Vortex Liquid Crystals in Anisotropic Type II Superconductors

E. W. Carlson A. H. Castro Netro D. K. Campbell

Boston University

cond-mat/0209175

In the high temperature superconductors, $\kappa \equiv \frac{\lambda}{\xi} \approx 100$

- λ : screening currents and magnetic field
- ξ : the normal "core"

Vortex Lattice Melting

Circular Cross Sections:

Cross Section of a Vortex

Anisotropic Vortex Lattice Melting

Elliptical Cross Sections:

Anisotropic Interacting "Molecules" \rightarrow Liquid Crystalline Phases

Abrikosov Liquid Crystals?

Symmetry of Phases

CRYSTALS:	Break continuous rotational
	and translational symmetries
	of 3D space

LIQUIDS: Break none

LIQUID CRYSTALS: Break a subset

Hexatic:	6-fold rotational symmetry
	unbroken translational symmetry

- Nematic: 2-fold rotational symmetry unbroken translational symmetry
- Smectic: breaks translational symmetry in 1 or 2 directions

Smectics

Smectic-A

Smectic-C

Full translational symmetry in at least one direction Broken translational symmetry in at least one direction (Broken rotational symmetry)

Many Vortex Phases

Abrikosov Lattice Entangled Flux Liquid Chain States Hexatic Smectic-C

Driven Smectic

Abrikosov (1957) Nelson (1998) Ivlev, Kopnin (1990) Fisher (1980) Efetov (1979) Balents, Nelson (1995) Balents, Marchetti, Radzihovsky (1998)

Our Assumption:

□ Explicitly broken rotational symmetry

Instability of Ordered Phase: Lindemann Criterion for Melting

Typically, lattice melts for $c \approx .1$ Houghton, Pelcovits, Sudbo (1989)

Extended to Anisotropy:

 $\begin{array}{c} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \end{array} \right) \\ \left(\begin{array}{c} \\ \\ \end{array} \right) \\ \left(\begin{array}{c} \\$

Look for one to be exceeded well before the other.

Method

Calculate
$$< u_x^2 >$$
 and $< u_y^2 >$

 \square based on elasticity theory of the ordered state

 \Box using *k*-dependent elastic constants

□ from Ginzburg-Landau theory

$$F = \frac{1}{(2\pi)^3} \int d\vec{k} \vec{u} \cdot \vec{C} \cdot \vec{u}$$

where $\vec{u} = (u_x, u_y) =$ vortex displacement

$$\bar{C} = \begin{pmatrix} c_{11}(\vec{k})k_x^2 + c_{66}^e k_y^2 + c_{44}^e(\vec{k})k_z^2 & c_{11}(\vec{k})k_x k_y \\ c_{11}(\vec{k})k_x k_y & c_{11}(\vec{k})k_y^2 + c_{66}^h k_x^2 + c_{44}^h(\vec{k})k_z^2 \end{pmatrix}$$
... for $B||ab$

Elastic constants are known for uniaxial superconductors:

$$\bar{m} = \left(\begin{array}{cc} m_{ab} & & \\ & m_{ab} & \\ & & m_c \end{array} \right)$$

ANISOTROPY:
$$\gamma^4 = \frac{m_{ab}}{m_c} = (\frac{\lambda_{ab}}{\lambda_c})^2 = (\frac{\xi_c}{\xi_{ab}})^2$$

Elastic Constants

TILT MODULI

$$\begin{aligned} \mathsf{c}_{44}^{e}\left(\overrightarrow{q}\right) &= \frac{B^{2}}{4\pi} \frac{1-b}{2b\kappa^{2}} \left[\frac{1}{m_{\lambda}^{2} + (q_{x}^{2} + q_{y}^{2}) + \gamma^{-2}q_{z}^{2}} \right] + \frac{B^{2}}{4\pi} \frac{5}{2b\kappa^{2}} ln\left(\widetilde{\kappa} + \frac{1-b}{2}\right) \\ \mathsf{c}_{44}^{h}\left(\overrightarrow{q}\right) &= \frac{B^{2}}{4\pi} \frac{1-b}{2b\kappa^{2}} \left[\left(\frac{m_{\lambda}^{2} + (\gamma^{-4}q_{x}^{2} + q_{y}^{2} + \gamma^{-2}q_{z}^{2})}{m_{\lambda}^{2} + (q_{x}^{2} + \gamma^{4}q_{y}^{2} + \gamma^{2}q_{z}^{2})} \right) \left(\frac{1}{m_{\lambda}^{2} + q_{x}^{2} + q_{y}^{2} + \gamma^{-2}q_{z}^{2}} \right) \right] + \frac{B^{2}}{4\pi} \frac{\gamma^{-4}}{2b\kappa^{2}} ln\left(\widetilde{\kappa} + \frac{1-b}{2}\right) \end{aligned}$$

 $\frac{\mathsf{BULK MODULI}}{\mathsf{c}_{11}^{e}(\overrightarrow{q}) = c_{11}^{h}(\overrightarrow{q}) = c_{44}^{e,o}(\overrightarrow{q})}$

SHEAR MODULI

$$c_{66} = \frac{\Phi_o B}{(8\pi\lambda_{ab})^2} = \frac{B^2}{4\pi} \gamma^2 \frac{(1-b)^2}{8b\kappa^2}$$

$$c_{66}^e = \gamma^6 c_{66}$$

$$c_{66}^h = \gamma^{-2} c_{66}$$

where:

$$m_{\lambda}^{2} = \frac{1-b}{2b\kappa^{2}}$$
$$\widetilde{\kappa} = \sqrt{\frac{1+\gamma^{-4}\kappa^{2}+2b\kappa^{2}\gamma^{-2}q_{z}^{2}}{1+b\kappa^{2}+2b\kappa^{2}\gamma^{-2}q_{z}^{2}}}$$
$$b \equiv \frac{B}{B_{c2}^{ab}(T)} = \frac{B}{B_{c2}^{ab}(T=0)(1-t)}$$

Input parameters: *b*, γ , $\kappa = \frac{\lambda_{ab}}{\xi_{ab}}$

$$B_{c2}^{c} = \frac{\phi_{o}}{2\pi\xi_{ab}^{2}(T)}$$

$$B_{c2}^{ab} = \frac{\phi_{o}}{2\pi\xi_{c}(T)\xi_{ab}(T)}$$

$$\xi(T) = \frac{\xi(T)}{\sqrt{1-t}} \implies B_{c2}^{ab} = \frac{\phi_{o}}{2\pi\xi_{c}(0)\xi_{ab}(0)}(1-t)$$

 $t = T/T_c$

Which way will it melt?

□ Elastic constants scale on short length scales. □ Scaling breaks down at long length scales, $c_1 1, c_4 4 \rightarrow \frac{B^2}{4\pi}$

Lindemann ellipse follows eccentricity of the lattice

Fluctuations are less eccentric

Anisotropy favors smectic-A

Short wavelengths: Elastic constants soften Long wavelengths: Low energy cost Both are important.

YBCO with B||ab

We can compare to the uniaxial case experimentally. Add pinning:

$$\bar{C} = \begin{pmatrix} c_{11}(\vec{k})k_x^2 + c_{66}^e k_y^2 + c_{44}^e(\vec{k})k_z^2 & c_{11}(\vec{k})k_x k_y \\ c_{11}(\vec{k})k_x k_y & c_{11}(\vec{k})k_y^2 + c_{66}^h k_x^2 + c_{44}^h(\vec{k})k_z^2 + \Delta \end{pmatrix}$$

Using Lawrence-Doniach model, $\Delta = \frac{8\sqrt{\pi}B_{c2}^2(b-b^2)\xi_c\gamma^2}{s^3\beta_A\kappa^2}e^{-8\xi_c^2/s^2}$ where $\beta_A \approx 1.16$

Pinning vanishes exponentially as the $B_{c2}(T)$ line is approached.

 \rightarrow Pinning favors smectic-C \rightarrow Anisotropy favors smectic-A

With Planar Pinning

Integrate $< u_x^2 > \, {\rm and} \, < u_y^2 > \, {\rm numerically}$ to obtain melting curves

Compare to data on YBCO with B||ab

Parameters: $T_c = 92.3K$ $\frac{m_c}{m_{ab}} = 59$ $\kappa = \frac{\lambda_{ab}}{\xi_{ab}} = 55$ $H_{c2}^{ab} = 842T$

Lindemann parameter c = .19 (only free parameter)

Data is from Kwok et al., PRL 693370(1992)

Grigera *et al.* PRB (1998) find smectic-C in optimally doped YBCO with B||ab

But we are really interested in the case without pinning.

Now consider the effect of anisotropy alone...

In the absence of pinning:

Parameters: $\frac{m_c}{m_{ab}} = 10$ $\kappa = \frac{\lambda_{ab}}{\xi_{ab}} = 100$ Lindemann parameter: c = .2

Stronger anisotropy:

 $rac{m_c}{m_{ab}}=100$ $\kappa=rac{\lambda_{ab}}{\xi_{ab}}=100$ Lindemann parameter c=.2

Theoretical Phase Diagram

Long Range Order?

<u>Smectic + spontaneously broken rotational symmetry</u>

Has at most quasi long-range order Smectic order parameter: $\rho = |\rho|e^{i\theta}$ $F = \frac{1}{2} \int d\mathbf{r} [\alpha (\nabla_{||}\theta)^2 + \beta (\nabla_{\perp}^2\theta)^2]$

Smectic + explicitly broken rotational symmetry Our assumption: $m_{ab} \neq m_c$ Explicitly broken rotational symmetry Costs energy to rotate the vortex smectic. $F = \frac{1}{2} \int d\mathbf{r} [\alpha' (\nabla_x \theta)^2 + \beta' (\nabla_y \theta)^2 + \beta'' (\nabla_z \theta)^2]$ Just like a 3D crystal.

> 3D smectic + explicitly broken rotational symmetry \rightarrow Long Range Order

Other methods point to smectic-A

2D boson mapping: (Nelson, 1988)

 \rightarrow Smectic-A Quasi-Long-Range Order

Our case: T = 0 Smectic can be long-range ordered.

C. Reichhardt and C. Olson

Numerical simulations on 2D vortices with anisotropic interactions

C. Reichhardt and C. Olson

Numerical simulations on 2D vortices with anisotropic interactions

X NO CO AND REAL PROPERTY AND AND No. 20 March 10 A 10 **K ******

b

Distinguishing the Smectics: Lorentz

Experimental Signatures

Resistivity:

- \square Smectic may retain 2D superconductivity
- $\square \ \rho = 0$ along liquid-like smectic layers
- $\square \ \rho \neq 0$ along the density wave

Structure Factor:

(Neutron scattering or Bitter decoration)

- $\hfill\square$ Liquid-like correlations in one direction
- $\hfill\square$ Solid-like correlations in the other

 μ SR:

 \Box Signature at both melting temperatures

Where to look for the Smectic-A

Our Assumptions:

- □ Explicitly broken rotational symmetry
- \square No explicitly broken translational symmetry

Cuprate Superconductors: → Stripe Nematic
 □ Yields anisotropic superfluid stiffness
 □ Does not break translational symmetry

B||c:

Look for vortex smectic-A in the presence of a stripe nematic

Conclusions

 $\begin{tabular}{ll} \square Anisotropy favors intermediate melting (Lattice \rightarrow Smectic-A \rightarrow Nematic) \end{tabular}$

- Lindemann criterion
- 2D boston mapping
- 2D numerical simulations (Reichhardt and Olson)

□ Smectic-A has Long Range Order

- 3D smectic + explicit symmetry breaking
- 2D boson mapping

□ Experimental Signatures:

- Resistivity anisotropy
- μSR
- Bitter decoration
- Neutron scattering