Magnetic Excitations of Stripes

E. W. Carlson D. X. Yao D. K. Campbell

Stripes: Why?

HTSC Dilemmas

Superconductivity from a non-Fermi liquid High pairing scale despite strong repulsion

Metallic Charge Stripes: Spin-Charge Separation

Non-Fermi liquid normal state (Luttinger liquid) Pair the spin degrees of freedom, and avoid the Coulomb repulsion.

> EC, V. Emery, S. Kivelson, D. Orgad in "Physics of Unconventional Superconductors" ed. Bennemann and Ketterson, (2004)

Inherent Competition

EC, V. Emery, S. Kivelson, D. Orgad in "Physics of Unconventional Superconductors" ed. Bennemann and Ketterson, (2004)

Unidirectional modulation in charge and spin

Charge: quasi-one-dimensional (rivers of charge)

Spin: 2D Magnetic texture

$0 \neq \uparrow 0 \neq \uparrow 0 \neq \uparrow 0$ $0 \uparrow \downarrow 0 \uparrow \downarrow 0$ $0 \neq \uparrow 0 \uparrow \downarrow 0$ $0 \neq \uparrow 0 \neq \uparrow 0 \neq \uparrow 0$

Stripes Have 2D Magnetic Texture

Real Space

2D spin waves disperse out of the reciprocal lattice vector positions

Neutron Scattering in Cuprates and Nickelates

Disappearance of (π,π) peak with doping Appearance of satellite peaks

AFM signal averages to zero *antiphase domain walls*

site-centered $0 \neq 0 \neq 0 \neq 0 \neq 0$ $0 \neq 0 \neq 0 \neq 0 \neq 0$ $0 \neq 0 \neq 0 \neq 0 \neq 0$ $0 \neq 0 \neq 0 \neq 0 \neq 0$ $0 \neq 0 \neq 0 \neq 0 \neq 0$ $0 \neq 0 \neq 0 \neq 0 \neq 0$

Neutron Scattering in Cuprates and Nickelates

Checkerboards and Plaids?

Odd Spacing

Site-centered

Bond-centered

Magnetic Reciprocal Lattice Vectors

Odd Spacing

Site-centered

Intensities

Bond-centered

 π

Odd Spacing

Even Spacing

Site-centered

π

Magnetic Reciprocal Lattice **Vectors**

Bond-centered

Even Spacing

Site-centered \$\Phi + + \$\Phi + \$\Phi \$\Phi \$ \$\Phi + + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi \$ \$\Phi + \$\Phi \$ \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Phi + \$\Phi \$ \$\Phi + \$\Ph

Bond-centered

π

Inelastic Response: Spin Waves

Site or Bond-Centered

Bond-centered p=3

$$H = \frac{1}{2} \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

Semiclassical Spin Waves

$$S(\mathbf{k},\omega)^{in} = \sum_{f} \sum_{i=x,y,z} |\langle f|S^{i}(\mathbf{k})|0\rangle|^{2}\delta(\omega-\omega_{f})$$

Low Energy Velocities

Spin wave cones may remain rather *isotropic* for bond-centered stripes, despite microscopic anisotropy.

Spin Wave Dispersions

- Bond-centered has one more band
- Bond-centered has weight at $(0,\pi)$
- Bands repel, do not cross
 Resonance unlikely from crossings _{Batista et al., PRB (2001)}

Data

YBCO6.6, S. Hayden et al., Nature 429, 531 (2004)

Stripe-ordered LBCO, S. Hayden et al., Nature 429, 534 (2004)

0.5 0.5 • 0.5 0.5 0 <u>|</u> 0 0 ⊾ 0 0 0 0.5 0.5 0.5 0 0 0.5 1 1 1 1 1 E=1.5J_a E=2.5J_a E=0.5J_a E=3.5J 0.5 0.5 0.5 0.5 0 <u>k</u> 0 0 <u>|</u> 0 0 <u>|</u> 0 0 0.5 0.5 0.5 0.5 0 1 1 1 1

Symmetrize

VS4 Jb = Ja

Vertical, Site-centered, Spacing = 4

Other Stripe Patterns

Diagonal

"DB4"

DB2 J_{b} = -.1 J_{a}

Diagonal, Bond-centered, Spacing = 2

Other Stripe Patterns

Staircase

Globally diagonal Locally vertical Antiphase domain walls

> M. Granath, PRB (2004) Smooth transition from diagonal to vertical peaks Fermi Surface Arcs

 $SB2 J_{b} = -.1 J_{a}$

Staircase, Bond-centered, Spacing = 2

Conclusions

2D magnetic texture

- Stripes produce 2D spin waves.
- Finite energy weight at (π, π) is natural from stripes,

but not from a pure antiferromagnet.

Resonance peak

- Unlikely from crossing (bands repel)
- **Bond-centered stripes:**
 - Ferromagnetic coupling across domain wall
 - One more band than site-centered
 - Odd spacing has new elastic peaks,
 - forbidden for site-centered stripes
 - Isotropic spin wave cones
 - "Legs" of scattering

Comparison to Recent Cuprate Data

- Low energy could be semiclassical spin waves
- High energy is not

