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In the high temperature superconductors,

κ ≡ λ
ξ ≈ 100

λ: screening currents and magnetic field

ξ: the normal “core”



Vortex Lattice Melting

Circular Cross Sections:
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Cross Section of a Vortex
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Anisotropic Vortex Lattice Melting

Elliptical Cross Sections:

Anisotropic Interacting “Molecules”

→ Liquid Crystalline Phases

Abrikosov Liquid Crystals?
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Symmetry of Phases

CRYSTALS: Break continuous rotational

and translational symmetries

of 3D space

LIQUIDS: Break none

LIQUID CRYSTALS: Break a subset

Hexatic: 6-fold rotational symmetry
unbroken translational symmetry

Nematic: 2-fold rotational symmetry
unbroken translational symmetry

Smectic: breaks translational symmetry
in 1 or 2 directions



Smectics

Smectic-A

Smectic-C

Full translational symmetry in at least one direction
Broken translational symmetry in at least one direction
(Broken rotational symmetry)



Many Vortex Phases

Abrikosov Lattice Abrikosov (1957)
Entangled Flux Liquid Nelson (1998)
Chain States Ivlev, Kopnin (1990)
Hexatic Fisher (1980)
Smectic-C Efetov (1979)

Balents, Nelson (1995)
Driven Smectic Balents, Marchetti,

Radzihovsky (1998)

Our Assumption:

¤ Explicitly broken rotational symmetry



Instability of Ordered Phase:

Lindemann Criterion for Melting

xu = (u  , u  )y

< u2 >=< u2x > + < u2y > ≥ c2a2

Typically, lattice melts for c ≈ .1

Houghton, Pelcovits, Sudbo (1989)

Extended to Anisotropy:

ux

u
y

< u2x > ≥ 1
2c
2a2x

< u2y > ≥ 1
2c
2a2y

Look for one to be exceeded

well before the other.



Method

Calculate < u2x > and < u2y >

¤ based on elasticity theory of the ordered state
¤ using k-dependent elastic constants
¤ from Ginzburg-Landau theory

F = 1
(2π)3

∫
d~k~u · C̄ · ~u

where ~u = (ux, uy) = vortex displacement

C̄ =

(
c11(~k)k2x + ce66k

2
y + ce44(

~k)k2z c11(~k)kxky

c11(~k)kxky c11(~k)k2y + ch66k
2
x + ch44(

~k)k2z

)

... for B||ab

Elastic constants are known for uniaxial superconductors:

m̄ =




mab

mab

mc




ANISOTROPY: γ4 = mab

mc
= (λab

λc
)2 = ( ξc

ξab
)2



Elastic Constants

TILT MODULI
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BULK MODULI

ce11 (
−→q ) = ch11 (

−→q ) = ce,o44 (
−→q )

SHEAR MODULI

c66 =
ΦoB

(8πλab)
2 =

B2

4π
γ2 (1−b)

2

8bκ2

ce66 = γ6c66

ch66 = γ−2c66

where: Magnetic Field

m2λ =
1−b
2bκ2

κ̃ =

√
1+γ−4κ2+2bκ2γ−2q2z
1+bκ2+2bκ2γ−2q2z

b≡ B
Bab
c2
(T )

= B
Bab
c2
(T=0)(1−t)

Input parameters: b, γ, κ = λab

ξab



Elastic Constants Vanish at Bc2

Tc T

"All Core"

Meissner

Vortices

B

B  (T=0)
c2

Bc
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φo

2πξ2
ab(T )

Bab
c2 =

φo

2πξc(T )ξab(T )

ξ(T ) = ξ(T )√
1−t ⇒ Bab

c2 =
φo

2πξc(0)ξab(0)
(1− t)

t = T/Tc



Which way will it melt?

¤ Elastic constants scale on short length scales.
¤ Scaling breaks down at long length scales, c11, c44→ B2

4π

Lindemann ellipse
follows eccentricity
of the latticeLindemann criterion

< u2x >≥ 1
2
c2a2x Fluctuations are

less eccentric

< u2y >≥ 1
2
c2a2y

Anisotropy favors
smectic-A

Short wavelengths: Elastic constants soften
Long wavelengths: Low energy cost

Both are important.



YBCO with B||ab

We can compare to the uniaxial case experimentally.

Add pinning:

C̄ =

(
c11(~k)k2x + ce66k

2
y + ce44(

~k)k2z c11(~k)kxky

c11(~k)kxky c11(~k)k2y + ch66k
2
x + ch44(

~k)k2z +∆

)

Using Lawrence-Doniach model, ∆ =
8
√
πB2

c2(b−b2)ξcγ2

s3βAκ2 e−8ξ2
c /s

2

where βA ≈ 1.16

Pinning vanishes exponentially as the Bc2(T ) line is approached.

→ Pinning favors smectic-C

→ Anisotropy favors smectic-A



With Planar Pinning

Integrate < u2x > and < u2y > numerically to obtain melting curves

Compare to data on YBCO with B||ab

Parameters:
Tc = 92.3K mc

mab
= 59 κ = λab

ξab
= 55 Hab

c2 = 842T

Lindemann parameter c = .19 (only free parameter)
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Data is from Kwok et al., PRL 693370(1992)

Grigera et al. PRB (1998) find smectic-C in optimally doped YBCO
with B||ab



But we are really interested in the case

without pinning.

Now consider the effect of anisotropy alone...



In the absence of pinning:

Parameters: mc

mab
= 10 κ = λab

ξab
= 100

Lindemann parameter: c = .2
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Stronger anisotropy:

mc

mab
= 100 κ = λab

ξab
= 100

Lindemann parameter c = .2
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Theoretical Phase Diagram
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Long Range Order?

Smectic + spontaneously broken rotational symmetry

Has at most quasi long-range order

Smectic order parameter: ρ = |ρ|eiθ

F = 1
2

∫
dr[α(∇||θ)2 + β(∇2

⊥θ)
2]

Smectic + explicitly broken rotational symmetry

Our assumption: mab 6= mc

Explicitly broken rotational symmetry

Costs energy to rotate the vortex smectic.

F = 1
2

∫
dr[α′(∇xθ)2 + β′(∇yθ)2 + β′′(∇zθ)2]

Just like a 3D crystal.

3D smectic + explicitly broken rotational symmetry

→ Long Range Order



Other methods point to smectic-A

2D boson mapping: (Nelson, 1988)

L → τ →∞
3D vortices 2D bosons T = 0

2D melting T > 0: (Ostlund Halperin, 1981)

Short Burgers’ vector

dislocations unbind first

→ Smectic-A

Quasi-Long-Range Order

Our case: T = 0 Smectic can be long-range ordered.



C. Reichhardt and C. Olson

Numerical simulations on 2D vortices with anisotropic interactions

a b

c d



C. Reichhardt and C. Olson

Numerical simulations on 2D vortices with anisotropic interactions

a b

c d



Distinguishing the Smectics: Lorentz

between smectic layers
2D Superconductivity

L(F =0)= 0

between smectic layers
2D Superconductivity

3D Superconductivity
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Experimental Signatures

Resistivity:

¤ Smectic may retain 2D superconductivity

¤ ρ = 0 along liquid-like smectic layers

¤ ρ 6= 0 along the density wave

Structure Factor:

(Neutron scattering or Bitter decoration)

¤ Liquid-like correlations in one direction

¤ Solid-like correlations in the other

µSR:

¤ Signature at both melting temperatures



Where to look for the Smectic-A
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Our Assumptions:
¤ Explicitly broken rotational symmetry
¤ No explicitly broken translational symmetry

Cuprate Superconductors: → Stripe Nematic
¤ Yields anisotropic superfluid stiffness
¤ Does not break translational symmetry

B||c: Look for vortex smectic-A
in the presence of a stripe nematic



Conclusions

¤ Anisotropy favors intermediate melting
(Lattice → Smectic-A → Nematic)

- Lindemann criterion
- 2D boston mapping
- 2D numerical simulations (Reichhardt and Olson)

¤ Smectic-A has Long Range Order

- 3D smectic + explicit symmetry breaking
- 2D boson mapping

¤ Experimental Signatures:

- Resistivity anisotropy

- µSR

- Bitter decoration

- Neutron scattering


