Electron Ising Nematic in High-T_c Superconductors

E. W. Carlson (Purdue)

K. A. Dahmen (UIUC)

E. Fradkin (UIUC)

S. A. Kivelson (Stanford, UCLA)

Issues

Why do we care?

Novel electronic phases: liquid crystals May shed light on High Tc

Issues about stripes in HTSC:

Are they there?

Are they ubiquitous?

What constitutes evidence of them?

Hard to detect!

Disorder (chemical dopants)

Rounds transitions

Destroys order!

How do we define and detect "order" in the presence of severe disorder effects?

Stripes → Random Field Ising Model

Stripes break orientational symmetry

NEMATIC

Stripes lock to a crystal direction

ISING NEMATIC

Disorder favors one direction locally

RANDOM FIELD ISING MODEL

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - \sum_i (H + h_i) \sigma_i$$

Random Field Ising Model → Transport

Nematic Stripe Patches

Random Field Ising Model

Resistor Network

Macroscopic Resistance Anisotropy

$$R_a = \frac{R_{xx} - R_{yy}}{R_{xx} + R_{yy}}$$

Resistance Anisotropy and RFIM Magnetization exhibit hysteresis

"Magnetization" = orientational order

- Magnetization
- $(R_{xx}-R_{yy})/(R_{xx}+R_{yy})$

LXL = 300X300

T=0; R = 2.8 J; $R_{large}/R_{small} = 2$

Resistance
Anisotropy Tracks
Magnetization
≈ linearly

Hysteresis Subloops

Experiment

LSCO, X=.10 ZFC, ZFW T=45K

Panagopoulos *et al.*, cond-mat/0412570

Theory

- Return Point Memory (subloops close)
- Incongruent Subloops
 →Interactions important
- •Disorder R=2.8J, T=0, Size = 100X100

Transport

Experiment

YBCO nanowire underdoped T=100K 500nmX250nm

Bonetti, Caplan, Van Harlingen, Weissman PRL 2004

Theory

- Local patch anisotropy: 2
- Size: 10X10 patches
- Disorder R=2.8 J
- T = .5 J
- Stripe correlation length~ 40nm (from neutron data)

Conclusions

Stripes + Host crystal + Disorder = Random Field Ising Model

Predictions for Transport:

R_{xx}-R_{yy} (orientational order)
Hysteresis
Return Point Memory at low T
Subloops

Incongruent ⇒ Interactions important

 R_{xx}

Switching noise in small systems Characteristic Power spectra