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Hysteresis and Noise from Electronic Nematicity in High-Temperature Superconductors
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An electron nematic is a translationally invariant state which spontaneously breaks the discrete
rotational symmetry of a host crystal. In a clean square lattice, the electron nematic has two preferred
orientations, while dopant disorder favors one or the other orientations locally. In this way, the electron
nematic in a host crystal maps to the random field Ising model. Since the electron nematic has anisotropic
conductivity, we associate each Ising configuration with a resistor network and use what is known about
the random field Ising model to predict new ways to test for local electronic nematic order (nematicity)
using noise and hysteresis. In particular, we have uncovered a remarkably robust linear relation between
the orientational order and the resistance anisotropy which holds over a wide range of circumstances.
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(a) Nematic patches (b) Resistor Network

FIG. 1 (color online). Mapping of nematic patches to random
resistor networks. (a) Configurations of nematic patches gener-
ated by the random field Ising model. (b) Corresponding resistor
network, modeling local anisotropic conduction in each nematic
patch. Solid lines are small resistors, and dotted lines are large
ones.
In the high-temperature superconductors, in addition to
superconductivity, there may exist various other types of
order which break spatial symmetries of the underlying
crystal, especially in the ‘‘pseudogap’’ regime at low dop-
ing [1–5]. However, it is often surprisingly difficult to
obtain direct experimental evidence which permits one to
clearly delineate in which materials, and in what range of
temperature and doping, these phases occur. One such
candidate order is the electronic nematic which breaks
orientational, but not translational, symmetry [1]. Orien-
tational long range order (LRO) induces transport anisot-
ropy, so this is a natural way to look for nematic order
[1,6].

A nematic has two preferred orientations in a tetragonal
crystal, so the order parameter can be represented by an
Ising variable. On the other hand, since quenched disorder
couples linearly to the nematic order parameter, an electron
nematic in a square lattice with disorder maps to the
random field Ising model (RFIM) [7] (see below).
Interesting behavior reminiscent of the RFIM has been
reported in recent noise [8] and hysteresis [9,10] measure-
ments on high-temperature superconductors. While in 3D,
for sufficiently weak disorder, the RFIM exhibits a finite
temperature phase transition to a low temperature ordered
phase, in 2D the critical disorder strength is zero, and LRO
is forbidden [11]. Even in the quasi-2D case of coupled
RFIM planes, the critical disorder strength is exponentially
small [12], so disorder will typically convert a true ther-
modynamic phase transition into a crossover. We focus
here on two dimensions and demonstrate that even in this
case, where orientational LRO is forbidden, it is possible to
detect the proximity to order through noise and hysteresis
measurements [8–10].

In a host crystal such as the cuprates, an electron nematic
(which may arise, e.g., from local correlations of a melted
stripe phase) tends to lock to favorable lattice directions,
06=96(9)=097003(4)$23.00 09700
often either ‘‘vertically’’ or ‘‘horizontally’’ along Cu-O
bond directions. The two possible orientations can be
represented by an Ising pseudospin � � �1 [13], and the
tendency of neighboring nematic patches to align corre-
sponds to a ferromagnetic interaction. In any given region,
disorder due to dopant atoms between the cuprate planes
produces electric field gradients which locally favor one
orientation or the other and act like a random field on the
electronic nematic, as illustrated in Fig. 1(a). Thus, the
physics of an electron nematic is represented by the RFIM:

H � �J
X

hi;ji

�i�j �
X

i

�h� hi��i; (1)

where J > 0 is the coupling between neighboring nematic
patches [14]. The local disorder field hi is taken to be
Gaussian, with a disorder strength � characterized by the
width of the Gaussian distribution. The symmetry-
breaking field h may be produced by, e.g., uniaxial strain,
high current [15], magnetic field [9], or even orthorhom-
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FIG. 2 (color online). Hysteresis and comparison of the macro-
scopic resistance anisotropy to the orientational order for size
L� L � 100� 100, disorder strength � � 3J, temperature
T � 0, microscopic resistance anisotropy r � 2, and external
field sweep rate � � J=N, where N � L� L. (a) Hysteresis of
the resistance anisotropy Ra (see text) vs the symmetry-breaking
field h. (b) Resistance anisotropy Ra vs orientational order
parameter m. The resistance anisotropy is a remarkably good
indicator of orientational order.
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bicity [6,16]. Nematics can also be aligned by an external
magnetic field due to diamagnetic anisotropy, in which
case h / o�H2� [17].

The macroscopic resistance anisotropy of a nematic
[6,18,19] transforms under rotations in the same way as
the orientational order parameter m � �1=N�

P
i�i and is

a natural candidate for measuring nematic order. The
(normalized) resistance anisotropy is Ra� ��r�1�=
�r�1�	��Rxx�Ryy�=�Rxx�Ryy�	, where r� Rxx�m! 1�=
Ryy�m! 1� is the ratio of the extremal macroscopic resis-
tances in the fully oriented state. To obtain the transport
properties, we map each pattern of local nematic orienta-
tions generated by Monte Carlo simulations of the RFIM
[see Fig. 1(a)] to a resistor network [see Fig. 1(b)] which
models the local anisotropic transport in each nematic
patch. Each patch (Ising pseudospin) becomes one node
in the resistor network, with four surrounding resistors
determined by the nematic orientation. For a ‘‘vertical’’
nematic patch (� � �1), we assign the resistors to the
‘‘north’’ and ‘‘south’’ to be small, Rsmall, while the resistors
to the ‘‘east’’ and ‘‘west’’ are large, Rlarge � rRsmall. For a
‘‘horizontal’’ nematic patch (� � �1), these assignments
are reversed. When all patches are fully oriented so that
m! 1 (i.e., all nematic patches are vertical), the macro-
scopic resistance anisotropy saturates, Ra ! 1. More gen-
erally, in the thermodynamic limit, hRai � mF�m; T; r�,
where F is an even function of m. Remarkably, as shown
below, F � 1 to a very good approximation and, under a
wide range of circumstances, hRai 
 m throughout the
entire range of m.

We use a Glauber update method to generate configura-
tions of the RFIM, with periodic boundary conditions on
the pseudospin lattice. The details of the algorithm are
contained in Ref. [20]. We then calculate the resistance
anisotropy Ra of the corresponding resistor network by the
following method: For Rxx, we assign a uniform applied
voltage to every site at the far left end of the lattice and a
uniform ground to the far right end of the lattice, with open
voltage boundary conditions in the y direction. We then
apply the bond propagation algorithm [21] to reduce the
network to a single resistor equivalent to the macroscopic
Rxx. Ryy is similarly calculated from the same starting
resistor network but with boundary conditions appropriate
for Ryy. Results shown are typical for the stated disorder
strengths, although the exact shape can vary slightly with
the particular disorder pattern.

We first present results at zero temperature, which ex-
hibits the nonequilibrium behavior associated with hys-
teresis. Figure 2 shows a simulation of the RFIM for a
system of size L � 100� 100 at zero temperature. We
present results for which the field h is incremented at a
sweep rate � � J=N, where N � L� L is the system size
and h � �t. In Fig. 2(a), we show a hysteresis loop for the
resistance anisotropy Ra vs the symmetry-breaking field
h, starting from the fully oriented state at h � �1.
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Figure 2(b) plots Ra vs m through one cycle of the hys-
teresis loop. The relationship is remarkably linear, and the
macroscopic resistance anisotropy Ra shows precisely the
same hysteretic behavior as m. This linear relation
throughout the cycle is surprising; for a given magnetiza-
tion m not too close to 1, there is a range of values possible
for the macroscopic resistance anisotropy, since the resist-
ance depends not only on the relative concentration of
‘‘up’’ and ‘‘down’’ resistor nodes but also on their spatial
arrangement. In fact, for m � 0, Ra can take values be-
tween��r2 � 1�=�r2 � 6r� 1�. However, for typical con-
figurations generated by the RFIM, the main contribution
to Ra is controlled by the number of up and down nodes,
with their spatial relation being a small effect which goes
to zero as the system size L! 1 or as r! 1 [22]. (We do
observe variations in Ra between configurations with the
same magnitude of m at finite temperature or for small
system sizes.) The fact that hRai 
 m over a wide range of
parameters means that noise and hysteresis in this measur-
able property can be used to detect the electronic nematic.

Hysteresis subloops can be used to determine qualita-
tively the relative importance of interactions and disorder.
Figure 3 shows the behavior of subloops in the hysteresis
curve of the orientational order m vs orienting field h.
Starting from zero field and a thermally disordered con-
figuration, the field is swept up along path 1, then switched
back along path 2 to take subloop A before continuing
along path 3. Then path 4 begins a second subloop, within
which path 5 begins subloop B, before continuing to raise
the field through path 6 until m has saturated, m! 1.

Notice that the subloops close and also that, once a
subloop has closed, continuing to raise the field does not
disturb the structure of the outer loop. This is indicative of
return-point memory, a characteristic of the RFIM [23].
Additionally, subloops A and B in Fig. 3 are a comparison
between the same two field strengths. The fact that the two
3-2
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FIG. 4 (color online). (a) Telegraph noise in a confined ge-
ometry. Resistance Rxx vs time of a small system of size L�
L � 6� 6 with disorder strength � � 2J, at temperature T �
0:5J, in zero applied field, H � 0. An initial random state is
allowed to thermalize for 10 000 Monte Carlo steps before
measurements are taken. The local microscopic conductivity
anisotropy in the resistor network is r � 2. Small fluctuations
are due to a single nematic patch fluctuating. Large switches are
due to the thermal fluctuations of a single correlated cluster of
nematic patches. (b) Histogram of the time series. N is the
number of occurrences of a particular resistance. There are
two main states, one for which the correlated cluster is up, and
the other for which it is down.
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FIG. 3 (color online). (a) Field ramp-up from a disordered
configuration at T � 0, with hysteresis subloops, for system
size L� L � 100� 100 and disorder strength � � 3J. The
arrows indicate the order in which the external field sweep is
taken. Subloops A and B are both taken between the same
extremal orienting fields h � 1:5J and h � 2:1J but with differ-
ent histories. (b) Incongruency of subloops A and B, due to the
presence of interactions. Here the orientational order parameter
has been shifted to compare the shape of the two subloops.
Subloop A, executed at lower m, has a higher slope than
subloop B, executed at higher m.
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are incongruent as shown in Fig. 3(b) indicates that inter-
actions are present and possibly even avalanches, i.e., that
the hysteresis is not simply a linear superposition of ele-
mentary hysteresis loops of independent grains as in the
Preisach model [24–26]. Here we have used a disorder
strength of � � 3J >�3D

crit � 2:16J. At lower disorder, the
subloops become narrower and difficult to resolve. Also, as
the temperature is increased, thermal disorder means that
subloops become narrower and no longer close precisely.

Recent magnetization measurements by Panagopoulos
et al. [9,10] on La2�xSrxCuO4 (LSCO) reveal hysteretic
behavior reminiscent of the RFIM. Although some of the
results look very similar to our Fig. 3, in fact our model
does not explicitly include the magnetic moments mea-
sured in this experiment. However, the small magnitude of
the measured magnetization may be consistent with ferro-
magnetic moments arising at defects in the local striped
antiferromagnetic order of a nematic patch.

We now discuss equilibrium fluctuations. In confined
geometries such as nanowires and dots, this model can
exhibit telegraph noise in Ra due to thermal fluctuations
of large correlated clusters. Recent transport experiments
on underdoped yttrium barium copper oxide (YBCO)
nanowires by Bonetti et al. [8] reveal telegraphlike noise
in the pseudogap regime. Using a YBCO nanowire of size
250 nm� 500 nm, they found that a time trace of the
resistance at constant temperature T � 100 K shows tele-
graphlike fluctuations of magnitude 0.25%, on time scales
on the order of 50 seconds. These large scale, slow
switches can be understood within our model as thermal
fluctuations of a single correlated cluster of nematic
patches. Individual nematic patches thermally fluctuating
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between two orientations also produce noise, but at higher
frequency, and with smaller effect on the macroscopic
resistance. By comparing the magnitude of the smallest
typical resistance change to the resistance change at a
telegraph noise event, one can estimate that the correlated
cluster in the nanowire contains at least 5–6 nematic
patches.

The nanowire corresponds to a rather small system size
when mapped to the RFIM. Neutron scattering experi-
ments on the incommensurate peaks of underdoped
YBCO indicate a coherence length of roughly 40 nm. If
we take this as an estimate of the size of one nematic patch
(mapped to a single pseudospin in the RFIM), the nanowire
is about 6� 12 patches wide, and the effect of flipping a
correlated cluster of pseudospins can dominate the re-
sponse. In Fig. 4(a), we show a time series ofRxx in thermal
equilibrium (h � 0) for a small system of size L� L �
6� 6 at finite temperature with disorder strength � � 2J.
We take r � 2 as a representative value, being larger than
but of order 1. In fact, in the experiments of Ref. [6], the
lattice orthorhombicity acts as an orienting field h, and the
measured range of resistivity anisotropy �a=�b 
 1:2–2:6
may be taken as a rough lower bound on r. Notice the
sizable thermal fluctuations in the macroscopic resistance.
The high frequency noise is due to the thermal fluctuations
of a single Ising pseudospin. The lower frequency tele-
graph noise, in which the resistance changes dramatically,
is due to the correlated fluctuations of a cluster of pseudo-
spins, in our case a cluster of 4 pseudospins. The histogram
in Fig. 4(b) shows that the system switches between two
main states.
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In general, correlated clusters will thermally switch with
a time scale which rapidly increases with their size.
Confined geometries such as the nanowire are more likely
to have a system-spanning cluster which causes slow, large
scale noise. For larger system sizes, the histogram becomes
smoother and can have multiple peaks. For systems larger
than the Imry-Ma correlation length, large scale switches
are highly unlikely. A probability distribution of size of
cluster vs frequency can be obtained from a histogram of
the differential resistance, in which large scale switches
will always be relegated to the tails of the distribution.

A further way to test for nematic patches is to measure
cross correlations between the thermal noise in Rxx and Ryy
as a function of time [27]. For example, resistance fluctua-
tions due to fluctuation superconductivity would cause
correlated fluctuations of Rxx and Ryy, while nematic
fluctuations would cause anticorrelated fluctuations.

This general method of connecting local anisotropic
properties of an electronic nematic to macroscopic behav-
ior can be extended to many experimental measurements.
For example, applying an in-plane magnetic field should
drive the fourfold symmetric incommensurate spin peaks
in neutron scattering into a twofold symmetric pattern, in a
hysteretic manner as the field is rotated from one Cu-O
direction to the other. Superfluid density anisotropy should
also display hysteresis with in-plane field orientation.
Furthermore, the presence of correlated clusters in the
RFIM has implications for STM. Whereas small correlated
clusters have fast switching dynamics, large clusters are
much slower [24], so that different size clusters have differ-
ent local power spectra. STM can be used to do scanning
noise spectroscopy [28], by measuring the power spectrum
as a function of position, in order to produce a spatial map
of correlated nematic clusters.

In conclusion, we have mapped the electron nematic in a
host crystal to the random field Ising model. Using a
further mapping to a random resistor network, we have
predicted new ways to detect the electron nematic in dis-
ordered systems. We have demonstrated that the macro-
scopic resistance anisotropy is a good measure of
orientational order and is expected to display hysteresis
and thermal noise characteristic of the random field Ising
model. Recent experiments on noise in YBCO nanowires
and hysteresis in LSCO exhibit behavior reminiscent of
this model.
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