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CH. 3. SUPERSYMMETRY AND SUPERSPACE

3.0. Introduction

One technically unaesthetic aspect of the grand unified theories
in general is the fine tuning problem. As we mentioned earlier, super-
symmetry provides a means of solving this hierarchy difficulty due to its
improved ultraviolet behavior; there are no quadratic divergences in
supersymmetry. Before extending the SU(5) Georgi-Glashow model to make
it supersymmetric, let's review the structure of supersymmetric field

theories and in particular introduce the methods of superspace.
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3.1. Supersymmetry and superfield, superspace techniques,...

Before introducing supersymmetry, let's first recall some
properties of the Poincaré transformations and SL(2,C) spinor representations
of the Lorentz group. Poincaré transformations consist of a Lorentz

transformation Ai and a space-time translatiom au;

'Y = At x¥ + a¥ (3.1.1)
where the interval d52 is left invariant

d52

dx'Mg dx'’ dx% daxf 1.
X guv X xg o dx (3.1.2)

B

o, u v, B
dx AaguvAde

hence

A“g

wg - MaBuuhp (3.1.3)

aQ
|
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with the metric

uv

(3.1.4)

The Poincaré transformations form a group with the product of two

transformations (Al’al)(AZ’aZ) being.equal to another transformation (A,a)

with
L R
Av AlpAZv
L (A
a Al\)a2 + al

(3.1.5)

As usual we can define contravariant and covariant tensor fields according

to their Lorentz transformation properties

T'gl,,.u My By VpeeeV

-lvl -1v
! x") = A eeoh N v (x)
H1orHa M1 |G R
for a covariant rank n-tensor field and
AR Hy u _181 —an Upeeet
T Tx') = A oA TAST e T )
Y1°*Vn 2 %V n "1 "n

for a mixed (m,n) tensor, where

w-lv
AvA o 8 0 °

(3,1,6)

(3,1.7).

(3,1.8)

(3.1.9)
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Note that v'“w; = ATV

[}
O
©
<
=

o)

I

<
=
=

is a lorentz invariant. We can define the contravariant metric tensor
uv .
g~ as the inverse of guv

Mg = ¥ (3,1.10)

Note that g = ATgA implies that

[ = -1o -18 -
v Au Ay Bag Buv (3.1.11)

and similarly g'uv = guv; the metric tensor is invariant.

Then for every contravariant vector there is an associated

covariant vector, and vice versa, obtained by lowering or raising an

index with guv or guv. That is if

AL ASVV then
\ =g vV is covariant since
u uv
Vi o= g V'V = AP
H guv gUV p
but
v ~-18
A = A
guv o] U gSp
-18 P
vy = A \Y
s u u 8gp
' ‘18 . .
hence Vu = Au VB s the transformation law for covariant vectors,
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Using this notation to define A =g A% etc. we find
uv poo v

A¥p , that is aiv o Ty v (3.1.12)

W

For infinitesimal Lorentz transformations As = 63 + w" then
v

H, U v, V . . .
g (6"+uw)g V(GB wB) which implies that

afB

(3.1.13)
w +w = 0
uv Vi

that is wuv is anti-symmetric. The fundamental vector representation of

the Lorentz group is then given by the coordinate transformations

"™ = M+ MY
v (3.1.14)
u (DS Qv u ws. Qqu_V
= = = + =2
x" + 5 [TB]vx X 5 [DB]vX

where here we use DZ instead of T:

the internal symmetry generators. Thus

as we had been using previously for

o\ U 1P T 1+
(DB)v 686v g ng

or

o*) = aﬁaf‘)— §%s so Dp* = pBe |

B afB 8o
uv v

a
N
From this vector representation we can obtain the commutation relations

for the Daewhich all representations of the Lorentz group must obey:
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UV PO UV\Y PO _ PONY nHV
(2,0 @ T - PHTM)

B

vV UY U VY .0 0.0 PO UV
- -— - D
(Gag §.8 )(Gyé SYGB) .( D )aB

UO (VP_PVy _ HP VO O Vy VO UD_PU
g («saa8 saas) g (saa6 aaas) g (sasB 5a53)

+ g7 (8hs5-66h)

HOPPV_ HOpOV_

= [g

g g "

Thus the defining commutation relations are

[DU\)’DDO'] = guDD\)O'+g\)O- up

[o Q)
D _gu D P_

VO HO
g D (3.1.16)

For a general tensor field we can find its Lorentz representation matrix

in a similar way. Consider

Hqoooll BaVq  HqV V. u_v
ey s gt et @ P e YT L ()
) v
1 n
u nopv
=T ' HOR z o iT v (x)
i=1 HyserVitooHy
Hqooold ® n ag; Bv, ov, Bu.
1 i i i i
=T "G +32 7 g g -5 g ]
i=1

(3.1.17)

Thus using the notation (p) = u seely we have

1

w
Ty - Wy = _gﬁ (DaB)(U)(V)T(v)(X) (3.1.18)
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where

V1 auy Bvy avy Buy Hn¥n

n H
(DaB)(u)(v) = J g 1 g g +g g l...g . (3.1.19)

i=1

a8y () (V)

As in the vector case the (D obey the Lorentz group commutation

relations, In general, the difference §T(x);

T'(x")-T(x) = 6T(x) , (3.1.20)

is called the total variation of T. The intrinsic variation of T is

defined by

ST (x)

T'(x) - T(x)

[T'"(x")-Tx)] - [T'&")-T'(x)] (3.1.21)

§T(x) = [T'(x")-T'(x)]
Since these are infinitesimal variations
P = M+ sxM and T'(x'") = T'(x) + dxuauT(x) . (3.1.22)

So

ST(x) = &T(x) - GxuauT(x) (3.1.23)

For a Lorentz transformation
“g B 8
<M o= xM+ oM%Y = kM4 za [gu gva_guagv ]Xv . (3.1.24)

(w)

So for an n tensor T

w
st _gg By WO _ g(u)(v)(xaas_xsaa)}T(v) . (3.1.25)
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Thus we define the differential (angular momentum) operator "V as

wvp (@) o i[(xuav_xvau)g(a)(B) _ (Duv)(a)(B)]T(B)

uv, (a) (B)
M™ T(B) . (3.1.26)

Again we check that

VM%) = (1) [gHPM Y 0+g VOMHP g NP g VPN (3.1.27)

Thus we can represent the Lorentz group by finite matrices p*V and by
(a)

space-time differential operators acting on tensor fields T .

Similarly we can consider infinitesimal space-time translations

u <M+ ¥ (3.1.28)

Then for translationally invariant fields T'(x') = T(x) we have

ST = -e“auT = +ie“PuT (3.1.29)

that is the momentum operator

Pu = iau (3.1.30)

represents the generator of translations. Thus for any representation

of the Lorentz group M"Y we can calculate the commutator of PA with it:

VP = ippgVr-pVgtt . (3.1.31)

Along with [Pu’Pv] = 0 these three sets of commutation relations define

(w

the action of the Poincare group on fields T .
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As usual the field obtained after a finite Poincaré transformation

is obtained by exponentiation. For translations x'" = x* + a" we have
ia¥ n
T'(x) = lim (1 + — Pu) T(x)
n-e o
+ia¥p
-a“a
= e H T(x) = T(x-a)

(just the definition of a translationally invariant field). Thus for the
action T = ifdxL(x) to be invariant under the Poincaré group the

lagrangian L must be a translationally invariant, scalar function.

For ' = XM+ muvxv + a* (3.1.33)

sL = 0.

This symmetry yields the conserved currents ™V the energy momentum

uvp

tensor and M the angular momentum tensor.

Consider x'" = x* + au, so

L = -a”auL (3.1.34)
but
L = L[¢,au¢]
So
_ bl , Ol 3
sL = 50 S¢ + .9 83 ¢ (3.1.35)
Now
$ = ' - = "(x)- = 3 8¢ , (3.1.3
63u¢ 8u¢ (%) au¢(x) Bu(¢ (x)-¢(x)) au&b ( 6)

the intrinsic variation commutes with derivatives, while the total

variation does not,
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with
36 = -a
¢ a 3u¢ .
So
=, _ oL < al <., _ 3L | =
SL = 35 06+ Bu[33;$ 8¢] - (3 33;3) N (3.1.37)
However the Euler-Lagrange derivative is
_ oL _, L
E(¢) = 3~ %L 5.3 (3.1.38)
giving
- 3L = -
L = 3 [ &¢] +E($)&¢ (3.1.39)
u 33u¢
= -a's L
M
This yields
ad [ 2V%- g™ = -a E($)3% (3,1,40
v ou 88u¢ v (3.1,40)

We define the energy momentum tensor as

al
™V = _3—3——3 avcb - guv L (3.1.41)
H
and
auT“” = -E($)3°¢ (3.1.42)

upon application of the field equations the Euler derivative vanishes and

the energy-momentum tensor is conserved

sy ™ =0,
o
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To summarize, the Poincaré group is defined by the algebra its
operators Pu’ the energy-momentum operator, the generator of space-time
translation, and Muv’ the angular momentum operator, the generator of

Lorentz transformations and space rotations, obey

[Pu,Pv] = 0
[Muv’Pk] = l(Pugvk-Pvguk) (3.1.43)
= - - + -
[Muv’Mpo] l(guvao gquvp gvoMuo gvauo)

For the tensor representations of the Lorentz group this algebra is

realized by the intrinsic variations of the fields as

P 1@y = 13 T (x)
H H (3.1.44)

(o) (a) (B) (2) (B)
MUVT (x) -(Duv) IT

(@ (8 _ o L T

where (a) = a g - s

th
10" % for an n rank tensor,

and

n a4 B uB, va, VB. ua, a_B
(Duv)(a)(B) - z g 1 l...[g 1g 1_g 1g :L]“.g nn ,
i=1

(3.1.45)

is the matrix for the finite tensor representation of the Lorentz group

where the DM obey the algebra

D"V, p°%] = gMPDVT _ gHOpVP 4 GVOpHP | JVPpHT (3.1.46)

(a)

The transformations induced in T when finite Poincaré trans-

tH H_v u

formations are made x = Avx + a” are obtained by exponentiating the
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operators with NU“(A) the finite angles of rotation defining A
v

Qq-.o0t o o Bi..-B.
T o= 1"’A np T l(x—a))
Bl Bn
+iabp - _ﬂ*l)i\g.A)Muv (o) (8) (3.1.47)
= H 2
) ) T® .

The tensor representations are not the only realizations of the
algebra possible~-there are also the spinor representations.

Thus we have obtained the tensor representations of the Lorentz
group. The 2 x 2 complex matrices with determinant 1 form a group called
SL(2,C) and we will represent the Lorentz group by the action of these
matrices on two-component complex spinors, To obtain the relation of the
Lorentz group to SL(2,C) we must first recall that there exists a 1-1

correspondence between 2 x 2 Hermitian matrices and space-time points.

The Pauli matrices

o o ) 1 _ o1
©Is T o 1] R RO A I o} .
- oo ao
~ (3.1.48)
2 _ o -1 ) 3 1o
(o )ao.n - i O:I s’ (o )ao't - 0 -] .
— ada - ag

where a = 1,2 and Q= 1,2 form a basis for 2 x 2 Hermitian matrices.

Let X8 be a Hermitian matrix that is

g : b (3.1.49)
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Then it has the most general form

Xo*tX3  X17Xp

= " _
s X7y XgTX3 (3.1.50)
= xou- = Y s for x real.
TR Te] aa i
Using the trace relation for the product of 2 Pauli matrices
T
B, (1-2v.0 v,, 2 — _puV
9 (io )GB déB(lo )Ba 2g
or more succinctly
2, Tv,, 2
Trcu(ic Yo v(lc )y = -2guv (3,1,51)
we have for every Hermitian matrix Xy & an associated 4-vector
1 , 2 , 2
X = -5 Trlx(c)e (1M1 . (3.1.52)
Simplifying the notation we introduce an antisymmetric tensor eae, that
is eaB = -esa with slz = +]1 and with lowered indices
_ aB - 12_
€g = T (elz € 1)
= -EBa .

[The matrix is the same when we use dotted indices also.] That is

aB  _ , 2 - 0 1

€ (109 s {-1 O]as (3.1.53)
a8 2 0 1

H e ag - [0
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Note: ease = 6“
eaee" = 6%
By Y

Then we can define

r X 4
aB_aB U,
€ € O’88

[
—uaa
Gu

(12« oM (102
(ic )aEGBB(lc )Ba

sowe can write the trace condition as

]
oH, 5V = 42"
a0
and
l ]
H ~uaa
= o+ = g
X Z’XQ&
Note

-0, &a _ 1 0 . -1.%0 _ 0o -
(@)™ = [o 1:] , 3 = [—1 o].
o [s1e}

= +(0%): = -(cl)&
-2 &a 0 i -3 &a -1 0
@ —[_10], @ -[OH'
oo - Qo
= -(02)&a = —(03)&

We can readily derive the completeness properties of o:

- "

O'a&O' +2g
] [ ]
oo PB = 40sBsB
ad u a a

(3.1.54)

(3.1.55)

(3.1.56)

(3.1.57)

(3.1.58)

(3.1.59)



-164-

Further products of two yield

Guo avae + O'\)' -C;uaB = Zguvse
aq ad a
s . . (3.1.60)
-yaa v -vao HV . O
+ v = 2 .
g oaé g GaB g 66
B

If S € SL(2,C) with matrix elements S~ (a = rows, B = columns) and _yx a

a

Hermitian matrix; then we define the transformed matrix )} as

1, B R *Q
e Sd*BBS& .
(3.1.61)
_ll2 2.1
Since det § = SlS2 SlS2 = 1
we have
det 3 = det_yx (3.1.62)
but
0.2 1.2 2.2 3.2
= (x) - &) - -
H (3.1.63)
= XuX
= det)e' = Xl'.lxlu

Thus the transformation.

X o= SxST’ (3.1.64)
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corresponds to a Lorentz transformation Auv, that is
[
' l)€ =uaa

*R—
- %SBX .Saﬁgwa (3.1.65)

where
A= 3 oeseVsT o
that is

uv 1
Aol 2 °8°8 “vv°  “haa

fl
wn
<
wn
L ]
Q
o

i
/)
-
(%)
L]
< e
Q
<
[ ]
(o]
w
o
Remo»

(3.1.67)

]

SYS,:YOQO y or simply Aqu' = SO'\)S+
YY H

For every element +S of SL(2,C) there is an element A of the Lorentz
+
group, the mapping SL(2,C) -~ L+ is 2-1 since +S - A.
We can define spinor representations of the Lorentz group by the

transformation laws

B
' v =
b, (x") Sa¢B(X)
(3.1.68)
vy = s %P
where SSS;lY = 51 and wa and wa are two component complex spinors

transforming (as we will see) as (%,O) representation of the Lorentz
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* -
group. Similarly we can use S and (S ) 1

to define spinors @ which will

transform as (O,E) representations of the Lorentz group

o
By & = 5%
7% = (s >51“E8<x)

(3.1.69)

As with tensors higher rank spinors transform just like products of the

basics rank 1 spinors, for example

or ’
B B . B
1...som(s )(.1l
1°°""n 1" " 1 n 1

Since S is special, i.e. det S = 1 we have

2 2
-8 S 51
S o = 1 1
=S S
2 L aB
= =g eBGS Y
ay 8

L}

(s o ¢ ()

« e N X

Q"m Bl' 'Bn Bl 'Bm
(3.1.70)

. -1 T . . . s
that is § = ¢S ¢ and ¢ is an invariant 2nd rank spinor,
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with

g' = SYSGE we find

aB a By§

e' = sest = ssTle = ¢
_ ole2 $2sl. _
(Explicitly 512 SlS2 12 182 9] = ~det S 1= €19 -
so g' =¢
B af

Hence we can use ¢ to lower and raise indices of the spinors

<1
il

™

<

Re

where for example

P (x")

Gswé(xl) =
OIBSY w (x)

- aB.Y, S
€5y SBw (%)

JRAYe)

Thus we have the Lorentz scalars

“whu, &= sy e @

B

Y.B - a
GBW <x>wY(x) 1] (X)¢a(X)

[

Similarly for &aaa.
have

la, * 1v B

1@, 0y U v-v& ' - =
P (x )caaauw (x') = Sg (s );

(x)o“ 3 v <x)

(3.1.71)

(3.1.72)

(3.1.73)

(3.1.74)

Also using the properties of the Pauli matrices we

(3.1.75)



-168-

But
-la * -1q uv
SB Gua&(s )Yc A
e
_ o~la * -la,l Ve T U
= SB cuaa(s ){ (2 Tr So’S o)
la, * -la v t 56 1
= s " 'y e ghee = 3,1,76
SB (s ){ [(So’s )Gdlcua&O 5 3, )
—la, *. =10, vty 8.8
= ' [ )
SB (s ); (S¢S )655(16&
- sl sevsh)
B Y ao
BY
Thus
Py -
QO oy H A1 CQ, = a H To 3.1.77
v (x )caaauw (x") ¥ (x)oaéauw (x) (3.1.77)

that is mz@ is also Lorentz invariant.

Finally let's consider infinitesimal Lorentz transformations

' = <" + wu\)xv (3,1,78)

where now

sB = &F 4B

a a a

%8 3 *@

SOB = 660+ ZOB .
a a

(3,1,79)



-169~

Note
YO
aB sasseyé

M
]

YooYy o8, 6
(5a+2a)(68+28)eY6

[6Y68+2Y62+286Y]€

= ¢ +¢ UV +e 1!

B Y8l a8 which implies

- = 0 i ic.
zBa zaB s Z is symmetric
Now given W’ we desire ZGB; using AW = % Tr sc“st” we find
1 8,8 B, *E.~ud
v v v -uao
+ = = + * c+ »
g w 7 (cScl EG)GBB(‘SG e do
a [ 4
1 v-paa , L B v-paa ., 1 v _*B-poa
= 5 + 5 . + L e
2 “a8° 2 ZacBaG . 2 aBZa

Thus we must find a solution for

s
-y *R—
ao l Z.B uaaov

HV AY)
w s&° t3 N

= 1.8
2 Eac

Multiplying by Ou and Ev we have

s —66 uv
UYY AY
[ ]
*

- 2255§ + 2z, 859

Y
_ _% [o —66 UGG]wuv

wry 7 "oy

(3.1.80)

(3.1,81)

(3.1.82)

(3.1.83)
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*
Using =0 =1:1,% we find
a a

23 - —81_ [chYgzd va—zdl * (3.1.84)
and similarly
.
2.6 = %'[EiYOuY;_EiY vY%l W (3.1.85)

These commutators of Pauli matrices we define as

L} »
uvyB _ 1 . b =vaB_ v —uaB
(0 )0. = 2 [OG&O Oaad ]
. N (3.1.86)
-uv - 1 =paa v -vaa u.
)é = 51 - ] .
Thus
B8 -i uvy B
z = —u (¢77)
a 4 Tuv a (3.1.87)
*g 4 - uv, B
Zg 4 wuv(o )g
From our definitions of oz& we see that
U -vaB _ _uv.B .o UV B
9,59 = g éa - 1i(e"™") (3.1,88)
[ ] .
-paa v, 3 _ . THY ;
o 08 g 68 i(o ) .
The infinitesimal spinor transformations are given by
. = SB = _}_ uv
wa(x ) cpre(X) (X) ;Y (c ) w (%) (3.1.89)

w
b0 - 5 0™y 0
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and
_ *.- - - .-
wé(X') = S-Bw-(X) = w5<x) + % muv(c““)gwé(x)
N (3.1.90)
= Pe(x) - 2 ™) E5 0

Thus the spinor representation is given by

[t
~
Q
=
<
~
™

| (Duv)s = 5 : (3.1,91)
and
(buv)g = - %‘<5uv)§ (3.1.92)

and we must check that these obey the Lorentz algebra as the tensor

representations did

Hv poiB VY yPOYB _ (pPOyY pHYyB - _ 1 [ wv _poB
(™", D""] (D", @ ) = (@) (D7) z L0707
(3.1.93)

Expanding in terms of 02& we have

["Y,0°918 = 22 [(¥5%-6"5M), (P5%-0%") 15
o 4 a
VO WO _Vp, Vg Vp U0, B (3.1.94)
= _Zi[gupc _gu g p+g OUD_g Dcu ]a
Thus
v po.B e nVoyB MO Ve B VO MRy B VP nuTyB
(p™",0""1 g 07) -g (D) +g (D) -g (D)
(3.1,95)

which is the Lorentz algebra and wa is the (%30) spinor representation of

the Lorentz group. Similarly the complex conjugate dotted spinors are the

(O;L) representation of the Lorentz group with the (BUV)S also obeying the

Lorentz algebra.
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As with tensors we find the intrinsic variation of a spinor

field is given by

- = - u
dwa awa 8x auwa
(3.1.96)
—— = — - u -
6¢& 6¢& 8x auw&
For Poincaré transformations
<M = XM+ wuvxv + e* (3.1.97)
we find
< wgv B V__V.Hy B uvy B u
= + - - -
8, 5 [xTa7=x"a0) s - (D )a]wB(x) € auwa(x)
imgv HVy B i
= - MU by + I vy (3.1.98)
and
fgg .V _V.U é v é
== _ - (5™ . . R
s + == [T 7-x% )6& (D )&]wB(x) € auw&(x)
iw[-_l\) HV é' Hp T
= -5 M )&wé + ig Pu\p& . (3.1.99)

and as before the Pu and Muv obey the defining commutation relations of the
Poincaré group.

For finite transformations

x x,ta (3.1.100)
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we again exponentiate the operators to obtain
' = B -1 -
vy () saws(/\ (x-a))
it (N R (3.1.101)
+ia“1>u - —=
= |e e o wB(x)
and
- *x3- . -1
yi(x) = S, wé(A (x-a))
i ) |8
+iafp - —E= MY
= u . Ue 3.1.102
e e 13 ¢B(X) ( )
W _ 1 B v *-uda
and A = 3 Saosésé a . (3.1.103)

Thus we have found all representations of the Poincaré algebra.

Finally let's compare our 2-component spinors with the usual Dirac
4-component spinors. We can realize the algebra defining the Dirac
matrices Yﬁa by using the Pauli matrices--this representation is called

the Weyl basis.

Y = (3.1.104)



that is

la

3a
b

Thus the Yu obey the defining Dirac anti-commutation relation

= OOO o OO

OO

v v
yiy” + vy

Also we can define

Ys

. 0.1
iy vy oy

HOOO

OoOH OO

= OOO

OO O

O OH O

[eNeN e

[oNeNol

2g

2.3

(oo Nol

u

a

[oNeNeN ]

OO O -

b

ab

ab

v
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(3.1.105)

(3.1.106)

(3.1.107)
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. . . . a . . .
In this basis the Dirac spinor wD 1s given in terms of two Weyl spinors;

- ﬂa

] 3 : (3.1.108)

Thus under a Lorentz transformation

Wi = L:wb(x) (3.1.109).
D
where
s# o
L, = |°
* - [ 3 .
0o (5%t ' (3,1,110)
B
ab
hence
v a _ a vec,-1d 3.1.111

as usual for Dirac spinors.

For left and right handed spinors we have

a _ 1 - a
3= Gy
Y1 1 (3.1.112)
1 vy Yy
0 re 0
-2
0 0] L O J
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and

= (e

-1 . (3.1.113)

Thus we have that YoL corresponds to our Cl,O) spinor wa while YR

corresponds to our (Oyl) spinor 3. If the Dirac spinor is a Majorana
2 ¢

spinor, ¢M then
C _ -T
Wy = W = Cuy (3.1.114)
with
o = inYo
010 O 2 o
_ |-t o0 of _ {*
o 0 0 -1 - (3.1.115)
0 01 O 0 ig
SO
T 200 *
(Clp) = Gy yyv)
0 o & wa ¢a w(l
= ) N Jd0T Wy T .o (3.1.116)
iO’ ao 0 ¢G. wd ¢U.
hence aa = ﬁa and

wa
b T =g . (3.1.117)
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Wess and Zumino found that the most general symmetry of the S-matrix
involves charges which obey both commutation and anti-commutation relations.
Such an algebra is called a graded Lie algebra. These algebras are
generalizations of the Poincaré algebra. The simplest (N=1) supersymmetry
(SUSY) algebra involves the generators of the Poincaré group Pu, the
generators of translations, Muv, the generators of Lorentz transformations,
and two, anti-commuting (Fermionic), spinor charges Qa and 6&’ the
generators of supersymmetry transformations. The graded Lie algebra of

supersymmetry consists of the Poincaré algebra

[Pu’P\)] = 0
M »Py] = 1(P g\ -P g ) (3.1.118)
Mo Mgl = 10, M =8, Mote gt o8 M o)

Plus the anti-commutation relations

3 H
Qa3 = +29,4F

H (3.1.119)

{QO.’QB} 0 = {6&:aé}

and the fact that the SUSY charges are spinors

1 VB
M*Y,e1 = -2 ™™k
a 2 "8 (3.1.120)

uv 5 1 =w é-,

and finally the trivial zero commutators

[Q.B"1 = [Qz,2"1 = o . (3.1.121)
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When looking for representations of this algebra we note that
P2 = P P" still commutes with all the generators P , M | Q , 6.. So
H H Hv a a
we expect fields in a super multiplet to have the same mass. However

2

W= WuWu (where W= =

A suvponMpo the Pauli-Lubanski covariant spin
operator) does not commute with the SUSY generators. Thus the particles
in the same super multiplet will have different spins. Fermions and bosons
will be combined in the same super multiplet and will have the same mass.
We would like to represent the SUSY algebra by means of linear
differential opérators as we did for the Poincaré generators Pu and Muv'
Since we now have anti-commuting charges we must extend space-time (x™)
to include anti-commuting spinor parameters (ea,éa) to form superspace.

A point in superspace is defined by

M u -4
z = (x 16(!’9

)

where the ea,éa are (two component, complex) Weyl spinors which anti-
commute, that is are elements of a Grassmann algebra.
a,.B -B a

876 = =676 and since a=1,2 we find

6%80Y

|
o

etc.

We can define differentiation with respect to the anti-commuting parameters

by the "Taylor" formula

0(6+60) = (o) + 66% a—Z‘; $(8) (3.1.122)
$(E+E) = 4(3) - 68, —— ¢(8)
36
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choosing ¢(98) = 6% etc. we find

¢ = 8, = -6

36% o 38a B B

2% = 4l —§-§-B= -5 (3.1.123)
a0 89&

Using these derivatives we can define linear differential operators on
functions of xu,ea,E&. The SUSY algebra generators can then be represented
as linear superspace differential operators acting con a super field¢ . As
before space-time translations are given by space-time derivatives, etc.

1) Translations: Pu¢ = ia“¢

2) Rotations-Lorentz transformations

i 3 i = 3

Mob o= ilxd-x3 =560 To+ T80 —a%] ¢ (3.1.124)
3) SUSY
= il 4 i8]
Q¢ 5 T 1781 ¢
a.¢ = i[— 3_ - ie}]cd’
& - Q

38

where ¢ = $(x,0,6) and we use the summation convention for spinors

i
<
>

]

I
<
>

Y X

o o
N - (3.1.125)
v = . w2 = ——a—t .
X = YeX boxe
So
(]5) = a Gunéa
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for example. Hence we can check the SUSY algebra

TR S B I - M BN 5
a
= +2ig".5 = +2¢°,P
ac u ad u
uv _ 1 —-uv ) ] -i, 3
M ,Qa] = +3 (80 )é = ,a’a&e + (3
36 ;)
B
s AT H.V__ V.U
+ i(o e)a(g)\o 8,8 )

= -5 @ e+ 1) )
26
1, w8, =8 _ 1= ~—uv ok
-5 (o )dzéée 5 820" ")

from our o" algebra we check that

- »
("M v - "T*Y) . = 2i(M e Pa gD
aa ad o - - §
So M"Y, 1 = - 1 (cuv)BQ as required
b o 2 o B q -

This is called the real representation for the

R ., U VAV uA -a
« 4+ -
‘2;8 l(oa&g oa&g )63

(3.1.126)

Qa

(3.1.127)

A

(3.1.128)

SUSY algebra. There

are 2 other representations of the algebra that will be quite useful.

Instead of

T -
1) Qa = 1(36 + ;ze)a

Qs = i + i0p).

@ 56 “:

called the Real Representation

(3.1.129)



we could choose

2 Q
%

or
3 q
9
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-1 + 2169) .
36 *

Y s
iGgt Zyle)a
-3 ---—-a

352

as before for each representation

= = H
{QG’Q&} = +20’a&Pu .

called the Chiral Representation

(3.1.130)

called the Anti-Chiral Representation

(3.1.131)

(3.1.132)

We can relate the superfields defined in each of these three representations.

Consider
¢(x,8,8)

¢1(X9e’5)

¢2(x,6,5)

then

¢(X,e,6)

defined in the real representation.,

defined in the chiral representation,
(subscript "1" denotes the chiral representation)

defined in the anti-chiral representation,
(subscript "2" denotes anti-chiral representation)

¢l(x-ieo§,e,6)

¢, (x+1608,6,8)

s (3.1.133)
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This can be seen by considering, for example, the SUSY charge in the

chiral representation Qla

=
Qo Ep\ly,e,‘ = oot L, 9§\ So

SO LWO¥E -L0¥B
e Ql‘i (3,L e d (% ®, Q (%.\.\%‘Qx

= Q‘( éP(y,Q“é) o e Vel Vengszvt\a&tZ ow

. ~ DY& 4‘\9¥§ R
it ()\0(: e ’ Qwe = l(SE 4‘%\-(

S
C\\MQ 82&\(( 6(§): e

We can also ask what the action of the SUSY group is on ¢; we can find

this finite transformation by as usual exponentiating the generators, thus

i(g%q +E.6&> _
e @ e ¢(x,8,6)

' (x,6,0)

“le - T+ 1es8 - 102E) ;
- e 36 8(x,8,8) (3.1.136)
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and by Taylor's theorem

= ¢(x~1(£c6-60E),6-E,B-E)

We see that SUSY transformations induce translations in superspace

(3.1.137)

x'* = !+ 1(£0"8-007E)
o'% = % 4+ ga (3.1.138)
S L s L3
) 5y + Ty -
- - * - -
Note, [1(£c"8-80"E)] = 1i(£c"8-80"%)

- *
is real; thus ¢(x,68,8) can be taken as real ¢ = ¢ ; this as we will see

called a vector superfield, it forms a real representation. In the

u

chiral representation x" is translated by a pure imaginary vector

¢1(x,6,5) = ¢(x+1606,6,8)

]

— % -
(i608) -ifaob

so ¢1 and ¢2 transform as complex representations.

[Complex conjugation changes ea > 5& and also interchanges the order of

Grassmann spinors, e.g.

Before introducing SUSY covariant derivatives let's expand ¢(x,9,3) in

terms of ordinary fields. We can expand ¢ in powers of 6 and 6. This

is

\ , 2=2 . .
Taylor expansion terminates after the 6§ 6 power due to the anti-commutivity
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of 6,5
8%PBeY = 0 = B.3,6. .
a By
So we have
b *
$(x,0,8) = C(x) + eaxa(x) + E&ia + %'GZM(X) +-% 8°M (%)
p= 1 2= -3 1l1=2a 1 2=2
+ 8¢ evu(x) + 7 8 e&x x) + 5 879 )\a(x) +4 879" D(x)

. (3.1.139)
where ¢ = ¢ and the Lorentz transformation properties of the ordinary

field coefficients are determined by the fact that ¢ is a Lorentz scaldr
and the Lorentz property of the corresponding power of 6. Also we see
.f.

that the fields C,M,M ’VU’D are bosonic and x“,zé,x“,ié are fermionic

spinors. ¢ is called a vector superfield because it contains the

ordinary vector field Vu.

We can now ask how the ordinary space-time component fields

transform under SUSY; let

_ .0 — 1
Q= g Qa + E&Q R (3.1.140.)
then
. 9 -3 . - ~
Q = ilg 55 - & + 1(826-628)1¢
96
_ o - 1 .2=2
= QC + 8 QXCX + G&QX + ... +"‘4‘ 66 QD (3’1.141)

iy + 1iE6M + igo“évu TR +—§- 0AE8201 .
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Thus equating powers of 6 and performing tedious 6 and o" algebra we find

1) Q¢ = ilex+ey]

= 1 1 HE -
2) Qx, ig M+ i(o g)m[vu 1auc]
3) Q¥ = iE“MT + i(ac“)“[vuﬁaucl

o = 1T - (2.0.142)

5) i = igx + £
6) Qv = L ao"E - I goMR o+ Loy o"5VE + = 5 ToMo VT
2 2 2 %)X 2 %X

=0 _ L zh. : =a, oM, L1 ~uvzyd
ot = 4B - DM TV + 5 @D

= i o pg i v
8) Q)\a 1£aD + wE;)aM gaauv > (o a)avw
9) QD = £ - ABE
where
v = 3V -3V .
uv SR VvV u

Notice the highest weight 0252 field D transforms as a total divergence
under SUSY. Since the product of superfields ¢n is also a super field,
i.e. transforms by the same Qa’a& as does ¢, its © 8 term will transform
as a total divergence-—-thus if we integrate [ déx the last term (D-term) we

have a supersymmetry invariant. We will use this later to build actions

which are SUSY invariant.
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Next let's introduce susy covariant derivatives. Of course
Pu commutes with Qa’ 5& so Bu is a susy covariant derivative in all
representations. We can make our spinor derivatives Susy covariant
by adding Bu terms with 9 or 8. In each representation we will have

to add different pieces as we did with Qa and Q& so that

{p,, Q} =0= {D, Q)
o3

{Dy, Q,} =0= {D,, Q,}
@ $ 8

where Da and D2 are the susy covariant spinor derivatives:

0

1) Da = ;‘a—a - i(ze)
real representation
= 3
D = - — + i(eZ)
e a5 (3.1.143)
2) Dla = [‘—E‘- 21(36) ]
38
D = - —aﬁ chiral representation
le 28 *
(3.1.144)
3
3) D, =—
2a T
52 = [- —=+ 2i(8®), ] anti-chiral representation
A 35 %
- (3.1.145)
- . . '
Note {Da’ D&} + 215ad in all rep.'s.

Since Da¢ or ﬁ.¢ is a superfield if ¢ is a superfield we can use Da’
o

5. to restrict the number of component fields in a superfield - this is

a
a supersymmetric constraint
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1) Chiral Superfields s(x,e,é) are such that

D. S(x,8,8) =0 . (3.1.146)

= 3 so this implies
la zQ

Sl(x,9,§) = Sl(x,e) only. Again

we can expand Sl(x,e) is a power series in 6

5,(x,8) = A(x) + 879 (x) + 87F(x) (3.1.147)

Since S is complex A is a complex scalar as well as F and wa a Weyl

spinor. We can transform Sl(x,e) to the real representation; recall

$(x,0,8) = ¢, (x - 1608, 6,8)

= e-ieae ¢1(X,¢ ’5)
sO _
S(x,e,.e-) = e‘eae Sl(xae;"
that is _
S(x,8,8) = e 1089 14 4 6y + 0%F] (3.1.148)

is the form of the chiral field in the real rep.
We can work out the SUSY transformation for the chiral component

fields in the chiral rep.

I ) - =
Q =& Q, *EL
a
= ifg 2 £ 2 =-2103Z] (3.1.149)
36 38 ot

then o 2
QA + 8 Q wa + 8°QF = Ql Sl(x,e)

= ilz %- £ aa__é_ 21631 [A + 68y + 62F]

. s a . _ 9 (4T
= igy+e° 1[2¢ F zl(ﬁa)aA]



188

Thus
QA = igy
Qu, =128 F +2(35) A (3.1.150)
QF = -y3E

Again the highest weight field F transforms as a total space-time diver-
gence under SUSY. The product of chiral fields is again chiral (chain
rule for 5) so we can make susy invariant terms of the action by integrat-

ing the 62 component of a product of chiral fields over fd4x (F-term) .

2) Anti-Chiral Superfields §(x,9,§) are such that

Da S(x,6,8) = 0 . (3.1.151)

Again since DZa = —2—-in the anti-chiral representation we find
36

§2(x,6,5) = §2(x,5) only

expanding in 8 we have

[ ]
5,(x,8) = At + 5.3 52r" (3.1.152)
a

[often A and F are written instead of AT and F*]

DZaSZ so the components of S are the conjugates of

e L
(Note: (Dlasl)
Sf)

s , S

We can transform §2(x,5) to the real representation recall

¢ (x,8,8) = ¢,(x + 1608,08,0)
= MOy (x,0,8)
So _
S(x,9,8) = e+lele §2(x,§) and we find

S(x,0,8) = e (& + 87 + 8°F] (3.1.153)
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for the anti-chiral field in the real rep.
We can find the susy transformation properties of Z, 5, F by
taking the adjoint of those for A, ¢, F or directly in the anti-chiral

rep.

[ 4
- .o =
Q, = §°Q,,+EQ,
- 3 £ 3 - (3.1.154)
ifg Yo £ Y + 21£36])
then
_ B
QA + e&Q¢ +8° QF = Q,5,(x,8)
I .
= 18§ + 8, [248" F - 2(£3)%A]
[o
+3% ¢ %
yielding
QA = iEV
-3 -8- 8-
Qp = 2if F - 2(EF) A (3.1.155)
QF = £dv

Again susy invariants will be made by integrating the 9 component of
products of anti-chiral superfields over d4x, (F-term) .

Before constructing SUSY invariant actions let's introduce the
SUSY invariant integration measures and delta functions. Integration

of Grassmann variables is defined so that it is translationally invariant

;] a8 f£(8) = S d6 f(6 + &)
thus S de = 0 by letting f = 8, and normalizing fd66 = 1 we have
the integrals
S ds8 GB = GB and
a a
similarly ° ] (3.1.156)
s dg, CLI
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Thus we see that integration is the same as differentiation for

Grassmann variables

fde = —La ,
o Y
(3.1.157)
= 3
fd8, =~
a J8a

‘Né can make susy invariant measures by integrating overj'dax and

the highest 6,6 weight:

1) Vector measure (integration)

fdavs=r dax dze dzé z f d“x ae® dea d§‘ a8 ¢ (3.1.158)
a

3 9 9 3

[ ’
%0y 20% 202 %

we will further assume that total space-time divergences integrate to

= [ dax

zero so we can use the covariant derivatives

fav =/ d*% p® b, D, 5% =/ a*x DDDD . (3.1.159)

Q

2) Chiral measure (integration)

fas=s fatcad% =rafx22 = ;%o (3.1.160)

3) Anti-chiral measure (integrationm)

ra§ zrafxa® o =rdtxF e a0 . (3.1.161)
Note that
rd%e? = -4
fa%88%=-4 . (3.1.162)
So for a
1) Vector superfield ¢
[ dve = 16 f d*x D and Qf dv$y =0 ,

(3.1.163)
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2) Chiral superfield S; DS =0

FdS S = -4 fd% F and Q/dss = 0 (3.1.164)

3) Anti-chiral superfield S; Da§ =0
dS§ = -47d*% F and QfdSS = 0 . (3.1.165)

Since a vector x vector superfield = vector

chiral x anti-chiral superfield = vector

(anti-) chiral x vector superfield = vector

chiral x chiral superfield chiral

anti-chiral x anti-chiral superfield = anti-chiral
we can make susy invariant terms by integrating these products over the
appropriate measure e.g.
SS = vector superfield it depends on both 6 in 6
in a non-trivial way hence

/ qvsS is susy invariant.

Note, fields must be in the same representation when they are multiplied
together if the product is to be a superfield; so either all are

in the real, all chiral, or all anti-chiral representatioms.

SS = chiral superfield
= e_leze S, (x,9) S,(x,8) and
1 1
rds s® = fds,s,s., etc .

1'1°1°

Finally when we calculate field equations we will need functional differen-

tiation in superspace and superdelta functions,

1) 86 (1) _ (1,2) for a vector superfield (3.1.166)
§¢(2) v

2) 65(1) _ (1,2) for a chiral superfield (3.1.167)
5s(2) - °s'ls o
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§S |
3) _=£ll-= 8z(1,2) for an anti-chiral superfield, (3.1.168)
65(2) S
where
-1 .2 =2 4 -
1) 5V(1’2) = 716 812912 § (Xl x2) (3.1.169)
and

FaV(1) $(1) 6,(1,2) = $(2) »

__1 .2 .4 _ - 7%
2) 68(1,2)’ = -7 07,8 (xl x,) and 68(1,2) DDGV(l,Z)
chiral
representation
and (3.1.170)

S dS(1) s(1) 68(1,2) = S(Z))

_ 1 =2 4 _ =
3) 68(1,2)1 = -3 912 8 (xl - x2) and 65(1,2) DDGv(l,Z)
chiral
representation (3.1.171)
and _ _ -
S ds(1) s(1) 6§(1,2) = S(2)
with eij = ei - ej H eij = ei - ej

and arguments (1) and (2) refer to superspace prints (xl, %3 51) and

3 ) respectively.
(xz, 62, 62

Note, The Grassmann delta-functions are just given by the square of

the variables

"'% rd%er 60 - )2 £(8") = £(0)

- %—f 4% 3 - H2 £@") = £3) .

We can transform the (anti-) chiral rep. delta function to the real rep.

by using our shifting property
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68(1,2)

- _ 1.2 4 o = g =
= 7 912 ) (xl 191081 (x2 162062))

Xy = 61 el + 16 2)

]
i
£

D
(o]
~~
”

|

ﬁel - ezzez) 4

§ (x

]

i
S
D
)

= -1 -
= - 4 9126 ) (Xl X2) ’

in momentum space this becomes

+
ipx,),

4
12 © 68(1,2) (3.1.172)

8S(p,1,2)s fd'x

1

-9_p6
P - _ L 2 1 12

and similarly for the anti-chiral delta function in the real rep.

+o ), %8, 5

8= (l 2) = %‘ i (x1 - XZ)

+ipx
3 L 12
6§(p,1,2)..f d X, © 63(1,2)

+8__p9o
r _1g2 12771
Gs(p,l,Z) i l e . (3.1.173)

The vector delta function Sv(l,Z) is the same in all reps.
We are now ready to construct the simplest example of a super-

symmetric model, the Wess-Zumino model.

3.2, The Wess-Zumino Model (Chiral Model)

The model consists of one chiral superfield ¢ and itsadjoint anti-

chiral field E;
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So
$(x,6) = A+ 0y + 62F
3,(x,8) = K+ 87 + 5%F
in the real rep.
¢(x,e:6) = e-ieze(A + 6y + 62F)
3(x,0,8) = e 9% 4 57 + 5% . (3.2.1)

Since 6, 6 have dimension - %-and D,D have dimension +<% ,
if the scalar field A is to be dimension 1 (the same as ¢) ¥ has
dimension 3/2 and F dimension 2. We then make all susy invariants out

of ¢ and ¢ (i.e. products integrated over the appropriate measure) that

are also renormalizable, i.e. dimension < 4, the possibilities are

Monomial Character SUSY Invariant

1) ) chiral fds¢

2) 3 anti-chiral fd§$

3) ¢$ vector [dvées

4) 62 chiral rase?

5) 52 anti-chiral fd§$2 (3.2.2)
6) ¢3 chiral de¢3

7) $3 anti-chiral Id§$3

We stop at cubic terms since we demand renormalizability, for example
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fdvés = fd* x DDDD 00
dim=2 dim=2
L S ]
2
dim=4 renormalizable
fds¢3 = J’d4 x DD ¢3
ety
dim=1 dim=3
(X J
-~
dim=4 renormalizable

Thus our susy invariant actiom is
- 2 ==2
I' = 2F dVed + 4mS dS¢~ + 4mS dS¢

+ gf ds¢> + gf d53° (3.2.3)

+ £/ dS¢ + £/ dSo
where m,g,f are the parameters of the model and Z gives the field (propaéator)
normalization.
Let's expand the W-Z action in terms of the component fields and find
the absolute minimum of the potential and quantize about it. First consider

the Kinetic Terms

85 = (e 10294 4 oy + 62F) 1100 @ + 57 + 5]
(3.2.4)
where both ¢ and ¢ are in the same (real) representation, expanding the

exponential we find after a little algebra

et 1830 _ 1 4 1e45 - 7 0%8%% . (3.2.5)
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Since we are interested in the highest 6252 terms, only these will be

exhibited so

_ + +
- 0Bl L 52 5, A a¥a

(3.2.6)
+%wf§’(ﬂ + F'F]
4 2% 32
Integrating over the vector measure fdV = fd" x —5 ——= we find

362 382

Zdved = 162 ra® x [BA&.BXA +<% V3 ¥+ FF] (3.2.7)

+
where the total space-time divergence BZ(A A) integrates to zero.
Next consider the mass terms, since both fields are chiral we could
work directly in the chiral representation

A+ 8y + 0%F

41

So

fdse? = fds(a + oy + 02F)2

fds[A2 + 2e“(Awa) + 62(2AF - %-ww)]

to yield
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fase? = -4sd* x [24F - 3wy (3.2.8)
where
- %, B
BYBY = 07y 0,
~g%gB g8 _ _ 1 By
= -0"6 wawe but 676 5 € 0 GY
1 .2 aB _1 .2 o
=t e YV, =T 0V (3.2.9)
- 1g2,2
=-3 8y
Similarly we find
— +_+ -
rd53% = -ardbx(28F - 139 (3.2.10)
(where 5a58 = +-% §2€a8 was used) .
So the mass terms are
2 =2
+4mfdS¢~ + 4mSdS¢
it (3.2.11)

= -l6mSd*x [2AF + A F -<% v - % Vol

The interaction terms are calculated the same way

3 _ 2,..2. 3
$] = ...+ (ATF - F 9w &)

LT T I R

1]

-3
%

resulting in

t2

gde¢3 + gfd§$3

- 7t
—12gfd4x[A2F +AF - % YPA —-% vy A ]

(3.2.12)
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Finally the linear term is simply

£rdSe + ££d5F = —4ffd’x (F 4+ F) | (3.2.13)

Putting this altogether we have that the Wess-Zumino action is

Z/dV 3 + 4m[SdSe2 + [d5F2]

=3
]

+ g[fdSe> + rdS3°] + £[/dS¢ + /dSs]

= s {16Z[3>\A+8>‘A + 2 EV + FE
- 16m(2aF + 24TF" - 2 4y - 2 73] (3.2.14)
- 12g(a%F + £7F - Lyy a - 235 A7)

~4E(F + F )}

Recall that the component action can be checked to be invariant under the

susy transformations for the component fields

QA = ify : QA" = iZy
_ -. -. + ® 'f'
Qv = 21§ F + 2(3%) A Q@ =21 £%F - 2%
— + -
QF = Y3t QF = + £3% .

(Isn't superspace simpler!!)

Since the fields F have no derivatives in I' they are auxiliary fields;
we can use their field equations to eliminate them from the action; the

"equations of motion" are

+ +
1) 16ZF = 4f + 32mA + 12gA
2) 16ZF = 4f + 32mA + 12gA° . (3.2.16)
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Thus we can first write the potential in a simple form

r = fdax {16Z[BAA+3AA +-% w?ﬁﬁ] - 16m[--% Yy - %-@E]
(3.2.17)

-— 7t
12~ S W A-FF AT -V}

where

¥ 1t
- 16ZF F + 16m[2AF + 2A F

<
]

£2 4 +
+ 12g[A%F + A F ] + 4E(F + F)

-1-
~16ZF F + [4f + 32mA + 12gA%]F
(3.2.18)
: 2
+ F 4 + 32mal + 12g A 2]

~16ZF F + 16ZF F + 16ZF F

V= l6ZFjF .

ER
For supersymmetric theories the potential is given by F+F with F and F
.1-
obeying the equations (1) and (2). Thus <F> = 0 = <F > is the absolute
minimum of the potential. This implies

2

+ +
16Z<F> = 0 4f + 32m <A > + 12g <A >

162<F+>= 0

It

4E + 32m <A> + 12g <A>2 (3.2.19)
for the absolute‘minimum. If <A> = 0, then f = 0; the linear term in ¢ must
be excluded from the action in order to quantize about the abs. minimum.
Since a constant ¢ = a is a superfield, Q¢ = 0 we can always shift our
superfields (A - A + a) by a 8 indep. constant and obtain another susy invariant

action. So letting ¢ > ¢ +a, ¢ > ¢ +a we find T > T~
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I” = 2/dVes + [4m + 3gal[/dSe2 + d36°] + g[/dSe- +/d53°]

+ (f + 8ma + 3ga2)[de¢ + [dS3]

(3.2.20)
If I' has a minimum at <A> = o then ' has a minimum at <A> = a + a.
So even if <A> # 0 we can shift to <A> = 0 by @ = —-a then £ = 0. Thus

we can always choose f = 0 in the W-Z model without loss of generality.
Finally let's use the F equation of motion to write V in terms of

the dynamic A field only,

16ZF F

<
"

-%[8mA+ + 3gaT2 ] 8ma + 3g42)

%—6- imata + 2—;"'5 (a+a™y (ata) (3.2,21)

2
+ 9—%— win? .
Hence

2
r=rd* x (162(5.a70% - 42
A 5
z
1
2

+ 162(% wm+%%ww+—§w) (3,2.22)

ATA)

+ 6g(YvA + ¥ JA')

2 o
- 24g 2 (a + ATy(aa) - —9—§— an?
z

Thus we see that both A and ¥ have the same mass C%E) even though different

spin. This model looks just like a o-model with fermions--there being a
definite relation between masses and between Yukawa and self-interaction

terms,

o
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3.3. Gauge Invariance and SUSY

1) Global gauge transformations

We next would like to introduce the idea of gauge symmetry in a
supercovariant manner. Let's do this by first studying global gauge
transformations. To be specific let the chiral superfield ¢a, a=1,...,L
transform according to some L-dimensional representation of SU(N),

(T:)z, with ¢,d = 1,...,L a,b = 1,...,N, with gauge parameters A; that
are space-time indep. (and 8 indep.) Since a constant commutes with

D,D,Q,a we see that ¢’a is still a chiral superfield

b..a
ig(}‘aTb) c

$°C = [e 15 ¢
3 1g(A.T) (3.3.1)
yields D 4°C = [e ]S D09
& a

., 0 oy=
0 and similarly Qa¢' = 1(36'+L36)a¢' .

Now as in the Wess-Zumino model we have at most trilinear terms in the
chiral fields in our action. If the action is to be gauge invariant, each
of these terms must be invariant under SU(N) transformations. The kinetic
terms are invariant due to the complex conjugation i.e. if ¢ is a L of SU(N)
$ is a L of SU(N), so

- (B3

-4

So

%% " = ¢%3° and O (3.3.2)

rave®s?

is both susy and (global) SU(N) invariant.



202

Only if ¢ is in the adjoint rep. (or 2 of SU(2)) can we make SU(N)
. . . . a.b a,b,c .
invariant quadratic and cubic terms ¢b¢a; ¢b¢c¢a, but in general
models will usually consist of several representations of SU(N)

¢a

A (3.3.3)

where a = l,...,LA

and A labels the type of rep. we have i.e. ¢§a; ¢]i? where the first is a 5
of SU(5) and the second a 15 of SU(5) and a,b, = 1,...,5 as usual. And we

ab

can make an invariant ¢15 ¢§a¢§b for instance, although no mass term!

Again if ¢§ then (¢§) = (¢§)f-= 55 transforms like a 5 and we usually

use the same symbol 55'without confusion.

2) Local gauge transformations

We next would like the gauge parameters to depend on space-time;
however they will destroy the superfield character (and chirality) of the
field ¢°, if

a_ ,a
Ab = Ab(x) then

3 = = c
) $ e : 1] - L
Qa¢ # 1(86 + 136)a¢ , and Da o' # 0.
Thus we must also let the gauge parameter depend on 6 and 8. 1In addition
if ¢ is chiral the gauge transformations should also preserve chirality thus
the gauge parameter for a chiral field should be a chiral superfield and for an anti-

chiral field it should be anti-chiral. Let's call these A;(x,e,é)

and Ks(x,e ,8) where ]_)& A=0

D A= 0.
a



And if ¢C is an L of SU(N)

. .b.a
igh™ T
b d
' =1le *715 ¢
then $C = (q)c)T is an L of SUN)
=b.a
AT
-t -ig "a'b.d -
¢C - [e ]C ¢d
(that is if ¢' = U ; ¢' = $U+ = $U'1).
Similarly if ¢ _ is in L of su()
. b..a
-ig ATT
v _ ab,d
¢, = [e 1. 44
-c .
Then ¢ = (¢C) is an L of SU(N)
+b..a
+ig AT
- d
7C=le P15

So Dedp' = 0 = Da$' and for example

Q' = i %5 + 1#8) ¢' ; that is if ¢ is chiral

203

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

¢' is chiral; if ¢ is a scalar superfield ¢' is a scalar superfield etc. .

For local gauge transformations the pure chiral or pure anti-chiral

globally gauge invariant quadratic and cubic action terms remain also

locally gauge invariant since they transform either all with A or all with

A.

However, the kinetic energy terms are, as usual, not locally gauge

invariant for example

P>

T High'T
[

[e 13 ¢

oy -1g

3.6 C = 3le ]

(o4

d

- ¢ , t
# ¢.9 since A # &,

except for A = const.

and real as in the global case.
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a

b in the (global)

Thus we would like to introduce a super Yang-Mills field V

adjoint representation such that

- -igE:I

FEQ D =3 e Furem e Ly (3.3.8)
= $ £(QU-D¢
e T oyt I g (3.3.9)
this is true if
(v = T pype AT (3.3.10)

Of course this is independent of the particular representation we use
since only commutators of T appear on the RHS due to the Baker-Hansdorff
formula. Since we desire V (and its component AM) to transform with an

inhomogenous piece we have

b..a
gV T
f=o 2 b
thus _
', +igh- V.T -igA.
8L -1 el 2Tl eI (3.3.11)
So if we start expanding the exponentials we find
VI = V+i(h -A) + ...
the inhomogeneous term is present. And thus
3 egy:z- ¢ is gauge invariant (3.3.12)

We can further evaluate the gauge transformation for infinitesimal para-

meters by means of the C = B - H formula to find

VI -V = -igly [ + L) + coth (ZV) (A = 1))
5 ¥

N

where FY €\9) =.f§ » Al
2
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and
n =X ¥ v
(LX) (A) = [2 ’ 27 [---9 [2’ A]°~']]]
2

n-factors of g

2
N -1, 5 1 b _
Introducing our vector notation, I T = —= b T§V , for V,A, A and
i=1 /2 a,b=N ° 2
anti-symmetric structure constants fijk we find for infinitesimal A,K
r ' .
svi = vt vt

k (3.3.13)

8 (pd 47l
5 (M + ADE oV

_ig A7 iy8 g
2 (A=A )[2 V coth 5 V]ji .

with
- k
Vij = ifijkv .
In order to find the pure super Yang-Mills Lagrangian consider the
supersymmetric covariant field strength chiral spinor W
—-_— - . +oVe.
w = pole 8L Ip oYL
a a
where the T are the generators in the adjoint representation and 5. Wa =
o
0.
Using ' -y
eg! T e gv'-T _ 1
we find eigﬂfl. eglzl e-igéfl e-glf'l. =1
so that , . T
e—gy-'l- *tigh-T e'%X,I_ e_lg—ﬂz , hence
we have - -gV'.T +gV' T
W, =Dble ®='=D e =] (3.3.14a)

|
(=]
(=]
1]
+
(g
aQ
=g
|3



since DGK = 0 and 5&A = 0 we can simplify this to yield
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+ioAT == =gV +oV. —{oh
W& = e lg.j-\-.T_DD[e gyv-T Da(e glle igh ’g)]
(3.3.14b)
+ioMe e —oVe . oA
= e lg-/ll {DD[e g..YI Da e+g2 P_r.]} e 1gA.'I_‘
+igh-T == -igh.
+ L 5pp oiell
But  [5D,0_] = b (5%, p_} - (D ,B,1D"
¢ . o (3.3.15)
= -41 4 D% = -41(#D) |
thus DD Dme-lgA"~I = Daﬁﬁ o iel' I _ é»i(ﬁﬁ)me_igﬂ-.z
=0 since DA = 0,
hence o
+igh- —igA-
W& =e igh-T Wa e igA T . (3.3.16)

Thus the field strength transforms homogeneously and we can form &

gauge invariant quantity by

Tr[w“wa] where the trace is over the T-matrices so
Te[w oW ] = TeletTEL T oTiET el D w e tehedy
= Tr[wawa] . (3.3.17)

Since Wa is a chiral superfield the action is made by integrating over

the chiral measure

J? J ds§ Tr[WaWa] where the j? factor
g g
cancels the g2 from the W's.

In a similar way we can derive the analogeous formulas for the complex

conjugate anti-chiral field strength spinor W&

V-ITg 8T

W, = pple” XL 5 ]

a o
with _ (3.3.18)
DW =0 since D DD =0
a s a By
Then . T . =
s Jtiel T g -igheT
a a
where [DD, 50] = + Ai(Dd).

a a
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was used. Hence

- ='a -~
Te[W'W 7] = Tr[W W]
a a (3.3.19)

and the susy invariant term is made by integrating over the anti-chiral
measure

% s a8 el EY
g a

In general the gauge invariant supersymmetric action is of the form

r= rym + FK + F¢ (3.3.20)

with the pure super Yang-Mills action

_ 1 a 1 s = =a
Tom ™ g_2 [ as Te[WW ]+ ;2— S ds Tr[W&W 1, (3.3.21)

the invariant kinetic energy terms of the form

- 3 BV
FK =fdV ¢ e )

’ (3.3.22)
and the gauge invariant pure chiral or pure anti-chiral self-interactions,

for example for ¢L an L &tpi a L of SU(N)

I‘¢=mde bz +m S dST b7 (3.3.23)

or if ¢g is in the adjoint rep. of SU(N)
2 = -2
3 * o= =3
+ g/dS Tr¢™ + g [fdS Tr¢

Supersymmetric QED

Finally let's study the supersymmetric extension of QED more closely. The
matter fields will be two chiral fields with electric charge *1, denoted

¢,. These will transform under the U(l) gauge transformations as

0, = eiBhy (3.4.1)

where A is a chiral superfield, ﬁ_A = 0 and g will be our charge.
a
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The conjugate anti-chiral fields transform as (leaving the + in Yact on ¢)

7' = & 1i8h 5, (3.4.2)

with DaK = 0. Only a gauge invariant mass term can be made from these

(i.e. charge zero monomial)

T, =4mSdsed +imfdSE F . (3.4.3)

The vector super gauge field V has simple transformation properties in this

Abelian case

- V' - -igh gV' +igh
3 e84l =5, e B BT TTEN

so (3.4.4)
) + n -
egV -e igh egV e igh

since these are not matrices we can simply combine the exponentials to find
V' = V+ i(A - A) as usual for the abeliam case we have just an inhomogeneous

term. Similarly
gv

$ e ® ¢_1is gauge invariant

These are the only possibilities (i.e. $+ ¢_ cannot be made invariant) thus
- - +gV - =gV
Te =/ dviZ 5 e o, + &b e 0]

for the kinetic energy action with Z+?a convenient normalization factor.

Finally the field strength s are given by

w = ddle 8 p '8

o o (3.4.6)
7 =ople™® D e8] .

a a

Again the abelian character allows us to take the derivatives and cancel the

exponentials trivially
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g DD DV
(3.4.7)

-g DD DV
o

immediately. So

aw ]
]

Zrasww + L a3
2 o] 2 M
g g

DD p*v DD

Z [ds

DD DV

a

+2 fds DD

=Z [ds Dp[p*v DD D V]

3 (3.4.8)

+2 [d§ DD[D_V DD D°V]

a

= -Z [ dv {VD DD DV + VD DD DV}

with Z again a convenient normalization factor. Using our D commutators

we find -— _
DDDD = DDDD

(3.4.9)

thus I =-22 fdV V DDDDV .

So we have our super QED action

rSQED _ 5,7 s 4v v DDD DV

+

+ [ av[z, ¢.e gV 4, + z_$_e'gv¢_] (3.4.10)

+4m [ dS ¢.6_ + 4m[SdS §,.§_

Before expanding their action in terms of the component fields let's look
at the gauge transformations a bit more closely in terms of components and

show how to gauge away many fields. This simplified almost physical gauge is
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known as the Wess-Zumino gauge. In terms of superfields we had

Vl

V+i(d - A)

and 43
*igh
oy = "B (3.4.11)
. +igh
B, = e- g b, .

Since A,A are chiral we can expand them

-i848
e

A(x,8,8) [0 + 8% _(x) + 6%]

(3.4.12)

- - +1i6%9%
A(Xseye) e leze

[o© (x) + §.Za(x) + EZUT]
a

and expanding the exponentials we find

- . - -a -
G-0) =@ -w)~e% +8; ~efo+d0t
¢}

+ eo“§iau(w + o) - %‘ 62 8dz

2 €= l 2=2.2
¢ 48 AR 22 wh - ) (3.4.13)

Hence recalling our expansion for V we find that the gauge transformations

of the component fields are

e
X! - x, =-iz o X% - ¥ =dp
M' - M ==21i¢ ; T T = 210
VI -V =-3(0+ah)
u u M . . .
- ~1a =0
No- A = @D s X =% = +@H?

D' - D = -13%(" - W)
Thus we can always choose a A and AT such that C, X ;, M, Mt are gauged

away! More specifically choose the field dependent gauge transformation
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4
w - w=+ iC -> c' =0
S0 T T Xy M X& =0
g =+ x° > ¥'%=0
3.4.15
o 1w > M' =0 ( )
2
o+=-;-M+ + MT=0n

.'.

Thus we still have the parameters (w + w') at our disposal - that is only
V  still transforms under a restricted gauge transformation A = w = AT

Thus in this Wess-Zumino gauge

vV =060"8y + 3676 X
) u 2 .

a (3.4.16)

where V' = V=23 w
u u )

a o (3.4.17)

(where now we define

D+93°C~>D) (3.4.18)

. . +
under the restricted gauge transformations A = A =uw = df.

The W-Z gauge is not a supercovariant gauge, however, that is no
longer do SUSY transformations commute with gauge transformations. How-
ever, if we allow (operator) field dependent gauge transformations we
can show that the algebra will again close and gauge transformationswill
commute with our covariant susy transformations (See B. Dewit and D. Z.
gv

Freedman PRD 12 2286 ). Hence in the W-Z gauge & simplifies
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1]

il
',—-I
I+

aQ
<D
Q
=
[ar] ]
<3
=
I+
NT™
D
N
[e>]}
>
I+
Pl
D}
N
D
>

I+
I
D
D

N
o
+

=
D

N
<D

N
<
<3

=

(3.4.19)

us ve 1 .2=2 u
(where 6076 60 8 = +T e BT (O'

v

c)

= %-6252 guv was used)

Since in the non—ébelian case

VI =V + igd - A) + ...

we are always able to transform to the W-Z gauge for which C = x= X =

M=M =0and A=2a" =0u=4.

So let's expand our action in terms of components in the W-Z gauge; it will

still be invariant under the (restricted) gauge transformations

- -
Vu Vu 28uw

A=
[ o)
D' =D,
and -~ &  _a
=X (3.4.20)
i
N &9,
—' I -—
5, = eV 3,

First let's transform to the WZ gauge and expand

-3
(]

L= C2Zf vV DDDD
Y (3.4.21)

-2z f d*k[16D% + 161377 - 8 FWF‘”]

where
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raviz3,e o, +23 8

- = 5+ 8 4257 4 852
= [ dVIZ,9,4,(1+g 8¥8 + £ o°8X +§e 67

2:2
+£655° 0 + gv%)) (3.4.22)

=2

+ 2 ¢ ¢_(1-g 8Y5 - & 6%5% - £ 5201

]

-£6%% (0 - gv?))]

+i048 -i048

< == =2= 2
= s aviz, (e B, + 89, + 8°F,)) (e 4, + ey, +6’F)) x
(1+g0¥5 + 50737 + & 5% + £ 6%5%(D + gv%))

+(+")_1g_>_g)]

= g% _is U ig
S d'x {16z+[(au 5 VH)A_{_][(BU + 5 Vu)A+]

i 7 - By -0 G +i8 g
+ 16z, 7 [y, (3 > Dy -, B+ 20y,
.f.
+ 16z, FF

+ - - +
+4gZ (Ay A - A DX+ AAD)
+ (>, g -2}

So we see that this looks just like an ordinary gauge theory with gauge

covariant derivatives

DA, = (autizg VA,

(DMAZ = (aui—izﬁvu)AZ - [DuAi]J'")

Dy, : (aut%vu)wt (3.4.23)
(and similarly Duat = (3u:;%§ Vu)ai).
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Since A,X, Vu are in the adjoint representation they transform as singlets

for U(l). Thus the SQED action in the W-Z gauge is given by

T=T +T. +T .
vm K p (3.4.24)
- b 1 Hv i 1.2
1) T = ~64Z fd'x[-  F F +2A‘3X+2D] (3.4.25)
with F =3V -3V
HV v vV u
2) T, =167, ;d%x[®@ A (D*A)
K 4 J @ XL Ay +
i = - -+
+Z¢+¢ v, + F.F, (3.4.26)
g .F == +
+ o (Ay, A - AU X+ AAD)]
4 LT
+ 162 J'dx[(DuA_) (D7A))
_ +
+%—¢_‘3 §_+FF_
+ - - +
-E @Ay A- A X +aAD)]
where
DA, =t EV A
B B (3.3.27)
Dy, = (a By
ut o2 ui't
3) And finally the usual looking mass terms
r = -l6m / dax[A+F_ +AF - %’¢+¢_]
¢ (3.4.28)

; T f Tt 1 - -
-16m f d'x[AF_+AF, -5 Vb ]
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So once again we see how the superfield action can be reduced to a
more familiar ordinary field action. SQED looks like ordinary QED with a

photon Au, massive Dirac electron

e

a neutral massless Majorana fermion A, and massive charged scalars A+.
The Yukawa and quartic couplings are required to have the same coupling
constant g by SUSY as well as the electron and scalar masses being
degenerate. Let's note that if we desire to give the vector superfield

) 1.2 2 . .
a supersymmetric mass we must add the term 3 M~ sdVV™ to the action. Since

it is not gauge invariant we cannot transform to the W-Z gauge in order to

expand the action. The mass term however is easy to work out and it yields

2 — +
favv’ = 8%« [ CDHY A=Y AR -vuv“] . (3.4.29)

Since C now couples with D and y with ) these (C,x) become dynamic degrees
of freedom--so a massive vector multiplet describes a massive vector Vu’
two spin 1/2 fermions, A and x, and a scalar C, all with the same mass.

(The general expression for deVDﬁﬁDV is left as an exercise.)



