-216-
CH.4) SUSYGUTS

4.0. Introduction. Spontaneous Symmetry Breaking

Finally, before we begin our study of the SU(5) model, let's discuss

the spontaneous breaking of SUSY and gauge invariance. In general since

{ana&} = zczapu (4.0.1)

we have for a =1 = &

QQ; + 3,0, = 2(25*2,) (4.0.2)
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[}
Re

and a = 2
QQ *+ Q0 = 2(Fy7Fy) - (4.0.3)
The Hamiltonian is given by

| 1= - = =

Thus H is the sum of squares and is non-negative, i.e. <le]w>.z 0 for

all states |w>. Further the supersymmetric vacuum, being the lowest energy

state, has zero energy <O|H|O> = (0, it is supersymmetric because <O|H|O> =
implies Q|0> = 6|0> = 0. Vacuum states with positive energy then must
break SUSY spontaneously.
We saw in the W-Z model that the potential of the theory V ~ FF.
This is true in any chiral model with fields ¢i
= P + St &
T zideq>iq>i + Amijfds¢i¢j Amijfdsq;id;j + gijkfds¢i¢j S
+ g . /d53.5.9 £.7dS3. + £ £dS
gijkf ¢i¢j¢k + if ¢i if S¢i . (4.0.5)
Then
+
v = 16z;FF, (4,0.6)
where
.f.
= + + .
16ZiFi 4fi 32mijAj 12gijkAjAk (4.0.7)
[no summation over i]
+
Thus the supersymmetric vacuum corresponds to the case where <Fi> =0 = <Fi
The vacuum values of <Ai> = a; must satisfy the quadratic equation
0 = fi + 8mijaj + Bgijkajak

(4.0.8)

0
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given the parameters m, g, f for a supersymmetric ground state. If we
can arrange the parameters f, m, g such that no solution exists then SUSY
is spontaneously broken. The action can be rewritten in terms of shifted

fields A, A, + a,; F, - F, + v,
1 1 1 1 1 1

4
Ir+T-/d x [ZgijkviAjAk + g8 Vil - bg . . aiAjFk + h.c.]

ijkT1i7j ijk (4.0.9)

and we see that the scalar and pseudoscalar fields have a mass shifted
from that of the fermions.
The O'Raifeartaigh model is the simplest such example of no solution

existing. It consists of 3 fields ¢0’¢l’¢2 and f m

o= frmy=my; =m,

8011 = 8101 " 8110 " &’ all other parameters = 0.

We can also consider the potential in gauge models to find solutions
that (1) break SUSY but not the gauge inv. (2) break both gauge inv. and
SUSY (3) break gauge inv. but not SUSY.

Let's turn to our U(l) case to be specific,where we now study
these cases. We allow a term linear in V in the action (since the gauge
group is abelian this is both guage and SUSY invariant; but parity

non-invariant since V is a pseudo-scalar). The potential can always be

written as

- 1.2 ¥ ¥ (4.0.10)
vV = +64Z(2 D7) + 16Z+F+F+ + 16Z_F_F_ V)
where
_ -t +
64ZD = 4g[Z+A+A+-Z-A_A_] + d (4.0.11) 7
and
1..
Z+F+ = mA_
(4.0,12)
ZF = mA
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with

SQED , & rawv .

16 (4.0.13)

Now SUSY remains unbroken only if V= 0 -+ <D> = 0 = <F_ > thus

2
z |<a>|" =z |<A_>|2 +d =0 from <D> = O,but <F,> = 0~ <A > =0,
thus as long as d # 0 SUSY is spontaneously broken.

We can rewrite the potential in terms of the scalar fields to find

2 Z.Z 7 7
= 4 16 2 *- t, 16 2 + - +
VoS Tz tz ot gsezoedl A7 Z, [m” - 5567 8d] AA_
8Z o4 AR .0.

Hence we have two cases

Z Z Z Z
2 %7 2 4z
m > gz 84 or m < oo

gd .
First is

2,2_
2562

Thus = 0 minimizes the potential since it is a sum of squares and
P

2

m > gd .

<D> = d/64Z.

Then Ai have real masses with equal but opposite splitting while the wt
remain at mz. In addition the gauge boson Vu and the gaugino A remain
massless, however for different reasons, the Vu still mediates the unbroken
U(l) gauge interaction, so it is massless; while the A becomes the
Goldstone spinor associated with the spontaneous breakdown of SUSY.

Recall the SUSY transformation of X:

= i + ...
QA ig D
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Thus

<0|Qrj0> ig <0|D|0> + ...

d
it gz

So Q!0> # 0 and X is a Goldstone fermion since it transforms inhomogeneously
when <D> # 0. Once again whenever the auxiliary fields, in this case D,
develop a vacuum value SUSY is broken.
z,Z_
Next we can consider the minimum of the potential when m”~ < 3562 gd.

Then we find

Z2Z 2
oV _ 1_6_ 2 _+ - -f- +
A L [0 + osgzedl & + 77 (2 AA-ZAATzZA  (4.0.15
'+
= 0
and
2.2 2
Vv _ 16 += _
A Z [m™ - 5¢7 8d] A [Z+A+A+ Sz AATZA (4.0.16)
= 0.
242 ZE 2 2
Hence <A > = 0; <A_> = v with (" + 5z 256Z gd) + iz~ 8°Z_v" = 0 yielding

the minimum. We can now expand the action about this minimum; A > A 5

mv
A > A +v, and F, > F F_~>F_ +-Z-—,D+D+—6-4—Z-(d42vg) to Lind

the mass terms

- 4 2.2 U == - -
mass -~ ‘4 % {Az_v g Vuv 482 v(y_A=y_M)+8m(y v_+y_v_ )}
(4.0.17)
28 (4-47 2 ZAgZAA]—AZ (A +A )D}
+ g4z ez vie)lz A - gvI(A_+A_ .

Hence we see that Vu becomes massive! The U(l) gauge symmetry is broken.
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In addition V > 0 so SUSY is broken and the massless Goldstone fermion
corresponds to a linear combination of Y_ and X while the orthogonal
combination of y_ and A is massive along with w+. One scalar field will
have mass degenerate with Vu while one complex scalar will have mass v2mZ2.
Hence we have the SUSY broken when an auxiliary field gets a vacuum value
and the gauge symmetry broken when a non-singlet A-field gets a vacuum
value.

Finally we would like to consider a model in which SUSY remains
unbroken while the gauge symmetry is broken. We can accomplish this by
adding to our broken super QED model an additional neutral chiral field ¢0.

The U(1l) invariant action is given by

+gV - =gV -
¢++Z_¢_e ¢_+Zo¢o¢o]

I = =-2Z/dVVDDDDV + fdv[z+$+e

+ JdS[4mo o_+4up ] + fd§[4m$+$_+4u$§]

-3

- F= - -
1 + /dslg ¢_¢,9_+\ ¢] (4.0.18)

oOw onN

+ /aslge o,¢_+ro

d *
+ 16 favv + fofds¢0 + fofds¢o .

The Euler-Lagrange field equations are found by functionally

differentiating the action wrt each field

1) ———§£——:— = 0 > +4ZDDDDV = +g[z+$+¢+egv-z_$_¢_e'gv] + I%
8V(x,6,6)
2) S 02 DD$ = 8up + g¢.¢ + 3x¢2 + f
6¢0 o o o} +7 - 0 o
2") 8L - 05>-zDD¢ = 8us +g 8.6 +3M P+ E
e DD, b+ 8 6,0 o+ £
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= 7 ?ocegV: =

3) 59, = 0~ Z+DD(e ¢+) 4m¢_ + 8o ¢_
3 L = 0+ -z et = umi_+ g5 5

s¢

* (4.0.19)

s -7 DB(e 8% ) =
4) e 0 » -Z_DD(e ®'¢_) bmé, + go o,
4") ég— = 0~ -Z_DD(e-gV¢_) = 4m$+ + g*505+ .

8¢

The (6,5) independent components of the LHS are just the D or F fields
while the RHS are just the 8 independent A fields. 1If SUSY is to remain

unbroken the <F> and <D> vacuum values must be zero; this yields the 4

equations with <¢,> = a,s <¢°> = a,
1 *a-Zaal+-S = 0
) g[Z+a+a+— _a_a_] 6 =
2) 8upa + ga.a + 3>\a2 + f = 0
H o] ga,a_ o o
(4.0.20)
3) 4ma_ + gaa_ = 0
4) 4ma+ + gaa, = 0.
The two solutions are
1) if 4 =0 a, =a_-= 0
4.0.21
3Aa2 + 8ua + £ = 0 ( )
o o o

since ¢0 is a U(l) singlet this solution breaks neither SUSYnor gauge
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invariance,

2) if d # 0 a = -2m
o g
aa = -Xgpg -3, 48‘“2*] (4.0.22)
+ - g o g 2 : T

g

This satisfies 2-4 but equation 1 can be transformed away since 2-4 is

really invariant under the complex extension of U(1l)

o
a, +> e a

1]
[V

where o is complex, that

i
[\

a_ - eaa is the potential that determines the vacuum
has a higher symmetry than U(1l).

So if a.a_ satisfies 2 so does a;al, (1) then becomes

* . *
=(ata ) _ 1 T (ata )] +-d

Za'a' — = 0.

%*
1 1]
gl[Z a' a'e 16

+5+ %+

Thus o + a* can be adjusted so that this equation is always satisfied.
Hence this Do term can be transformed away and does not catalyze a SUSY
breakdown.

We can expand our action about these minima to find the new

mass terms, letting ¢ -+ a_+ ¢_; ¢o >a + ¢0 we find

= - 35 = gV, 1 -gV =
r = -=22/4VVDDDDV + fdv[z+¢+¢+e +Z_¢_¢_e +zo¢°¢o]

+ 1aviz, 3, (8 -1)a 4z 2} (BV-1)0,42_F_(e78-1)a +z_a” (e78'-1)0_
O

o
* gV * -gV
+ Z+a+a+(e -1-gV)+Z_a_a_(e ® -1+gV)] + {IdS[Eﬁyﬁg;o) o, 9_

2 3
+ (4u+3xao)¢o+ga+¢o¢_+ga_¢o¢+] + fds[g¢o¢+¢_+x¢o] + h.c.} .

(4.0.23)
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So we have mass for V:

2 *

- * 2
5 (Z+a+a++Z_a_a_)V

(4.0.24)

which cannot be transformed away. The ¢o,+,- mass matrix has a zero
eigenvalue corresponding to the Goldstone boson superfield. The scalar
field is eaten to give Vu a mass, while the pseudoscalar and fermion
become the new massive degrees of freedom in V. This is the super Higgs
mechanism.

For non-abelian gauge groups the situation is similar. The linear
chiral terms must be made to vanish, i.e. <Fi> = 0. When the gauge group
does not contain an invariant U(1) the linear V term must also vanish,
i.e., <Di> = 0; that is

*_a
a,T

iTi53 = 0 - (4.0.25)

4.1, Super Georgi-Glashow SU(5) Model

We are now ready to turn to the supersymmetric version of the
Georgi-Glashow SU(5) model. Recall the left handed matter fields were
in the 5* and 10 representations of SU(5). Hence the SUSY extension of
this is to put the matter fields in 5* and 10 chiral superfields denoted
MS’M10' The bosonic SUSY partners to the quarks and leptons will be
called squarks and sleptons (s for SUSY not scalar) or smatter fields. As
before we will break the SU(5) down to SU(3) x SU(2) x U(l) by means of an
adjoint of Higgs fields--again these will be a chiral superfield denoted
.¢24 with the fermi super partners to the bosonic Higgs fields called shiggs

fields. Since we have only trilinear pure chiral or pure anti-chiral
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monomials in the action we now need both a 5 and a 5 of Higgs chiral
superfields in order to make the necessary matter field Yukawa terms. We
denote these He and Hé.

0f course we also have the super Yang-Mills field V in the adjoint
rep. of SU(5).

The most general SU(5) and SUSY invariant action made from these

fields is given by

SSU(5) _
r = rym I+t Iy (4.1.1)
with
r o= % jas W ] + % rdS Tr[ﬁ.ﬁ&] (4.1.2)
ym 2 a 2 & .1.
g g
where
g +ngT§
W = DD[e De 27
a a
(4.1.3)
_ +ngT: _ —gvng
W. = ople 2°D.e 27
a a
and Ti is the adjoint representation matrix for SU(5)
ce _ a,c.e _ a,e.c
(T3 (T g5 = (To) 8¢ (4.1.4)
with
ajc _ ac _1 ac
(Tb)d = 6d6b R 6b6d (4.1.5)

the fundamental representation matrix. The kinetic energy actiomn is

-gVoTp Vg
I = JdViZygMee Ms + Zynoto © Y10
A
Y I1 L} g 4
+ Z¢¢24 e 9oy T Zyfts @ Hy + Zy g e HS}
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with the 10 dimensional representation matrix Li given by
a,cd a,c d a,d. c
(Ll = (T8 + (TS, - (4.1.7)

Let's recall the explicit SU(5) gauge transformations to check that this

is indeed invariant. For the 5 matter multiplet we have

—igAbTa e
! = (e a b) M=
Mse c MSe (4.1,8)
and
4 +igKZT§ d _.
L] -
MS = (e )f M5 . (4.1.9)
The vector superfield Vz transforms according to
b..a . ,b.a b2 . =b.a
(e gVaTb)e - (e 1gAaTb)e(e gVa Tb)c(e+1gAaTb)d (4,1.10)
f c d f
so that
_outbmd _.yPma
' e 8Va Tb)c —d e e gVaTb o
M. als 3 5 (4,1,11)
and it is gauge invariant.
-a *h - T .
(Recall Ab = Aa » A =A".) The remaining terms can be checked

similarly, e.g.

. _ +igA-T

%4 = © 924
-t = +i E‘L - 4 1 2
¢24 e ¢24 ( . 'l )_
gy.T —igK'T gv'-T +igh-T

eP== = g PE === =¢ etc.
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Finally we have the pure chiral and anti-chiral actien

+
ry = JdsL + fa88L  with L = L . (4.1.13)

In order to list all the SU(5) invariants made from bilinear and trilinear
products of Ma, M10’ ¢24, HS’ Hé recall the decomposition of the relevant

SU(5) tensor products

5x 5 = 1+ 24

5x 5 = 10 + 15

5x 5 = 10+ 15

5 x 10 = 54 45 (4.1.14)
S x2s = 5 +45+ 70

5 x 10 = 10 + 40

5x24 = 5+ 45+ 70

10 x 24 = 10 + 15 + 40 + 175

24 x 24 = 14 24 + 24 + 75 + 126 + 126 + 200

10 x 10 = 5+ 45 + 50

Thus we must list invariants; first products of two fields; these are just

5 x 5 and 24 x 24 since only they contain singlets,

M§H5

]
HHg (4.1.15)

924924

Then we have products of three fields
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5 5 24 M§H5¢24 , H-H 594

5 5 10 : MMM M_Hngo , HéHéMlo

5 10 10 M, oM, oHs (4.1.16)
27 24

In order to eliminate terms which mix HS and M3 we also choose T to be

invariant under the discrete symmetry M3 - ME’ M10 10 all other fields
being invariant. Thus we find only

HeHs, 994924

3 (4.1.17)
1 - .

HE 994 Hs o MaMy HE oMy oMy gl 054
so

L= B 26 Phumrud+ens 2o 6

2 %24 b %26 a7 M52 T Y%24 b %24 ¢ %24 a
' b - ab " ab_ cd e
A guBEa00y b Hs + YooMs My b KT e MM, TS
(4.1.18)
4.2. Spontaneous Symmetry Breaking of SSU(5)
We now desire a breaking scheme of the sort
%24
Super SU(5) 16 —* Super SU(3) x SU(2) x U(1)
M =10 GeV
X
Explicit but soft H .H!
SUSY breakin 5°
1 Teo— SU(3) x SU(2) x U(1) 5 (4.2.1)

M_ * 100 GeV
w

SU(3) x Uem(l)
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Since the breaking of SUsY will be soft;
that is we will give explicit mass terms to the supersymmetric partners
of the matter and gauge fields of the order of MS * 1 TeV. This does not
violate the higher energy no renormalization theorem of SUSY since the
breaking is soft. 1In addition in order to catalyze the electroweak
breaking a non-positive definite mass squared term for the Higgsofields
is also added. All of these terms are SU(5) invariant. shiggs masses are
not added, in order to keep the SUSY softly broken (sguage fields are
acceptable!). Their mass is obtained from the supersymmetric breaking of
SU(5) by a natural fine tuning. So we should also add to I' an explicit SUSY

breaking piece Pb.

b - a_

T 2

2 2-2.,=2 o a,,=2_ b 2= a,, 2=a.b
M fdve B[ (D D“vb)(D DV )+(DDgVp) (DD7V)) ]

2 2-2. =

8 10MI6 (4.2.2)

Z2. .= 200222,
T Bgitylly + oM FaVe S H My K5

+ bMideGzé M=M_ + cMiIdVG

55
+ szfdve2
The first term is just a Xz + XQ mass term while the rest are AA' masses.
Let's first rewrite T in terms of SU(3) x SU(2) x U(l) fields and
shift by the large ¢24 vacuum value to check that SUSY is unbroken, but that
SU(5) is broken down to SU(3) x SU(2) x U(1l).
Recall the SU(3) x SU(2) x U(l) decomposition of the SU(5)

24, 10, 5, 5 from our previous work.



-230-

r yab
RS N il i B!
/30 % 3
N O
/30 % 3
T L R
/30 X 3
0 3H
H H u E,_8B gt
51 ) X3 2 /30
0 3H
H H H u S S}
1 Y2 Y3 2 /30
L o
(4.2.3)

where HB is a (1,1,0) and HO is the neutral field in a (1,3,0), and these are

chiral superfields. So once again we give ¢24 the vacuum values

<

<0[s,,]0>

[_ 2. %.E]V (6.2.4)

. V30
i.e. <0|HB[0> = -5 v
<0|H0|0> R | £V ; £ <<< 1. (4,2,5)
V2
The 5 of Higgs can be written as
Hl
2
5 (4.2,6)
HE = |H
3 +
¢
)
¢




-231-

i 3 1,2,3 1 *
with H™ and ¢° chiral superfields and H"’"’~ being a (3,1,- 3) and [¢o} a
¢
(1,2,+-%). Hence H5 will have the vacuum value
()
0
0
<0lH.|0> = |0 i.e. <0]¢_|O> = Ly
5 o J2 ©
0
(4.2.7)
v v =~ M .
_o o W
k/z_)
Similarly the 5 of Higgs can be written as
(0 )
1
L}
2
H' = {H! (4.2.8)
3 3
a -
0
U
\¢ 4
: 1 + a l ¢- a5 l ' .
and again H is a (3,1,+ %) and a (1,2,- ). So H' will have the
1,2,3 3 ¢o 2 3
vacuum value
(0 3
0
<olu'lo> = |o ie. <0le'|0> = —= ¢ (4.2.9)
5 ° vz °
0
v! v ¥ M
o o W
V2

-
[N

For energies large compared to Ms we can neglect the SUSY and
electroweak breaking terms and ask if v can be determined so as to keep SUSY

good; that is the linear F and D terms should vanish in the shifted action.
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For the F terms we need only ask if the linear terms in L vanish. For the
D term the linear term in.IK must vanish.

First the F terms, we must have

oL = = c '
1) aS + 56 D 0 m¢24b + 31¢¢24c¢24b + A¢ H' H5 + adb
5b
24a
<@p4>7V

all other <>=0

a
2) ¢24a =0
.& = = f ' b b de
3 a 0 W+ A¢HH %242 * T mnCabede10m 100
BHS 5a
<¢,,>=Vv
24
all other <>=0 (4.2.10)
oL - - b ba
4) ' = 0 uH + X¢H¢243H + YmnM— MlOn
T Smb
S5a
094”7V

all other <>=0

Since M_ and MlO are chosen to have zero vacuum values their linear terms
5

are trivially zero since they appear bilinearly in I'. Also for high energy
(> M) we are setting v_=v' = ¢ = 0. So <H_.> = <H'> = 0, hence only
s o o 5 5

equation 1 is non-trivial;

a
0 = m<¢24b> + 3)\(<¢24><¢24 )b + a5 (4.2.11)

where the Lagrange multiplier o can be eliminated by taking the trace -

= =3
o = 5 >\¢Tr¢24¢>24 . (4.2.12)
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So letting <¢24:> = vg we have
_ ac 1.,a cd
0 = mvy + 3A¢[chb 5 5b 2\ (4.2.13)
For
rv -
v 0
ve =
b v .
3 (4.2.14)
0 —EV
_3,
\ 2 /
this reduces to one equation
o + 34 [ve - 22 B = 0 (4.2.15)
$ 5% 2
with the simple solution
- 2m
V.7 3% ¢ (4.2.16)
¢
The linear D term is given by
- _ b d,rajce f _
¢24 Z:l:¢24 = Vavc(Tb)dfve = 0. (4.2.17)
\;\T\d?_\'
Since T: is antisymmetric A 2 (c,d) (e,f) interchange, this vanishes. Thus

we have that at energies > Ms , thesupersymmetric SU(5) theory is broken
down to a supersymmetric SU(3) x SU(2) x U(l) theory. We can next ask

which fields get a large mass as a result of the v ~ MX breaking. The
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mass terms in L become

H'vH

m
= - Tr¢,,¢,, + pH'H, + 3 ! .
2 24724 5 5 5 (4.2.18)

Lmass 5 ¢Tr¢24v¢24 + A¢H

Recall that ¢24 and HS,H: can be expanded in terms of SU(3) x SU(2) x U(1)

fields, so that

_ . + - 0.0
Tr¢24¢24 = TrHH + ZH;HX + 2H§Hy + HBHB +2HH + HH (4,2.19)
and
- 21 21 21 - st - 3 goy°
Tro,,V0y, = v{TrHH 3 H;Hx 5 H§Hy 5 HpHp - 3H'H > HH Yoo,
(4.2.20)
Thus the ¢24 masses become:
By 3\v| TrHE = 2 nTrHH
2 ) 2
B_3,vlpn = -2
2 ~ 2 A¢V)HgH 2 Hyfy
(4.2,21)
(m - 9A¢v] HH = -SmHH
m_9 0.0 _ 5 ..0.0
{2 -3 xov}H B = -JmiH

= 0.

N
=]
i
Nlw

A v][H H+H H ]

¢ s 3 y

As necessary since SU(5) is broken down to SU(3) x SU(2) x U(l) we have
24 - 12 = 12 broken generators (the X,X,Y,Y) and hence 12 zero mass
Goldstone bosons HX,H_,H ,H_. Since SUSY is good these complete chiral
X y

superfields will be eaten by the X and y gauge superfields according to

the super Higgs mechanism turning these into massive vector superfields
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(recall the scalar Goldstone bosons are eaten by the ordinary gauge

fields Xu,iu,Yu,fu making them massive while the pseudo-scalar bosons and

Weyl spinors in H _ — become the new massive degrees of freedom in the
X, XYY

now massive vector superfields). The remaining 12 Higgs super-mesons are

extremely massive (m * Mx) as required since H; will lead to proton decay.

The 5 and 5 Higgs mass terms become

HH, = H'H+ ¢ +¢%° (4.2.22)
5
and
3 + -..,0,,0
H%vHS = VE'H-35v (¢ ¢+ ¢") | (4.2.23)
so that the masses are given by
)
(u+>\¢Hv)H H
-3 tom 004 ° 4.2.24
(= 5 AW (870 +78"%) (4.2.24)

Since H and H' carry color and couple directly to the matter fields they will be
(predominantly) responsible for proton decay hence we have (p+A¢Hv) the

order of Mx' On the other hand ¢°,¢'° will be responsible for electro-

weak breaking and should have a small mass (0 at this scale of energy > MS)

and so we must ''fine tune" the parameters of our model so that

o ='% X¢Hv. This tuning is technically natural since SUSY is a good

symmetry at these energies and the 'mo-renormalization" theorems imply that

there are no radiative corrections to this relation and hence it stays

tuned.
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As we lower the energy the Ms explicit SUSY breaking mass terms will

become important. These will serve to

1) give the s-matter fields a higher mass than the matter fields
2) give the s-gauge fields a mass.

3) give the weak Higgs bosons the correct negative mass squared to
catalyze the spontaneous breakdown of the electroweak group; in

this sense Mw is determined by Ms; the order of SUSY breaking.

Once SUSY is broken (at energies < Ms) the SUSY no-renormalization
theorems no longer hold and there are low energy radiative corrections to
the effective potential, i.e. masses now receive O(aMS) corrections. In
order not to violate the naturalness of our fine tuning and gauge hierarchy
this aMs should be O(Mw); hence the reason for choosing MS z 1-100 TeV.

As usual the low energy masses are given in terms of v, and v; as
previously (and € giving the full potential minimum).

Finally let's estimate the proton decay and sinzew and mb/mT ratios

predicted in this SUSYGUT.

. . . 2
4.3. Unification Mass, sin’f_, mb/mT.

Since SUSY puts fermions and bosons on equal footing we will need the

RGE B function eq.(1,2.94) with scalar field loops included; it is

3
- -8 (i B |
8 2 [5= Cp(0) - 5 Tp - 5 T] (4.3.1)

where recall CZ(G) is the quadratic Casimir operator (C2 = N for SU(N)).

-1 1]
TFGij =3 Tr(T'T") (4.3.2)
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where we sum over all fermi representations (if Dirac fermions sum over both
left and right handed representations, while if Weyl fermions only count wa or

W& once, not both (these are Majorana fields)). Similarly

- ipdy
T 8y5 = Tr(T'T) (4.3.3)

where we sum over all scalar field representations, For each super Y-M
field we have an ordinary Y-M field in the adjoint rep. as well as a corres-

ponding susy partner Weyl gaugino in the adjoint rep.,. These contribute to B
11 4 1 1 . .

[3 Cz(G) -33 CZ(G)] = 3C2(G) where T = 3 CZ(G) for the adjoint rep. Weyl

fermions. For each chiral superfield we have a Weyl fermion and a complex

scalar in the same rep., therefore for each super matter and super Higgs

multiplet we find a contribution to B of

[e-

wle
o=

1 _ 1 1.4
T« 3T =-T, =% Tr[T°T"]

where d = the dimension of the group and the trace is summed over the chiral
superfields (i.e, for quarks and leptons this is twice the number of flavors

(=4F)). So we have for supersymmetric theories

3 . .

B = - —5—2 [3c,(6) - 2 L operrith
327 chiral
super-
fields

(4.3.4)
3
= - —3—5 [3¢,(6) - & T

32w chiral
super-
fields

We would like to apply this formula to find the supersymmetric SU(3) x SU(2) x U(1)
running coupling constants ai(QZ) and hence obtain sinzéw; M and mb/mT. Recall

eq.(2.2.11) for the running coupling constants
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2

) (22) - ;-kizs = -8wbi2n ——ii— (4.3.5)
i ix X
3 2 éiz(kz) 2 22
where Bi = bigi for i = 1,2,3 and ai(Q ) = e with Q7 = A MX .

From above we have

b3 = - 12 [9-2F]
327
by = = —5 [6 - 2F - 2 6 oforF=3
32m a, increases for SUSY theories!)
by=+— = v -—1 @rily
327" chiral 327
super-
fields

(4.3.6)
where F is the number of families and H the number of Higgs chiral superfield
SU(2) doublets, Note that the SUSY slopes bi are less than the ordinary

slopes, bO ,

i
b o=t 5 (11 --% F]
3 327
2 327
b, =+ =5 2 r+tul,
°1 327

(4.3.7)

so the a; Tun moce slowly in the SUSY case

2
ai(Mx)

a, @ =

N

I - 8na,(M2)b, n
ix 1

xz ro
N
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This coupled with a, not being asymptotically free will yield a larger Mx'
2

In particular recall we have unification at Q2 > Mx with

8= 8)= 8y = v5/3 g8 and
2

2 &1 3

sin"8 = 5 5 =3
81 + 82
aQED - gzsin 8 3
a 2 8
s g4

(4.3.8)

At lower energies these parameters run according to the general formulae (2.2.12)

Q
sinz'éW = — 1 —
a; ta,
2 2
=3+ Eysn@ b, - b L] 4.3.9)
Mx
and (2.2.16)
a a
:QEQ =— sin ©
OLs %3
3 g Q>
= 211 + E)n(3b+ 3b, - 8b,y)in ;71 . (4.3.10)

X

These, along with ( 4.3.5 ), yield

. a
L2 1 ) ) QED
sin Gw = T5%.7 3= 857 [3b2 3b3 + (3bl 5b2) —=]
1 2 3 o
2 s
M
. S S S
2 [3b1+ 3b2— 8b3] 8 - s

Q “ED s
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64

g _ 8 -
4 = T3b,+ 3b,- 85, [(3by+ 3byla -3

The strong, as, and electromagnetic,

are known experimentally at Q2

b3 aQED]' (4.3.11)

aQED’ running fine structure constants

10GeV2 as

- .10
aQED(O) ~ 137

®QED ~

and

o

—QED - o,

a

s
_ 2

Let's calculate sin ew, Mx’ %; in our ordinary SU(5) and SUSY SU(5) GUTS.

Recall we have 3 families in each case, F = 3, but in the ordinary SU(5)
GUT we only have one light Higgs doublet, H = 1, which gives the quarks and
leptons their masses. However in the SU(5) SUSYGUT we needed two light Higgs
doublets, H = 2, in order to make the necessary Yukawa coupling and hence

mass terms since we have only tri-linear pure chiral superfield interactions

in the supersymmetric Lagrangian; these light doublets were contained in the

SUSY SU(S) fields H, H! .
5 .
For.the ordinary SU(5) GUT we have
a
N 5 1 QED
sin®® = [g+ 378+ G - 195 W) - ]
2 _ s
M a
x _1l6n 1 3 QED
&n —5 = oo [z - ]
Q2 33 - 8 3
QED s
2.3 4 d -4 op o+ 1+§F+l—m&s ]
4 - %Ep '3 Y37 99 37 99 66 )
%QED

(4.3.12)
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Putting in the numbers we find

sin"® = 0.20
_ 15
Mx =4 x 107 GeV (4.3.13)
g L
47 15
for the ordinary Georgi~-Glashow SU(5) model.
For the SUSY SU(5) model we have
a
sin2§ -—1 [1 +~l H+ (5 - E) —QEQ]
LA 1 q 6 6" -
3 a
3 s
2 -
Y . 16n 1 .3 “omp
En—z"' 3 _ [—8_-_ ]
Q 27 +-E H aQED aé
g 1 - 64, 2 6 .1, °
T o Igp%e 3Rt (24T g ]
+ < H a
3 QED
(4.3.14)
Putting in the numbers we find
sin“8_ = 0.23
w
M =2x lO17 GeV
X
g .1
im =35 (4.3.15)

As expected the SUSY quantities are all a bit larger. Since the proton
. . . A 4 ..
lifetime Tp is very sensitive to the value of MX; Tp ~ Mx, this increase of
Mx - 10t/ GeV will result in Tp > lO38 yrs., totally undetectable. However, as

we will see, Tp - Mi for direct X,Y boson exchange graphs; for SUSY theories
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the predominant decay mode will be through Higgs exchange which can result
in a rp ~ Mi (supression factors). We can pictorially represent the

running coupling constants as

L

«, | ;

1

|
|
| -

* - >
MW M S (M)‘\Qu-r (M"‘SSUSY &UT /Q/“ Q

The RGE analysis can also be applied to the fermion masses (see e.g.
M.B, Einhorn and D.R.T. Jones, Nucl, Phys. B196 (1982) 475) to find for the

SUSY GUT case

o ) [as(Zmb)112/33 [&s(mt)]4/7[as(mw)]8/9

m - - 2
T as(mt) as(mw) g /4n
while for the ordinary GUT case we had

12/23 as(m ) 4/7

] [——E]

m A
T as(mt) g2/4w

m
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These yield

=, m,

ﬁi—) = 1,09 ﬁi—) ’ (4.3.16)
T SUSYGUT T GUT

not much change.

4.4, Proton Decay

Finally we would like to estimate the proton lifetime within the
SUSYGUT. SUSY requires the existence of scalar partners for the quarks and
leptons and fermion partners for the Yang-Mills fields; we can use these
fields to allow the proton to decay through dimension 5 operators. Consider

a graph of the form

H, y W | (4.4.1)

[ T 5

The matter superfields M_, MlO have a Yukawa coupling directly to the chiral
5
2,3

Higgs superfields HS’ Hé . The exchange of colorful Higgs fields Hl’ >~ and Hi 2.3

results in baryon number changing processes with effective dimension 5

operators:



L

"i\f;,\\(

My (4.4.2)

: N

where the Yukawa couplings will be related to the masses of the different

flavor quarks meeting at the vertex divided by the weak interaction scale, mw
The scalar quarks, sq, and scalar leptons, sf, can then interact via a super
gauge Yukawa coupling with the strength of the SUSYGUT coupling constant, g,
with their fermionic quark and lepton partners and the fermionic partners

to the Yang-Mills fields

h— % | s |
<Z | _— ‘V%z; (4.4.3)

QKE ? Q E g% 46

This gives another effective dimension 5 operator with mass scale set by the

mass of the exchanged fermion, mSz in the case above, which goes like the SUSY

breaking scale. Putting this together we find, for example, the proton decay

¥ Y =
W SV b

+ -+
process p -+ vK

T

———— <z

d( SIS < (4.4.4)

U - 2Ny
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This amplitude goes like

g2 mSmu
Mo ( 5 ) I (4.4.5)
X sz m

Hence the proton lifetime can be guestimated to be

M2 m2 m2 2
T2 - — 1 SUSYGUT sz ( w ) . (4.4.6)
P o 5 msmu
SUSYGUT mp

Comparing this to our ordinary SU(5) GUT proton lifetime we find

2

o M m m
2 2 2
(t )gyey. = Gor——) (B SH SV 2 oy L (4.4.7)
P T YgusYGUT M mm, p’GUT
GUT GUT
With
@~ 1 TeV m =102 m,
SZ u
2 -1
m =~ 10 GeV m = 10 GeV
w S
17 14 .
and MSUSYGUT = 5 x 107 GeV and MGUT = 3 x 107 GeV this yields
(t) - DX 10 103)"%104 Y2t ) - (1) (4.4.8)
p’ SUSY- 15 14,2 -4 p GUT p GUT’ T
e (3 x 107 10

The proton lifetime in SUSYGUTS is about the same as that in ordinary GUTS

even though baryon number is changed by dimension 5 operators in the former and
dimension 6 in the latter, The branching ratios of the various decay modes, however,
will be qﬁite different. SUSYGUTS yielding strange meson decay modes as dominant
over the pion decay modes, opposite that of the ordinary GUTS. For further

details and additional applications of SUSY in GUTS (and beyond) see for example

ref. (5a) J. Ellis, CERN Preprint TH-3174.



