.1); 
            clf; 
            plot(x_scale/string_dimension, y_current,'r'); 
            title('Waves on a string - fixed ends'); 
            xlabel('distance'); 
            ylabel('Displacement'); 
            axis([0 1 -1 1]); 
            hold on;           
            drawnow; 
end; 
  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [y_next] = propagate(y_current, y_previous) 
  
r=1;   % since r=c*delta_t/delta_x and for the Figure 6.2 example delta_t=delta_x/c, giving r=1 
M=size(y_current,2);        % Vector size = number of columns 
  
% there are 3 vectors containing positional information for the whole 
% string,;    y_new, y_current and y_old 
% preallocate memory for speed 
% This function calculates the new shape of the string after one time step 
  
% HERE IS THE ORIGINAL CODE 
% for i=2:M-1;                                            %This loop index takes care of the fact that the boundaries are 
fixed 
%        y_next(i) = 2*(1-r^2)*y_current(i).... 
%                           -y_previous(i).... 
%                           +r^2*(y_current(i+1)+y_current(i-1)); 
%     end; 
% HERE IS THE VECTORISED CODE, WHICH IS MORE EFFICIENT 



Kevin Berwick Page 79 
 

  
y_next=zeros(1,M); 
 i=2:1:M-1;                                            %This loop index takes care of the fact that the boundaries are 
fixed 
       y_next(i) = 2*(1-r^2)*y_current(i).... 
                          -y_previous(i).... 
                          +r^2*(y_current(i+1)+y_current(i-1)); 
  
  
  
  
 

 

Figure 38. Waves propagating on a string with fixed ends 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Waves on a string - fixed ends

distance

D
is

p
la

c
e
m

e
n
t



Kevin Berwick Page 80 
 

  



Kevin Berwick Page 81 
 

6.1.1 Waves on a string with free ends 

 

Here we simulate the motion of a string using the wave equation, however, the string is free 

at the ends. (imagine the string tied to a massless ring which slides frictionlessly up and 

down a vertical pole). There are 2 files here 

1. waves_free 

2. propagate_free 

 
% Solution of wave equation with free ends for string 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
clear; 
string_dimension=100; 
time_loops=1500; 
% Preallocate matrices for speed; 
x=1/string_dimension:1/string_dimension:1; 
x_scale=1:1:string_dimension; 
y_next =zeros(1,string_dimension); 
signal_data=zeros(1,time_loops); 
elapsed_time=zeros(1,time_loops); 
% Initialise string position  
k=1000; 
x_0=0.5; 
 delta_t=3.33e-5; 
initial_position=exp(-k.*(x-x_0).^2); 
y_current =initial_position; 
y_previous = initial_position; 
initial_time=0; 
time=initial_time; 
for time_step = 1:time_loops; 
            time=time+delta_t; 
            [y_next]=propagate_free(y_current, y_previous);    
            y_previous=y_current; 
            y_current=y_next; 
            clf; 
            plot(x_scale/string_dimension, y_current,'r'); 
            title('Waves on a string - free ends'); 
            xlabel('distance'); 
            ylabel('Displacement'); 
            axis([0 1 -1 1]); 
            hold on;           
            drawnow; 
end; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

function [y_next] = propagate_free(y_current, y_previous) 
  
 % c=300, delta_x=0.01, which makes delta_t = delta_x/c = 0.01/300 = 3.33e-5 
 % since r=c*delta_t/delta_x and for the Figure 6.2 example 
 % delta_t=delta_x/c, giving r=1. 
r=1;   
M=size(y_current,2);        % Vector size = number of columns 
  
% there are 3 vectors containing positional information for the whole 
% string,;    y_new, y_current and y_old 



Kevin Berwick Page 82 
 

% preallocate memory for speed 
% This function calculates the new shape of the string after one time step 
  
% HERE IS THE ORIGINAL CODE 
% for i=2:M-1;                                            %This loop index takes care of the fact that the boundaries are 
fixed 
%        y_next(i) = 2*(1-r^2)*y_current(i).... 
%                           -y_previous(i).... 
%                           +r^2*(y_current(i+1)+y_current(i-1)); 
%     end; 
% HERE IS THE VECTORISED CODE, WHICH IS MORE EFFICIENT 
  
y_next=zeros(1,M); 
  
 i=2:1:M-1;                                            %This  index ignores the boundaries 
       y_next(i) = 2*(1-r^2)*y_current(i).... 
                          -y_previous(i).... 
                          +r^2*(y_current(i+1)+y_current(i-1));   
                       
%                       Update position of free ends to those of nearest neighbours 
  
y_next(1)=y_next(2); 
y_next(M)=y_next(M-1);                       

  
  
  
  
  



Kevin Berwick Page 83 
 

 

6.2  Frequency spectrum of waves on a string 

 

Here we simulate the motion of a string using the wave equation.  

There are 2 files here 

1. waves 

2. propagate 

 
% Solution of wave equation for string 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
% 
clear; 
string_dimension=100; 
time_loops=1500; 
% Preallocate matrices for speed; 
x=1/string_dimension:1/string_dimension:1; 
x_scale=1:1:string_dimension; 
y_next =zeros(1,string_dimension); 
signal_data=zeros(1,time_loops); 
elapsed_time=zeros(1,time_loops); 
% Initialise string position  
k=1000; 
x_0=0.5; 
 delta_t=3.33e-5; 
 f_sample=1/delta_t; 
initial_position=exp(-k.*(x-x_0).^2); 
y_current =initial_position; 
y_previous = initial_position; 
initial_time=0; 
time=initial_time; 
for time_step = 1:time_loops; 
            time=time+delta_t; 
            [y_next]=propagate(y_current, y_previous);    
            y_previous=y_current; 
            y_current=y_next; 
            clf; 
            subplot(2,2,1); 
            plot(x_scale/string_dimension, y_current,'r'); 
            title('Waves on a string - fixed ends'); 
            xlabel('distance'); 
            ylabel('Displacement'); 
            axis([0 1 -1 1]); 
            hold on;           
            drawnow; 
            %%%%%%% 
             
             % Record displacement at 5 percent from left end of the string for future plot   
             signal_data(time_step)=y_current(5); 
            elapsed_time(time_step)=time; 
end; 
            subplot(2,2,2); 
            % plot displacement at 5 percent from left end of the string 
            % using suitable scaling  
             plot(elapsed_time,signal_data); 
            title('Signal from a string'); 



Kevin Berwick Page 84 
 

            xlabel('time (s)'); 
            ylabel('Displacement(au)'); 
            
            % Generate FFT and calculate the power spectrum. The power spectral density,  
            % a measurement of the energy at various frequencies, is equal 
            % to the sum of the real and imaginary components of the  
            % FFT. You can multiply the result of the FFT by its complex 
            % conjugate in order to calculate it.  
        
            f_sample=1/delta_t;         
                      
            NFFT = 2^(nextpow2(length(signal_data))); % No. of points in DFT=Next power of 2 up 
from length of signal_data 
            fft_value = fft(signal_data,NFFT);    % Perform (NFFT point) DFT padding out with zeros 
so length of fft_value is NFFT 
     
           Num_Unique_Pts=ceil((NFFT+1)/2); % only half points are unique due to nature of FFT. 
Calculate number  
           fft_value=fft_value(1:Num_Unique_Pts); % throw away half the points 
             
            %Calculate the scaled power spectrum normalised by dividing  
            % by the length of the signal data vector 
                power_spectrum=  fft_value.*conj(fft_value)/(length(signal_data));   
                 
                % Since we dropped half the FFT, we multiply the power_spectrum by 2 to keep the same 
energy. 
            % The DC component and Nyquist component, if it exists, are unique and should not be 
multiplied by 2.  
  
                    if rem(NFFT, 2) % odd NFFT excludes Nyquist point  
                      power_spectrum(2:end) = power_spectrum(2:end)*2; 
                    else 
                      power_spectrum(2:end -1) = power_spectrum(2:end -1)*2; 
                    end 
                     
             % Calculate scaled frequency scale        
              
             f =  (0:Num_Unique_Pts-1)*f_sample/NFFT; 
            subplot(2,2,3); 
             
%         Power spectrum is symmetric so plot first half  
  
            plot(f,power_spectrum,'g'); 
             axis([0 3000 0 6]); 
             title('Power spectrum'); 
            xlabel('frequency (Hz)'); 
            ylabel('Power(au)'); 
  
             
%             Matlab offers the facility to play sounds. It would be nice to signal the end of program 
execution with the tone that would be heard from 
%             this string,. You would use the displacement from the vector 'signal_data' for this. Note 
that 1500 samples are played in 0.05s,  
%             therefore each sample should be played for 0.05/1500 =    3.3333e-05 seconds.The 
sampling frequency is, therefore,1/3.3333e-05 = 30 kHz.   
%             So the sampling rate is 1/3.3333e-5 =30 kHz 
             
             sound(signal_data, 30e3); 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



Kevin Berwick Page 85 
 

function [y_next] = propagate(y_current, y_previous) 
  
 % c=300, delta_x=0.01, which makes delta_t = delta_x/c = 0.01/300 = 3.33e-5 
 % since r=c*delta_t/delta_x and for the Figure 6.2 example 
 % delta_t=delta_x/c, giving r=1. 
  
r=1;   
M=size(y_current,2);        % Vector size = number of columns 
  
% there are 3 vectors containing positional information for the whole 
% string,;    y_new, y_current and y_old 
% preallocate memory for speed 
% This function calculates the new shape of the string after one time step 
  
% HERE IS THE ORIGINAL CODE 
% for i=2:M-1;                                            %This loop index takes care of the fact that the boundaries are 
fixed 
%        y_next(i) = 2*(1-r^2)*y_current(i).... 
%                           -y_previous(i).... 
%                           +r^2*(y_current(i+1)+y_current(i-1)); 
%     end; 
% HERE IS THE VECTORISED CODE, WHICH IS MORE EFFICIENT 
  
y_next=zeros(1,M); 
 i=2:1:M-1;                                            %This loop index takes care of the fact that the boundaries are 
fixed 
       y_next(i) = 2*(1-r^2)*y_current(i).... 
                          -y_previous(i).... 
                          +r^2*(y_current(i+1)+y_current(i-1)); 
  
  
 

 
  
 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1
Waves on a string - fixed ends

distance

D
is

p
la

c
e
m

e
n
t

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-0.5

0

0.5
Signal from a string

time (s)

D
is

p
la

c
e
m

e
n
t(

a
u
)

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
Power spectrum

frequency (Hz)

P
o
w

e
r(

a
u
)



Kevin Berwick Page 86 
 

Figure 39. Signal from a vibrating string and Power spectrum. Signal excited with 
Gaussian pluck centred at the middle of the string and the displacement 5% from the 
end of the string was recorded. 

  



Kevin Berwick Page 87 
 

7. Random Systems 

7.1 Random walk simulation 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solution of random walk problem 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
% Solution by Kevin Berwick 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
number_of_walkers=500; 
number_of_steps=100;  
step_number=zeros(1,number_of_steps); 
x2ave=zeros(1,number_of_steps); 
step_number_array=[1:1:number_of_steps]; 
  
for  r=1:number_of_walkers; 
%     initialise position 
            x=0; 
            y=0;  
        
           for i=1:number_of_steps; 
  
                            if rand<0.5; 
                                x=x+1; 
                            else 
                                x=x-1; 
                            end; 
                            % Accumulate value of x^2 , the squared displacement,  for each step number  
                                     
                            x2ave(i)=x2ave(i)+x^2; 
          end; 
         
end; 
  
% Divide by number of walkers 
  
x2ave= x2ave/number_of_walkers; 
plot(step_number_array, x2ave, 'g'); 
title('Random walk'); 
xlabel('Step number'); 
ylabel('x^2'); 
  

 



Kevin Berwick Page 88 
 

 
Figure 40. x^2 as a function of step number. Step length = 1. Average of 500 walks. Also 
shown is a linear fit to the data. 

 

  

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Random walk

Step number

x
2

 

 

 

y = 0.96*x + 1.2

data 

  fit linear



Kevin Berwick Page 89 
 

7.1.1 Random walk simulation with random path lengths. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solution of random walk problem 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
% Solution by Kevin Berwick 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
number_of_walkers=500; 
number_of_steps=100;  
step_number=zeros(1,number_of_steps); 
x2ave=zeros(1,number_of_steps); 
step_number_array=[1:1:number_of_steps]; 
  
for  r=1:number_of_walkers; 
%     initialise position 
            x=0; 
            y=0;  
        
           for i=1:number_of_steps; 
  
                            if rand<0.5; 
                                x=x+rand; 
                            else 
                                x=x-rand; 
                            end; 
  
                            % Accumulate value of x^2 , the squared displacement,  for each step number  
                                     
                            x2ave(i)=x2ave(i)+x^2; 
          end; 
         
end; 
  
% Divide by number of walkers 
  
x2ave= x2ave/number_of_walkers; 
plot(step_number_array, x2ave, 'g'); 
title('Random walk with random step length'); 
xlabel('Step number'); 
ylabel('x^2'); 
  
 



Kevin Berwick Page 90 
 

 

 

Figure 41. x^2 as a function of step number. Step length = random value betwen +/-1. 
Average of 500 walks. Also shown is a linear fit to the data. 

  

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35
Random walk with random step length

Step number

x
2

 

 

data 

   linear fit



Kevin Berwick Page 91 
 

10. Quantum Mechanics 

10.2 Time independent Schrodinger equation. Shooting method. 

 

Here we solve the time independent Schrodinger equation in one dimension for the  particle 

in a box problem.  

There are 2 files here 

1. One_D_Schrodinger_Shooting 

2. calculate_psi 

Here is the code  

% 
%  Program to calculate wave function  
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 10.2 
%  by Kevin Berwick   
% 
  
%  Initialise 
  
clear; 
N=200; 
delta_x=0.01; 
E_initial=1.879; 
delta_E=0.1; 
x=(delta_x: delta_x: N*delta_x); 
  
% Create half the potential well 
  
V= zeros(1, N); 
V(100:N) =1000; 
  
% Create an intial vector to hold the wavefunction 
  
  
b= 1.5;                            %  suggested cutoff parameter 
%  
% Implement psi_prime(0)=0 for an even parity solution by  
% letting psi_in(0) and psi_in(-1)=0; Since this is the center of the well, we use indices 200 and 199 
for these positions.  
% Initialise last_diverge which keeps track of the diverging trend to zero 
% since we don't know this direction yet 
  
last_diverge=0; 
  
% If delta_E is small enough then the current E is acceptable. We define a minimum value for this 
quantity here 
  
minimum_delta_E=0.005;   
  
% initialise E 
  
E=E_initial; 
  
% MAIN LOOP 



Kevin Berwick Page 92 
 

  
while abs(delta_E)>minimum_delta_E; 
%     Initialise  
    psi= zeros(1, N);  
    psi(1)=1; 
    psi(2)=1; 
     
% Calculate wavefunction  
     
   [psi,i]=calculate_psi(psi, N, delta_x, E, b,V); 
    
   % Visualise results with movie  
       plot(x, psi,'r'); 
       title('Square well'); 
       axis([0 2 -2 2]); 
       xlabel('distance'); 
       ylabel('Wavefunction'); 
       drawnow; 
       pause(0.5); 
     
        if sign(psi(i+1))~=sign(last_diverge);    
                              % If last value of psi evaluated before 
                              % breakout from calculate_psi function and 
                              % last diverge are of different signs, turn 
                              % round direction of varying E and halve its 
                              % value 
          delta_E=-delta_E/2;  
        end; 
           E=E+delta_E 
           last_diverge=sign(psi(i+1)); 
  end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  Function to calculate wave function  
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 10.2 
%  by Kevin Berwick   
% 
  
function [psi,i] = calculate_psi(psi, N, delta_x, E, b,V) 
%This function calculates psi 
% Make psi_prime(0) =0 for an even parity solution; 
  
for i=2:N-1;    
                psi(i+1)=2*psi(i)-psi(i-1)-2*(E-V(i))*delta_x^2*psi(i); 
                if abs(psi(i+1)) > b; %  if psi is diverging, exit the loop; 
                     return;      
                end; 
end; 
 
 

 

 

  



Kevin Berwick Page 93 
 

 

Figure 42. Calculated wavefunction  using the shooting method. The wall(s) of the box 
are at x=(-)1. The value of Vo used was 1000 giving ground-state energy of 1.23. 
Analytical value is 1.233. Wavefunctions are not normalised.   

 

10.5 Wavepacket construction  

 

This is a little program to illustrate wavepacket construction. Here is the code. 

% 
%  Program to illustrate wavepacket construction 
%  based on 'Computational Physics' book by N Giordano and H Nakanishi 
%  Section 10.5 
%  by Kevin Berwick   
% 
  
%  Initialise and set up initial waveform 
  
clear; 
x=(0:0.0005:1); 
x_0=0.4; 
C=25; 
sigma_squared=1e-3; 
delta_x=0.0005; 
delta_t=0.2; 
k_0=500; 
  
psi=C*exp(-(x-x_0).^2/sigma_squared).*exp(1i*k_0*x); 
  
subplot(2,2,1); 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Square well

distance

W
a
v
e
fu

n
c
ti
o
n



Kevin Berwick Page 94 
 

plot(x,real(psi), 'b'); 
title('Real part of wavefunction '); 
xlabel('distance'); 
ylabel('Re(wavefunction)'); 
  
subplot(2,2,2); 
plot(x,imag(psi),'r'); 
title('Imaginary part of wavefunction'); 
xlabel('distance'); 
ylabel('Im(wavefunction)'); 
  
subplot(2,2,3); 
plot(x,(conj(psi).*psi),'k'); 
title('Probability of finding particle  '); 
xlabel('distance'); 
ylabel('psi*conj(psi)'); 
  

 
Figure 43. Composition of wavepacket. ko = 500, x0=0.4, sigma^2=0.001. 

        

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

10

20

30
Real part of wavefunction 

distance

R
e
(w

a
v
e
fu

n
c
ti
o
n
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

10

20

30
Imaginary part of wavefunction

distance

Im
(w

a
v
e
fu

n
c
ti
o
n
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700
Probability of finding particle  

distance

p
s
i*

c
o
n
j(
p
s
i)



Kevin Berwick Page 95 
 

10.3 Time Dependent Schrodinger equation in One dimension. Leapfrog method. 

 

Here we solve the time dependent Schrodinger equation in one dimension. A variety of 

scenarios can be modelled using this code. Representative results for a potential wall and 

cliff are presented .  

There are 3 files here. 

 

time_dep_SE_1D.m 

real_psi.m 

imag_psi. 

% % 
% %  Program to illustrate solution of Time Dependent Schrodinger equation 
% % using leapfrog algorithm 
% %  based on 'Computational Physics' book by N Giordano and H Nakanishi 
% %  Section 10.5 
% %  by Kevin Berwick   
% % 
%  
% %  Initialise and set up initial waveform 
  
  
clear; 
N=1000; 
x= linspace(0,1,N);  
  
% Set up intial wavepacket; 
  
x_0=0.4; 
C=10; 
sigma_squared=1e-3; 
k_0=500; 
  
% Discretisation parameters 
  
delta_x=1e-3; 
delta_t=5e-8; 
  
  
%  
%  Generate an intial wavepacket 
%  
 psi=C*exp(-(x-x_0).^2/sigma_squared).*exp(1i*k_0*x); 
  
% 
% % Extract the real and imaginary parts of the wavefunction  
%  
R_initial=real(psi); 
I_initial=imag(psi); 
  
  
%  Build a potential cliff . Create a region with a cliff  at x=0.6. To the 
%  left, V=0, to the right,  V=-1e6.   
  



Kevin Berwick Page 96 
 

V= zeros(1, N); 
V(600:N) =-1e6; 
  
% Initialise current real and imaginary parts of psi 
  
 I_current=I_initial; 
 R_current=R_initial; 
  
% Initial run of Im(psi) to start off leapfrog process; 
  
% t=t+delta_t/2;  
  
[I_next] = imag_psi(N, I_current, R_current, delta_t, delta_x, V);  
  
% % Do the leapfrog!! 
%  
 for time_step = 1:15000; 
  
      
% evaluate R at delta_t, 2*delta_t, 3*delta_t.......     
%     Time is incremented by  t=t+delta_t/2 every call;    
  
     [R_next]=real_psi(N, R_current, I_current, delta_t, delta_x, V); 
      
     R_current=R_next; 
    % evaluate I at (3/2)*delta_t, (5/2)*delta_t............       
    % Time is incremented by  t=t+delta_t/2 every call; 
     
     [I_next] = imag_psi(N, I_current, R_current, delta_t, delta_x, V);  
     
     % calculate psi*psi  with R(t) and  I(t+delta_t/2) and I(t-delta_t/2)       
      
     prob_density=R_current.^2+I_next.*I_current; 
  
     I_current=I_next; 
       
% Visualise results with movie. Plot every 10 calculations for speed  
  
        if rem(time_step, 10)== 0; 
             
               plot(x, prob_density,'-b','LineWidth',2);  
               title('Reflection from cliff'); 
               axis([0 1 0 200]); 
               xlabel('x'); 
               ylabel('Probability density');   
              drawnow; 
               
        end;    
 end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%  
% % Calculate the imaginary part of the wavefunction at time 
% t=t+delta_t/2,, t + 3*delta_t/2 etc 
% % given the value at time t.  
  
function [I_next]= imag_psi(N, I_current, R_current, delta_t, delta_x, V) 
 I_next= zeros(1,N); 
s=delta_t/(2*delta_x^2); 
  



Kevin Berwick Page 97 
 

for x=2:N-1; 
     % Calculate the imaginary part of the wavefunction at time t=t+delta_t, 
     % given the value at time t.  
       I_next(x)=I_current(x) +s*(R_current(x+1)-2*R_current(x)+R_current(x-1))... 
                               -delta_t*V(x).*R_current(x); 
      % Boundary conditions 
                           
                           I_next(1)=I_next(2); 
                           I_next(N)=I_next(N-1);                  
          
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% % Calculate the real part of the wavefunction at time t=t+delta_t, 
% t+2*delta_t etc.... 
% % given the value at time t. Vectorise for speed. 
  
function [R_next]= real_psi(N, R_current, I_current, delta_t, delta_x, V) 
R_next= zeros(1,N); 
s=delta_t/(2*delta_x^2); 
for x=2:N-1; 
     % Calculate the real part of the wavefunction at time t=t+delta_t, 
     % given the value at time t. Vectorise for speed. 
       R_next(x)=R_current(x) - s*(I_current(x+1)-2*I_current(x)+I_current(x-1))... 
                               +delta_t*V(x).*I_current(x); 
     
  % Boundary conditions 
   
                           R_next(1)=R_next(2); 
                           R_next(N)=R_next(N-1); 
  
end; 
 

  



Kevin Berwick Page 98 
 

 

Figure 44. Wavepacket reflection from potential cliff at x=0.6. The potential was V=0 
for x<0.6 and V=-1e6 for x>0.6. Values used for initial wavepacket were x_0=0.4,C=10, 
sigma_squared=1e-3, k_0=500. Simulation used delta_x=1e-3, delta_t=5e-8. Time 
progresses left to right. 

 

  

Figure 45. Wavepacket reflection from potential wall at x=0.6. The potential was V=0 
for x<0.6 and V=1e6 for x>0.6. Values used for initial wavepacket were x_0=0.4,C=10, 
sigma_squared=1e-3, k_0=500. Simulation used delta_x=1e-3, delta_t=5e-8. Time 
progresses left to right. 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from cliff

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from cliff

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from cliff

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from cliff

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from wall

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from wall

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
Reflection from wall

x

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y



Kevin Berwick Page 99 
 

10.4 Time Dependent Schrodinger equation in two dimensions. Leapfrog method. 

 

Here we extend the solution of the the time dependent Schrodinger equation to two  

dimensions. A variety of scenarios can be modelled using this code. Representative results 

for a potential wall and cliff are presented .  

There are 3 files here. 

1. time_dep_SE_2D.m 

2. imag_psi_2D.m 

3. real_psi_2D.m 

 

% % 
% %  Program to illustrate solution of 2D Time Dependent Schrodinger equation 
% % using leapfrog algorithm 
% %  based on 'Computational Physics' book by N Giordano and H Nakanishi 
% %  Section 10.5 
% %  by Kevin Berwick   
% % 
%  
% %  Initialise and set up initial waveform 
  
  
clear; 
N=200; 
  
% Set up intial wavepacket; 
  
x_0=0.25; 
y_0=0.5; 
C=10; 
sigma_squared=0.01; 
k_0=40; 
  
% Discretisation parameters 
  
delta_x=1/200; 
delta_t=0.00001; 
  
%  
% Build a mesh for the values of the probability density function 
  
a= linspace(0, 1, N); 
  
%Use meshgrid to calculate the grid matrices for the x- and y-coordinates, 
%using same resolution and scales in x and y directions. 
  
[x,y] = meshgrid(a);  
  
  
% Create a 2D potential cliff 
  
V=zeros(N,N); 
V(:, 100:200)=-1e3; 
% % Create a 2D potential wall 
% V=zeros(N,N); 
% V(:, 100:200)=1e3; 



Kevin Berwick Page 100 
 

  
% Calculate psi 
  
  psi_stationary=C*exp(-(x-x_0).^2/sigma_squared).*exp(-(y-y_0).^2/sigma_squared); 
  plane_wave = exp(1i*k_0*x);%+1i*k_0*y); 
  psi_z=psi_stationary.*plane_wave; 
   
  
% % % Extract the real and imaginary parts of the wavefunction  
 %  
 R_initial=real( psi_z); 
 I_initial=imag( psi_z); 
  
   
% % Initialise current real and imaginary parts of psi 
%   
 I_current=I_initial; 
 R_current=R_initial; 
%   
% % Initial run of Im(psi) to start off leapfrog process; 
%   
%   
[I_next] = imag_psi(N, I_current, R_current, delta_t, delta_x, V);  
%   
% % % Do the leapfrog!! 
% %  
 for time_step = 1:2000; 
      
% evaluate R at delta_t, 2*delta_t, 3*delta_t.......     
%     Time is incremented by  t=t+delta_t/2 every call;    
  
     [R_next]=real_psi_2D(N, R_current, I_current, delta_t, delta_x, V); 
      
     R_current=R_next; 
      
    % evaluate I at (3/2)*delta_t, (5/2)*delta_t............       
    % Time is incremented by  t=t+delta_t/2 every call; 
     
     [I_next] = imag_psi_2D(N, I_current, R_current, delta_t, delta_x, V);  
     
     % calculate psi*psi  with R(t) and  I(t+delta_t/2) and I(t-delta_t/2)       
      
     prob_density=R_current.^2+I_next.*I_current; 
  
     I_current=I_next; 
       
% Visualise results with movie. Plot every 10 timesteps for speed  
  
        if rem(time_step, 10)== 0; 
             
               surf(x,y, prob_density);  
               title('Probability density function'); 
               xlabel('x'); 
               ylabel('y'); 
               zlabel('ps*psi'); 
                axis([0 1 0 1 0 100]); 
                view(3); 
                axis on; 
                grid on; 
                colormap('bone'); 
                light; 



Kevin Berwick Page 101 
 

                lighting phong; 
                camlight('left'); 
                shading interp; 
                colorbar; 
                drawnow; 
               
        end;    
 end; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 

%  
% % Calculate the imaginary part of the wavefunction at time 
% t=t+delta_t/2,, t + 3*delta_t/2 etc 
% % given the value at time t. Vectorise for speed. 
  
function [I_next]= imag_psi_2D(N, I_current, R_current, delta_t, delta_x, V) 
I_next= zeros(N,N); 
s=delta_t/(2*delta_x^2); 
 x=2:N-1; 
  y=2:N-1; 
     % Calculate the imaginary part of the wavefunction at time t=t+delta_t, 
     % given the value at time t.  
       I_next(x,y)=I_current(x,y) +s*(R_current(x+1,y)-2*R_current(x,y)+R_current(x-
1,y)+R_current(x,y+1)-2*R_current(x,y)+R_current(x,y-1))... 
                               -delta_t*V(x,y).*R_current(x,y); 
                              
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% % Calculate the real part of the wavefunction at time t=t+delta_t, 
% t+2*delta_t etc.... 
% % given the value at time t. Vectorise for speed. 
  
function [R_next]= real_psi_2D(N, R_current, I_current, delta_t, delta_x, V) 
R_next= zeros(N,N); 
s=delta_t/(2*delta_x^2); 
 x=2:N-1; 
  y=2:N-1; 
     % Calculate the real part of the wavefunction at time t=t+delta_t, 
     % given the value at time t.  
       R_next(x,y)=R_current(x,y) - s*(I_current(x+1,y)-2*I_current(x,y)+I_current(x-
1,y)+I_current(x,y+1)-2*I_current(x,y)+I_current(x,y-1))... 
                               +delta_t*V(x,y).*I_current(x,y); 
     
  
 

 



Kevin Berwick Page 102 
 

 

 

Figure 46.Wavepacket reflection from potential cliff at x=0.5. The potential was V=0 for 
x<0.5 and V=-1e3 for x>0.5. Values used for initial wavepacket were x_0=0.25, 
y_0=0.5,C=10, sigma_squared=0.01, k_0=40. Simulation used delta_x=0.005, 
delta_t=0.00001. 

0

0.5

1

0

0.5

1
0

20

40

60

80

100

 

x

Probability density function

y
 

p
s
*p

s
i

0

10

20

30

40

50

60

70

80

0

0.5

1

0

0.5

1
0

20

40

60

80

100

 

x

Probability density function

y
 

p
s
*p

s
i

0

5

10

15

20

25

30

35

40

45

50

0

0.5

1

0

0.5

1
0

20

40

60

80

100

 

x

Probability density function

y
 

p
s
*p

s
i

0

2

4

6

8

10

12

14

16



Kevin Berwick Page 103 
 

 

 

Figure 47. Wavepacket reflection from potential wall at x=0.5. The potential was V=0 
for x<0.5 and V=1e3 for x>0.5. Values used for initial wavepacket were x_0=0.25, 
y_0=0.5,C=10, sigma_squared=0.01, k_0=40. Simulation used delta_x=0.005, 
delta_t=0.00001. 

0

0.5

1

0

0.5

1
0

20

40

60

80

100

 

x

Probability density function

y
 

p
s
*p

s
i

0

10

20

30

40

50

60

70

80

0

0.5

1

0

0.5

1
0

20

40

60

80

100

 

x

Probability density function

y
 

p
s
*p

s
i

0

10

20

30

40

50

60

70

80

0

0.5

1

0

0.5

1
0

20

40

60

80

100

 

x

Probability density function

y
 

p
s
*p

s
i

0

1

2

3

4

5

6

7

8

9

10


