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We present an efficient algorithm for calculating the properties of Ising models in two dimensions,
directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm
computes the partition function and correlation functions at a single temperature on any planar network of
N Ising spins in O�N3=2� time or less. The method can handle continuous or discrete bond disorder and is
especially efficient in the case of bond or site dilution, where it executes in O�N lnN� time near the
percolation threshold. We demonstrate its feasibility on the ferromagnetic Ising model and the �J
random-bond Ising model and discuss the regime of applicability in cases of full frustration such as the
Ising antiferromagnet on a triangular lattice.
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Ising models are the prototype system for studying phase
transitions, critical phenomena, and disordered systems.
We present here an algorithm for computing the partition
function and correlation functions in a class of 2D Ising
models which is exact to machine precision and which
works for any planar network of Ising spins with arbitrary
bond strengths but without applied fields in the bulk.
Applications include random-bond Ising models (RBIM)
(including �J disorder, Gaussian disorder, site dilution,
and bond dilution) and geometric frustration as in the case
of triangular Ising antiferromagnets.

Our algorithm is an extension of a bond-propagation
algorithm [1] originally developed for resistor networks.
The method works by successively integrating in and then
integrating out spin degrees of freedom in a way that only
introduces local changes to the network, in order to pro-
gressively move degrees of freedom to an open edge of the
network, where they are eliminated. It operates directly on
the original spin network, without mapping to fermions or
dimers and requires negligible memory in addition to the
O�L2� memory required to store the Ising bond strengths
that define the problem. The algorithm requiresO�L3� time
to compute the partition function Z�T� of an L� L square
lattice at a single temperature T; for bond-diluted problems
near the percolation threshold it requires only O�L2 lnL�
time, which is the fastest method to our knowledge in this
case [2]. In comparison, the fermion network method takes
O�L4� time [3], spin-basis transfer matrix methods [4] take
O�2L� time, and the Pfaffian method with nested dissection
takes O�L3� time [5,6]. While our algorithm has superior
speed to that of Ref. [5] only near the percolation thresh-
old, we believe there are advantages to a transparent algo-
rithm which operates directly in the spin representation. In
addition, our method is highly parallelizable, and can
execute in as little as O�L� time if a sufficient number of
nodes are available.

We begin by describing the original bond-propagation
algorithm invented by Frank and Lobb [1]. The effective
resistance of any 2D resistor network can be calculated
swiftly and accurately by this algorithm. There are two

basic transformations required: a series reduction and the
so-called Y-� transformation (along with its corresponding
inverse). Using these ingredients, a 2D resistor network can
be efficiently reduced to a single net resistance in the
following way: starting from the upper left corner in
Fig. 1(a), use a series reduction to convert the corner into
a diagonal bond. Using the Y-� and �-Y transformations,
this diagonal bond can be successively propagated diago-
nally down and to the right until it annihilates at an edge
with open boundary conditions. The way that one ‘‘bond-
propagation’’ move is completed is illustrated in Fig. 1(b).
First, the upper left � in Fig. 1(b) is converted into a Y.
This introduces one new node into the system. The new
node is now effectively shifted, in order to replace the node

 

(a) Lattice reduction

(b) A single bond propagation move

FIG. 1. The bond-propagation algorithm [1]. (a) Starting from
one corner, the two outer bonds may be combined using a series
reduction to make a single diagonal bond. Then, the lattice can
be reduced by successively using the bond-propagation algo-
rithm to move the diagonal bond out of the lattice. Repeated
applications of the algorithm reduce the lattice to a single bond,
corresponding to the effective resistance of the entire resistor
network, or in the Ising case, corresponding to a reduced 2-spin
system with effective coupling Jeff whose partition function is
equal to that of the original lattice. (b) A single bond-
propagation step, in which a �-Y and then a Y-� transformation
are used to propagate one diagonal bond through a fourfold
coordinated node in the lattice.
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directly to its lower right, a ‘‘move’’ which does not change
the topology of the network. Finally, the lower right Y is
converted into a �. In this way, a diagonal bond in any
lattice with coordination number z � 4 can be ‘‘propa-
gated’’ diagonally. Repeated bond-propagation moves re-
duce the network to a single string of resistors in series,
which is easily reducible to one effective resistor.

The bond-propagation algorithm can be applied to sys-
tems which possess series, Y-�, and �-Y transformations,
including 2D Ising models, as suggested in Ref. [1]. We
merely sketch a derivation of these known transformations
for the Ising model [9,10], with final forms optimized for
computation. Consider the general Ising action

 S�f�ig; fJijg� � ��H �
X
hiji

Jij�i�j; (1)

where the inverse temperature � � 1=kBT, H is the
Hamiltonian, and the variables � � �1. The nearest-
neighbor dimensionless couplings Jij � �~Jij are arbitrary
real numbers. This has rich physics: it includes the
Edwards-Anderson spin glass model and the �J random-
bond Ising model (examples of disorder frustration), bond-
and site-diluted Ising models (percolation physics), and the
triangular Ising antiferromagnet (geometric frustration).

We define the building blocks as transformations of the
J’s that preserve the value of the partition function, Z �P
f�i��1ge

��H. A ‘‘series’’ reduction corresponds to inte-
grating out a spin with two neighbors, generating an effec-
tive coupling jij � z1=2

1 z�1=2
0 between sites i and j as well

as a constant ‘‘free energy’’ shift in the action �f �

z1=2
1 z1=2

0 , where z0 �
1
j1j2
� j1j2 and z1 �

j2

j1
� j1

j2
. [See

Fig. 2(a).] We have found it convenient to use the variables
ji � e�Ji , jij � e�Jij , and �f � e�F, because in this rep-
resentation the transformations involve algebraic functions
only (powers and roots) rather than transcendental func-
tions and are thus more suitable for analysis and
computation.

The Y-� transformation corresponds to integrating out
the middle spin, �, in Fig. 2(b). Because of spin-flip

symmetry, the only allowed terms in the effective action
are bilinear in f�g, along with a constant free energy shift:
 

ZY	�1; �2; �3
 �
X
�

eJ1��1�J2��2�J3��3

� Z�	�1; �2; �3


� e�F�J23�2�3�J31�3�1�J12�1�2 : (2)

The couplings of the resulting ‘‘�’’ and the free energy
shift are

 j23 � z1=4
2 z1=4

3 z�1=4
0 z�1=4

1 ; �f � z1=4
2 z1=4

3 z1=4
0 z1=4

1 ; (3)

where z0 �
1

j1j2j3
� j1j2j3, z1 �

j1

j2j3
� j2j3

j1
, and the expres-

sions for j31, j12, a2, a3 are related to those above by cyclic
permutations of the indices 1, 2, 3.

The inverse of the Y-� transformation is the �-Y trans-
formation, which corresponds to integrating back in the
middle spin, ‘‘�’’, of Fig. 2(b) [9,10]. The couplings of the
resulting ‘‘Y’’ and the free energy shift are given by

 j1 �

�������������
1� t1
1� t1

s
; �f �

z0

j1j2j3 �
1

j1j2j3

; (4)

where t1 � c1=2
2 c1=2

3 c�1=2
0 c�1=2

1 , with c0 � z0 � z1 � z2 �
z3 and c1 � z0 � z1 � z2 � z3, and the zi are defined by
z0 �

1
j23j31j12

and z1 �
j31j12

j23
, and cyclic permutations. These

equations may be written in various forms that are much
more efficient or robust in particular parameter regimes.
For example, in Fig. 3 and in the p � 0 case of Fig. 4, we
have used a formulation which is optimized for the uniform
ferromagnetic case. As emphasized in Ref. [1], infinite
couplings (‘‘shorts’’) may appear during bond propagation,
and need to be treated with care.

Now that we have the basic building blocks in place, the
Frank-Lobb bond-propagation algorithm may be extended
to 2D Ising models described by Eq. (1), as suggested in
Ref. [1]. In its original form, the bond-propagation algo-
rithm computes the effective resistance between two cor-
ners of a square network with open boundary conditions.
When applied to Ising models on a square lattice, it yields
the ‘‘renormalized’’ effective coupling Jeff between oppo-
site corner spins. We can then trivially sum over the four
configurations of these last two remaining spins to obtain
the partition function of the original network, Z�T�.

As a proof of principle, we apply the algorithm to the
uniform ferromagnetic Ising model with ~Jij � �1, and
compare to the Onsager result for the infinite system
[11]. Figure 3 shows the specific heat, c��� � 1

L2�2
d2 lnZ
d�2 ,

estimated by second-order finite differencing [12] for vari-
ous system sizes. A more natural diagnostic tool in this
algorithm is the effective dimensionless coupling Jeff be-
tween spins on opposite corners of the original square
lattice, which indicates whether long-range order is
present. The transition temperature may be accurately
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FIG. 2. Building blocks for the bond-propagation algorithm.
(a) Series. In a series reduction, the middle spin is integrated out.
(b) Y-�. In a Y-� transformation, the middle spin is integrated
out. In the reverse (�-Y) transformation, a spin is integrated back
in. See the text for formulas relating the coupling constants in
these transformations.

PRL 97, 227205 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 DECEMBER 2006

227205-2



determined from the crossing point of L2Jeff plotted for
various lattice sizes, as shown in Fig. 3(b).

To illustrate that the method works for frustrated sys-
tems as well, we apply it to the �J RBIM on a square
lattice, where each ferromagnetic bond in the Ising model
is replaced by an antiferromagnetic bond with probability
p. For this model it is known [3,14] that the Curie tem-
perature Tc�p� decreases from Tc � 2:2692 at p � 0 to
Tc � 0:9533 at pc � 0:1093. Figure 4 shows the results of
bond propagation on typical disorder configurations for
128� 128 lattices. As the concentration of antiferromag-
netic bonds p is increased from 0 to 0.125, the peak in the
specific heat c��� shrinks, changes shape, and vanishes,
indicating the destruction of the phase transition. The
upturn in the effective coupling Jeff��� (i.e., where Jeff

begins to deviate from zero) is a useful indicator of �c �
1=Tc; the values thus obtained are in agreement with the
phase diagram in Ref. [3].

The presence of antiferromagnetic couplings introduces
frustration. According to Eq. (4), if the � couplings satisfy
the inequality �j2

31 � j
2
12�=�j

2
31 � j

2
12�< j2

23, the Y coupling
j1 is a complex number, due to the frustration of the ori-
ginal �. However, the partition function and effective cou-
pling Jeff thus calculated remain real, apart from small
imaginary parts (of the order of 10�13) due to round-off
error.

The method can also address Gaussian disorder and the
case of full geometric frustration (where every plaquette
has an odd number of antiferromagnetic couplings),
although errors accumulate faster in the frustrated case,
and calculations are therefore reliable only for smaller
system sizes or larger temperatures. For example, the
method is reliable for the fully geometrically frustrated
case of a triangular antiferromagnet for temperatures above
0:25~J, 0:4~J, 0:7~J, and ~J for L � 4, 8, 16, and 32,
respectively.

Having shown that the algorithm works for unfrustrated
systems as well as disordered or frustrated systems, we
now discuss its range of applicability. The bond-
propagation approach is applicable to all linear systems
[15]; this work shows that it is also applicable to Ising
models on planar graphs with no applied fields (in fact,
bond propagation still works if fields are only present at
the boundaries [13] ). This includes models used for spin
glasses, such as the �J RBIM and the Edwards-Anderson
model which chooses the couplings Jij from a Gaussian
distribution, and fully and partially frustrated Ising models.
It does not include models which explicitly break Z2

symmetry in the bulk, such as the Ising model in an applied
field or the random field Ising model. In this case, 3-spin
couplings are allowed by symmetry upon equating the Y
and � partition functions, and the resulting system of
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FIG. 4 (color online). Results for the �J RBIM on a 128�
128 square lattice plotted as a function of the inverse tempera-
ture, � � 1=T, for typical disorder configurations. The concen-
trations of antiferromagnetic bonds are p � 0, 0.025, 0.05,
0.075, 0.1, and 0.125. (a) The peak in the specific heat broadens
and shifts to lower temperature as p is increased. (b) The
effective corner-to-corner coupling Jeff becomes nonzero in the
ordered phase.
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FIG. 3 (color online). Results of bond propagation for the
uniform ferromagnetic Ising model, for square lattices of side
L � 64, 128, 256, 512, 1024 with open boundary conditions.
(a) Specific heat c��� vs inverse temperature �. The dashed
curve is the Onsager solution. (b) Effective corner-to-corner
coupling scaled by system size, L2Jeff���. The crossing point
indicates the transition temperature.
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nonlinear equations for the coupling constants is
overdetermined.

The method can be applied to any lattice which is a
planar graph [16], including square, triangular, honey-
comb, and kagome lattices, and even Bethe lattices and
quasicrystals such as Penrose tilings. Such lattices can be
reduced to or embedded in a square lattice by propagating
out ‘‘effectively diagonal bonds,’’ by inserting zero bonds
or infinite bonds, and/or by duality or Y-� transformations
(see Fig. 5 for examples). The bond-propagation algorithm
requires open boundary conditions in at least one direction
in order to have a ‘‘free edge’’ at which propagating bonds
can annihilate. Therefore, the algorithm can work with
open boundary conditions in both directions, or cylindrical
boundary conditions (open in one direction but periodic in
the other), but not a torus. Cylinders with skew-periodic or
helical boundary conditions may be used as well. The
bond-propagation algorithm can also be straightforwardly
adapted to infinite strips, as in Refs. [3,4], and used to
compute correlation lengths and free energy densities in
that geometry.

Our algorithm is also interesting in a mathematical sense
because it is not a generalization of one of the exact
solutions of the uniform Ising model (such as the
Onsager, Kaufman, or Kac-Ward solutions), nor does it
require fermion or dimer mappings. We believe that the
existence of a Y-� equivalence for Ising systems, along
with the fact that planar graphs are Y-�=�-Y reducible, is a
simple indicator of the ‘‘hidden integrability’’ of 2D zero-
field Ising models which is responsible for the existence
of seemingly unrelated exact solutions. It is interesting to
note that graph-theoretical methods have been used in a
parallel body of work on zero-temperature RBIMs (e.g.,
Refs. [17,18] ), and are restricted to 2D zero-field systems.

In conclusion, we have developed an algorithm for
solving 2D Ising models with arbitrary bond strengths on
planar graphs. The algorithm is a direct extension of the
Frank-Lobb bond-propagation algorithm for resistor net-
works [1]. It is able to reduce an Ising lattice completely
using a sequence of local transformations, thus allowing
efficient, numerically exact computation of the partition
function and correlation functions, without relying on fer-
mion or dimer mappings. The method requires negligible
memory beyond the O�L2� required to store the bond
strengths, and takes O�L3� time in general, and only

O�L2 lnL� for diluted models near percolation, for which
it is the fastest method to our knowledge. Parallelization is
straightforward and can reduce the required computational
time to as little as O�L�.
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FIG. 5. (a) Reduction of a triangular lattice to a square lattice;
(b) embedding of a honeycomb lattice in a square lattice using
zero bonds (dotted lines).
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