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CH.2: Grand Unified Theories: The Georgi-Glashow SU(5) Model.

2.0. Introduction

Although this standard model describes all known facts of elementary
particle physics it leaves unanswered many questions; that is there is

"too much" arbitrariness in the model. TFor example:

1) Why a product of 3 groups? Why 3 families?
-~ . ~ . ~ 2 ~ 2.
2) Why is aQCD T .3 Agy(2) * .03; @ .007 at Q” = 10 GeV";
2
1 = 4
and sin eW ae—m/aSU(Z)'
3) Electric charge is not quantized. That is Y can be arbitrarily

assigned; independently for each representation. Why + 1, + 1/3, + 2/3 etc?

We hope to answer some of these questions by considering the standard

model to be contained in a large single group.
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The particle representations and the symmetric SU(5) Lagrangian

The Georgi-Glashow model is based on the group SU(5) which of course
contains the SU(3) x SU(2) x U(l) group of the standard model. The 52 -

1 = 24 generators of SU(5), Ti; i=1...,24, obey the algebra

i 3, _ k
[T ? T ] = ifijkT (201.1)

It is quite tedious to list these fijk structure constants and it is

simpler and equivalent to describe the group properties in terms of another

basis of generators T2, a, b=1,...,5 with T2 = 0, with simpler commuta-
b a

tion relations

¢ _s¢ 12 (2.1.2)

where i
=S T (2.1.3)

and .
i _ sth T (2.1.4)

We will determine S for SU(2) and SU(3) to get the idea.

Next, we digress for a while to re-express our fundamental representa-
tion basis matrices of SU(2), SU(3) and now SU(5) generators in a more con-
venient basis. In general we define the (Nz—l) N x N traceless matrices

c.a 1l .a
-3 sd= PRI ol
Gbsd v 5b6 a,b,c 1, ,N (2.1.5)

1]

a.c c .
2 . a _.
Note: there are N~ - 1 matrices Tb since



@ -0 (2.1.6)

The Nz-l independent matrices T: can be used as a basis for the SU(N)

fundamental representation.For a # b T: is non-hermitean with

a,c _ .c.a
a\t _ a,T b a .
Since (Tb) = (Tb) = Ta we can relate these Tb to our usual hermitean
fundamental representation matrices
i it 2
T (= T )’ i-= 1,‘°"N -1 (2.1.8)

For each a # b, a,b = 1,...,N we have

1l.a b N(N-1) . .

2(Tb + Ta) ) hermitean matrices
and (2.1.9)

i..a _.b N(N-1) . .

2(Tb Ta) — hermitean matrices

These are non-diagonal. The remaining N-1 diagonal matrices of SU(N)
(SU(N) is rank N-1) are given by the hermitean Tz (no summaﬁion over a);
since I T: = 0 only N~1 of these are independent. There is no generally
accepte: convention for identifying the Ti; i-= 1,...,N2—1 with particular

matrices above. To be concrete let's consider the SU(2) and SU(3) case

where we used the Pauli matrices and Gell-Mann matrices for the fundamental

. . ed _ Cca _ 1 acc -
representations. For SU(2): Tb ébdd 5 6b6d a, b, ¢, d, 1,2
0 O 0 1
that is T; = 5 Ti =
' 1 0 0 O

(note for (T;)g ¢ labels rows and d labels columns by our conventions)



1 0 -1 0
1 1
T =3 : Tg =.% (2.1.10)
0 -1 0 1
Thus we see
1_11_1.1_, .2 1_.1_ .2
T = 2 o] 2(T2 + Tl), T2 T iT
e S YO S R L
2 272 1 1
(2.1.11)
3_1 3_.1_ 2 _1,.1 2
T = 7 O '1?1 TZ = 2(Tl - TZ)

The SU(2) commutation relations can also be derived from the T commutation

b
relations
a c.e _ md & o f _ cie af
[Tys Tqly = (M) (TPg = TPe (T (2.1.12)
- (<8 a2 _ 1 ae . fc 1 c.f, _ .
= [Gb Gf N 6b6f][6ng N 5d58] (a<>c; d+>Db)
a ..e.c 1l .c.e Crqe.a l.a.e
= - = - §7 = =576
Gd[sbsg N abag] Gb[sd g N'd g]
a,.c.e C,ma e
yielding [T:, Tg] = GzTE - 6§T:] (2.1.13)
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Thus for example in our SU(2) case

1 .2y _i;cl o2 o102
[T7, T°1 = Z[T, + T » T} T} ]
i 1 2
=-_[TsT]
2°72 1 (2.1.14)
i 1.2 g2
= - 5187 T; - 85T
_ 101 o2 e o3
= + i(z)(T1 T2) +i T

Thus we see that the SU(N) group is equivalently defined through the

generators obeying the commutation relations

[Te,Tgl = 6375 - 875 - (2.1.15)

This is just a re-labeling of the generators. The fundamental representation
is given by

(Tg)g = 6%5 8

2

a a.c
d %4 (2.1.16)

above, any N x N SU(N) matrix can be made from this fundamental representa-

tion +igu)bTa
Ulw) = e ab
2 (2.1.17)
bra _ i1 i _ ib.a brajc _ ¢ b _ i.ib
where maTb wT and T S, Tb and (waTb)d wy and w = w's

. . . b .
where now the angles of rotation are given by the parameter matrix W with

a

w, = 0. We can perform a similar amalysis for SU(3)
0 0 0 0 1 0
1 _ - 2 _
T2 =1 0 O H T1 0O 0 O 3
0O 0 O 0o 0 O




0
1_
T3 0
Ll
K
2 _
T3 = 0
0
2
1_1
T1 =3 0
0
So
1_11 -
T = zx
4 _ 1,4 _
T = zk
6 _ 1,6 _
T-ZA
3_1,3_
T = ZA

Thus we can define

representation by
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0 0] 0o 0 1
0o 0 ; 3 = 0 0 0 .
1
0 o 0 0 0
- - -

0 0] 0 0 0

0 o : Tg - o o0 1 (2.1.18)
1 0| o o0 o]
) .1 0 o0

2 1
-1 0 ;=5 |0 2 0 :
0 -1 0 0 -1
1 0o o]
3.1 _
=3 |0 -1 0 '
o o 2]

1,1, .2, . «2_12_i.1 _ .2
(T, + 1) 5 T =% = 5(T; - Tp)
1.1, .3 . -5_1,5_1.,1_.3
STy + T 5 T° =337 =3T3 - T]) (2.1.19)
1.2 ,..3 7 L7 _i,.2 _ .3

7Ty + 1) 5 T0 =30 =515 - T))
1,1 _ .2 . .8_18_ /=3
S(T; =T 5 T =35 3 T

a field which transforms according to the fundamental
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o

v e

l1,...,N; the N-dimensional representation

of SU(N) such that

<
0
]

ch:)dwd

]
<
+

. b..a.c,d
1s(waTb)d¢

(= y¢ + ig(wiTi)cdwd) (2.1.20)

_ .c bead_ ¢ c,d
=¥+ igw 880 =¥ + dgugb .

c .
as before, ¢y is a contravariant vector, a (1,0) tensor.
The hermitean conjugate field transforms according to the N-

dimensional representation called N of SU(N),

+ - et
71, = v©]

111
©-

b.* a,ck
o = o, - dalo T 04T 14 (2.1.21)
at.d
b Je %4

b.*
o, ig[wa] [T

since 21 = T° and
b a

i *
b ib +_[mb] - 2
a a

a Y8 b

€
([

we have
. _ i@ [pPqd - PN -
¢ ¢C lgmb [Ta]c¢d - ¢c 1g mC ¢d (2.1.22)

¢C is a covariant vector, a(0,1) tensor. So, for finite w

o, = ¢qU (¢

a
-igmgTb 4 ‘ - (2.1.23)
= [e 1.6 .

[od

We can build higher dimensional representations of SU(N) from direct
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products of N and N. For instance the [N2 - 1] dimensional adjoint

representation is built from the product of N x N by removing the trace.

Let Ag be the field in the adjoint rep. with AZ 0. We can write A as

a _ a _ 1 cac
Ay = bTd - Sve. - (2.1.24)
Under a group transformation

A

' 1 .a,c',!

a, 4 - =
v ¢b N be ¢c

ac +d l.a ,c,d Te
Ubogl, — 7% Ya¥ ¢l

d
_ a,c,td , l.c.a e +d
- UcAdUb + ﬁﬁducw ¢eUb
1 a.c,d Te
- _ﬁ abwa ¢eUC (2.1.25)
a,c..td 1l .a,c 1l .a,c
UAT, * 3 %Yo ~w %Yo
So

| KN

A: = UiAZUBd just the homogeneous part of the

Y-M field transformation,for infinitesimal w

2 - 60+ DDA - B D
(2.1.26)
22 + g DA - ig(e-Dpa;

o

a a,c . d,a
+ ig chb 1gwad

%

that is A; is a (1,1) tensor.

Thus we see that this is a convenient notation for our Yang-Mills fields;

for the fundamental representation matrices T we can form

N

14 _ 1 -
A = 75 A =75 Au where (2.1.27)

N2-1
) L na
i=1 H a,b=1



Au on the RHS is a N x N matrix.
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For example in the SU(2) case

pial
U

s
2

i

: 1.3
1 -
A= 2 A
1,1 2
(A, + 1A))
il
1 .3 +
A W
- 1.3
qu -7 A
1 1
AUI AUZ
2 2
_Aul Auz
F @l -1
A3 N A8
-7z T V6

5
Y S ™

>
N W

1 2|
(A - 140
1.3
-TA
77 A
1,4 .5
75" - 1A7)
712. a® - 147y
2
76
1]
Ay
2
Aq
3
A,

(2.1.28)

(2.1,29)



-82-

a,b,c c
Note that (TbAa)d = Aj and

rraa = 27e(riah)? = 2atad rerird
i (2.1.30)
= Atat.
Similarly we define the Yang-Mills field for SU(5) as a matrix
b 24 44
A =T2A> =v2 ¢ ThAl (2.1.31)
u b ua i=1 u

AN

Since SU(3) x SU(2) x U(l) is a subgroup of SU(5) each SU(5) representation
will transform as a sum of SU(3) x SU(2) x U(l) representations.
We can identify the SU(3) x SU(2) x U(l) fields in each SU(5) representation

by embedding this subgroup in SU(5) according to

1) The SU(3) generators Lg ; a, b=1, 2, 3 are given by

- 1
L: = Tz - 3-52 Tz a,b,c, = 1,2,3 (2.1.32)
2) The SU(2) generators Sz ; a,b=1,2 are
a _ p3ta _ 1 .a . 3c | - '
Sb = T3+b > Gb T3+c s a,b,c=1,2 . (2.1.33)

The L: obey the SU(3) algebra

a

a €] _ a8 ;C _ <C =
(Ly» Ld] = 8, L - 8Ly a,b,c,d = 1,2,3 . (2.1.34)
and the Sg obey the SU(2) algebra
a C 1_ £8.C _ Cqa =
[sys S4 I= 8§35y ~ 553 a,b,c,d = 1,2 . (2.1.35)

[In general the indices will take values relevant to the group to which

the object under discussion belongs].

3) The hypercharge generator Y is given by

b
b ) (2.1.36)

Y T

1w
[ e IRV,

a 1
Ta + 2

-1
3 1 b

a 4
Since SU(5) is rank 4 there are 4 diagonal generators Y above and the

third component of weak isospin S
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_Lgl g2y 2 Legh S
s = 2(51 52) 2(T4 T5)° (2.1.37)
The electric charge Q can be defined in terms of these two

l
a

(2.1.38)

[ e R OV ]
3

1
The other 2 diagonal generators are in the SU(3) as in QCD and can be

defined as color hypercharge

c_1.1 2 _ 53
Y- = 3(L1 + L2 2L3) (2.1.39)
= —L3
3

and the third component of color isospin

32

1,1 _.2
Lo =5 (@ -L

2) (2.1.40)

for instance. The 12 new generators Tz, T: a=1,2,3, b =4,5 in SU(5) will

relate flavor and color quantum numbers i.e. transform quarks into leptons.
Towards SU(3) x SU(2) x U(l) decomposing the adjoint rep. A of SU(5)

we can write A as
5

3
ab a 1 .a c,.,b
A=T2A° = T (T2 -=5 s THA
b
a abel b 3% ., ¢ a
2
2 a+3 1l .a c+3, ., b+3
: (1272 - =5 T AL
* lpap B3 2% o, ot3’ats
1.b,a,1 2 a+3 ,b+3
+ L0 A% 4 = T T A
+ 1.4
ab=1 3ba 2 a+3 “b+3 (2.1.41)
3 5 5 3
+ T 5 TzAZ + T TEA:
a=1 b=4 a=4 b=1
S _ ,a,b _1b,c a,,bt3 _ 1 p ,ct3
o A=TL(A - FP A F S A5 -5 8] ALy)
3 5 3 5
-Y = Aa+—;— L T: DA+ I Az)]
a=1 2 b=4 a=1 c=4
\_/‘Y’*“—J



3 5 b 5 3 b
+ I T T:A + T T T:A
a=1 b=4 a a=4 b=1 a
Thus we define
& = AP - LD s a,b,c = 1,2,3
a a 37a ¢
b3 1 (3 ]
1l b,c+3 = W +
A3 "2 %% ¢ B w a,b,e,
oo .
V2
. _ba
Further let the new vector bosons be called:
x = at X2 = A%
a a A
a=1,2,3
Y =4 72 = A2
a a 5
Finally we define
3 a
6
ZA: _/;-B
a
a=1 3
)¢ = §%3 - 1 §25C
(where recall ( b)d T %% T 5 °p°@ so that
1
T - 3G, -1, -1, -1, -1) 13 = $(-1, -1, 4, -1, -1)
5.1 1 1 -1 -
Ts 5(1, 1, -1, -1, &),
2 _1 . 1. - 4 _ 1. - -
T2 = 5 ( 1, 4’ 19 19 1), T4 5( 19 ls 19 4, 1))
and so 3 5
Y=-1 1 T+3 I T
a=1 b=4

(2.1.42)

(2.1.43)

=1,2

(2.1.44)

(2.1.45)

(2.1.46)
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_1
3
1 .
3
= _1
3
1
0 +t3
. (2.1.47)
1
+ —
L 2 a——)
We find
1 23 1 1 -1 -1
- G X Y
6y - /3! G 3
2 2 _ 2B 2 =2 32
G, [6 7301 G5 X
3 3 3 2B -3 =3
= - Y
A Gl G2 [G3 m] X
(2.1.48)
3 +
X 3B W
SR 3 Vs * 7%
3
- W 3B
-5t 7%
L-Yl Y2 Y3 W [ \/i 30]
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We must check the SU(3) x SU(2) x U(l) transformation properties of these

fields which are written in suggestive notation.

a
b

representation while being SU(2) singlets and hypercharge neutral.

If the G_ are the gluons they should be in the 8 dimensional SU(3) adjoint

We designate the (SU(B),SU(Z),U(l)) representations by their respective

dimensionalities and their hypercharge.

The G2 should be (8,1,0) representations under the (SU(B),SU(Z),U(I))

b
transformations, respectively. We check this by recalling the
transformation properties of A under global SU(5) transformations
a' _ ,a ., a,c . c,a
Ab = A.b + 1g(g:£)cAb 1g(g:2_bAc (2.1.49)

a

b so if we choose

Now the SU(3) transformations are generated by the L

I o n (2.1.50)
{0 otherwise
with
A: = 0, then -1 = ‘*’aTE
- Xb[Ta _1 aaTC] _ ,ba (2.1.51)
al’'b 3 bc a’b

Further we can isolate the SU(2) transformations by choosing

wﬁ:g =¢s2 a,b=1,2 (2,1.52)

0 otherwise |,
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with s: = 0. Then

_ b+3_at3
@l = 943Thes
b{,.a+3 1 .a_c+3| _ b,a
[Tb+3 2 %Ter3) T S5 (2.1.59)

The hypercharge transformations are generated by

5
1 P
’2'2 b

[N e [9S)

Y=—%‘-
a 1

So if we choose

m.g =(- % 96.2 for  a,b=1,2,3
+%— 663 for a,b=4,5
(2.1.54)
0 otherwise,
then
g.l = Ye . b (2.1.55)

. a 4 5 , ,
The remaining 12 parameters w4,m§,ma,ma,a=l,2,3, are associated with the

12 generators T2 T4 3 of SU(5) not in SU(3) x SU(2) x U(l) which rotate

4,5’

the electroweak fields into color fields. We now decompose the SU(5)

fields in terms of their SU(3) x SU(2) x U(l) content. First we consider

a

a _ 1l a,c -
the gluonsGb = Ab 3 GbAc a,b,c=1,2,3.
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Under SU(3) transformations

a' _ ,a' 1 .a,c'
S T & T3 %A
_ LA 133,C _ 71C,8
= Gy + 1D Ay - 1AL AL
(2.1.56)
1 .af, c,d . d,c
L etfisanial - ek
W
- @ 4y c _1 c,d
= 6, +isQAL (A'b 3 ‘SbAd]
cl,a 1 .a,d
1 (2 ‘-I‘-)b[Ac 3 chd]
- l-Ad 1g(A-L)a - ig(A-L)
374 ==b b
= 0
yielding
a' _ La a.c _ . 11Cqa
% Gp * 18l G - 18A-D),G, (2.1.57)
-1 a.c c.a
= Gb + igh Gb 1g>\bGC
Thus G: transforms under SU(3) as the 8 dimensional adjoint representation.
a Sg:g for a,b=4,5
Under SU(2) transformations W = { 0  otherwise
a' _ ,.a, ., c..a,d d,a
Gb = Gb + 1gwd[6cA.D SbAc] (2.1.58)
’2’ !
but a,b=1,2,3 and for SU(2) wfi 3. 0. So Gg = G‘;; the gluons are

invariant under SU(2) transformations; they are singlets.
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For hypercharge transformations

a' _ .a_ . _ 1 cyrea,d_da, _ .a (2.1.59
Gb Gb + ig6 [ 3 dd][ScAb 6bAc] Gb . )
The G: have zero hypercharge.

Thus we have confirmed that the G: are indeed gluons. Under (SU(3),SU(2)a
U(l)) they transform as the (8,1,0) dimensional representations.

Next let's check that (Xa,Ya) transforms as (3,2,+5/6) under
(SU(3),SU(2),U(1)). That is we want to check the transformation properties

of A: with a=4,5,b=1,2,3. Under SU(3) transformations

a —
a _ {Ab a,b=1,2,3
Yy 0 otherwise
a' _ ,a 19062 d _ GdAa] = A% - 12 (2.1.60)
Ab Ab d cAb bc Ab be °
Thus Xb’Yb are SU(3)3's.
Under SU(2) transformations
S a_3 =
a _ b-3 a,b=4,5
u)b 0 otherwise
a' _ ,a + 1g0S[62 d _ GdAa] = A% 4 igs®AC . (2.1.61)
Ab Ab g d cAb bc Ab g cAb

Thus (X,Y)form an SU(2) doublet a 2.
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Under hypercharge transformations

' a . 1 cd.a 1 c.a,d
A.b + 1g6[+ 5d5bAc + 2 Gd(SCA.b]

a2

w

(2.1.62)

A; + igb %‘As -+ the hypercharge y = +-%

Thus the doublet (Xa,Ya) transforms as a (3,2,+5/6). Since

=a +

- T
X = (Xa)

and Y2 = (Ya) - (ia,Qa) transform as (3,2,-5/6) .

+
The WO,W" transforms as (1,3,0); the adjoint representation of SU(2),and
B is a (1,1,0) a complete singlet.
To summarize the 24 dimensional representation of SU(S),A:

transforms under (SU(3),SU(2),U(1)) according to
24 = (8,1,0) + (1,3,0) + (1,1,0)

A: = c: W, u° B (2.1.63)

+ (3,2,-5/6) + (3,2,+5/6)

sa za
Xx,Y) (Xa,Ya)
The charge is Q = S3 + Y; thus Field 0
a

Gb 0
W° 0
W +1 (2.1.64)
B 0
Xa +

]
w|— W|H wl— Wi
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Of course these are Yang-Mills fields and each has also the inhomogeneous
form under local gauge transformations

a' - a a . . ac _ . . c,a (2.1.65)
A'bu A'bu + V2 aumb + ig(w I-—)cAbu ig(w l)bAcu

So for instance under SU(3) x SU(2) x U(1)

a = a
Cpu Chu

a

c c.a
b G

+/2.3) by~ 186, (2.1.66)

!
+ 1gACG
etc.

The SU(5) gauge invariant pure-Yang-Mills part of the Georgi-

Glashow model is

1 Hv 1 i _iupv 1 a,_uv.b
L = - = = - = = - = (2.1.67)
- G TTF T 7 FuF 4(Fw)b(F ),
where as usual
a
T
- T
¥l BV ¥l auv uv
1 1 i i ii
= — DA - — A = DT -DTA
N LN D, u u Ay v (2.1.68)
where
i ii
D = 3 -=8BA = 3 - igT'A .
u TR u gL 4 (2.1.69)
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Now let's re-write the Yang-Mills field transformation properties in a

more compact form. Recall
a' _ ,a a,c . c,a a
Ay = A, tiBuAp - digwAl 0w V2. (2.1.70)

If we define the parameter matrix for some representation matrix T to be

- —-ab . abjc _ ¢
w = Tbma i.e., (waa)d = wy for the fundamental rep.
' (2.1.71)
and
- ma,b . a,b .c c
Au = TbAau i.e., (TbAau)d dp (2.1.72)
Then more cryptically in matrix notation the Agu equation is
A' = A +/2 3w+ iglw,A ] (2.1.73)
H M H H
Thus
' o= 3 A" -3A' - 2B [A"A']
HV H WV v u '/E H™ vV
= Fuv + igau[m,Av] - igav[w,Au] - ig[Au,va] - ig[auw’Av]
2 2
+ 'g/T_ [A]J’[N,A\)]] + 5/__ [[w,AU] ’A\)]
2 2
2.1.74
g2 ( )
= F,* 1g[w,auAv - 8vAu] + ;% [w’[Au’Av]]
where we used the identity
[[A9B]’C] = [A’ [B,C]] = [B,[A’C]] to give
(2.1.75)

1 = + 2
Fu\) Fu\) 1g[w,Fuv]
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Thus Fuv transforms homogeneously as the adjoint representation. So

F = 3A -3A -2B[A.A] (2.1.76)
uv H Vv vV U /i H v

In components this yields

a - a _ a _ig ,a ,c¢ _ ,a ,c
Fbuv auAb\) avau /3 [AcuAbv Achbu] : (2.1.77)
We will write this in terms of SU(3) x SU(2) x U(l) fields later.

Next we consider the matter field representations. Recall first

the electron family. The fermions are the

- a ,a
veL’eL’uL’dL (2.1.78)

e a da
rR*YR’9R

Thus we have 15 fields per family. Since we want to put the fields in one

or two representations it is convenient to deal with all left—handed fields.
S0 we take the charge conjugate fields for the right-handed ei,u;,d; fields
since they @¥€ left-handed. Under charge conjugation C

vt =) = Gyt
(2.1.79)
vocct D = it
where
-1 T
c c = - . 2.1.80)
Y11 Yu (
For our representation of the Dirac matrices
- .1.8
C = -C 1 = _C-f' = _CT = i_yz_yo ) (2 l 1)
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Thus
o zep el =y eyet
L L <
R R
-T
= v = v_Cy
¥ e
= o 3 = oGy
* + (2.1.82)
-T
= CwR
L
- (o4
= :pL .
R
Similarly
<. ol _ el L Tl
wL- Cy, C CyC Y4 Y C Yy
s R
= -t (2.1.83)
_ _ T~-1 _ ¢
= ~ugC Lo}
L R
Since
— + +
-% T o* -1
e R MR R e (2.1.84)
R R L L
T -1
-wRC
L
hence
e\ T (2.1.85)
G~ = -Cyp
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and so
"¢\ T
= 2.1.86
Vg Clyp) (2.1.86)
L R
and
- _ cT
g = Y C. (2.1.87)
L R

So instead of (wL,wR) as fundamental fields we could use the equivalent

. c c c c - a ,a __, + c¢a ,ca
pairs (wL,wL),(wR,wR),(wR,wL). Thus we replace e ,uR,dR with e up ,dL
with
& = T = ¢ (2.1.88)

Now under SU(3) x SU(2) x U(l) these fields transform as

di a(3,1,1/3) since
dR is a (3,1,-1/3) and

c _ T
dL = CdR

the'E; transforms according to U_l taking a 3 to 3 and a - 1/3 to + 1/3.

Recall
Ve
RL = _| transforms like a (1,2,-1/2);
e JL
however since for SU(2) a 2 and 2 are equivalent we can make a 2 out of lL
. Yoo g i . .
(1022L) io, 0, +5 g 10, weo &
= do0,2 +1 g io, w-o(ic ;-(ia 2.) (2.1.89)
2°L 2 2 =—="""2 2°L

i T,.
10,8 = 5 8 wd (102£L)
. - iﬂ(gﬂg)
= do,8 -5 g(1022L)9{g = (1022L)e
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Thus lUZQL is a 2. So

. _ e 5 _
1022L = {-v ] is a (1,2,-1/2).
ejL

Thus we see that the 5 fields di and io all transform as complex

oML
conjugate representations. The fundamental rep. of SU(5) is a 5, its

complex conj. is 5 and is a good candidate for these fields: we must

check to see if
5 = (3,1,+1/3) + (1,%,-1/2) . (2.1.50)
Recall under SU(5) transformations if wLa is a 5 it transforms as
' . b
Yo T Ypa T oiBw Vg - (2.1.91)
Under SU(3) transformations

k: for a,b=1,2,3

b _ {
®a 0 otherwise

giving

b
! - =
wLa 1bLa igxawLb for a,b=1,2,3
(2.1.92)

L
wLa IbLa for a=4,5 .

Thus le transforms as a 3 and wLA is a singlet under SU(3).

2 5
3



Under SU(2)

NEU

yielding

Thus le is

A
wLa

|
wLa

2
3

f

o

-1

or a,b=4,5

therwise
for a=1,2,

b
3
85, %Lb
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3

for a,b=4,5 .

an SU(2) singlet and wLé is a 2.

Finally under hypercharge

SO

Thus

A}

lpLa

wLa

Y1
2
3

YLa
5

68

o

-1i

+ i

+1i

has hypercharge + =

for a,b=1,2,3

5

for a,b=4,5

otherwise

o [-3]

8oy Vs 4

has hypercharge - %-=

l!"La

1
ig {+'§] ewI..a

y and

for a=1,2,3

for a=4,5

(2.1.93)

(2.1,94)
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So we can write the 5 as a column vector

€
=

"

o

a

where under SU(3) x SU(2) x U(1)

12

L transforms as

a;a=1,2,3
and
wLb;b=4,5 transforms as

We are left with the 10 fields

+

ers Up s Ups dp

(3,1,+1/3)

(1,2,-1/2)

ca a a

The transformation properties of these under SU(3) x SU(2) x U(l) are

+

e is a (1,1,1)

a
uﬁ is a (3,2,+1/6)
dL

since uR is a (3’l7+2/3)'

ca

u. is a (3,1,-2/3)

(2.1.95)
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These {ields have a chance to fit into the next highest tensor
representation of SU(5) a 10. We must check if under SU(3) x SU(2) x

U(1) the 10 of SU(5) decomposes into
10 = (3,1,-2/3) + (3,2,+1/6) + (1,1,1) . (2.1.96)

The 10 transformation properties are obtained by writing the 10 as the

antisymmetric product of two 5's. Let w:b be the 10 and Aa,Bb each be 5's;

1
A2 = A%+ igmgAb and similarly for B , with
wib = AaBb - APp2 we find
ab' _ ,a'_b' b'_a' which gives the (2)0) tensor transformation
WL = AB -A equation
ab’' ab . a,chb . b ac
¢L = wL + 1gwc¢L + 18NCWL . (2.1.97)
Under SU(3) transformations
a
A for a,b=1,2,3
a _ { b
“% 0 otherwise .
First consider a=1,2,3; b=4,5
ab' _ _ab . .a.chb a,c=1,2,3
Yo T v tisddy b=4,5 (2.1.98)

This transforms as a 3 of SU(3). Next we consider wis

1
o= a  su(3) singlet . (2.1.99)
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¢ a,b,c=1,2,3 must form a 3:

. . b
Thus the remaining 3 fields Eabch

- 1 be be bca h
¢ = FE L W3 >¥ = e ¢ ence
La 2 "abc'L L La (2.1.100)
' = 1 . ,bde 1 . ,c bd
¢La d)La + 2 eabclg}‘de + 2 eabclg)‘de
- ig ,b dce cde
bra ¥ 72 Xalfape®  * fach® My
b dec
= b, i8rgE . 4. resulting in
S - ig\P 3 (2.1.101)
¢La ¢La 1gxa¢Lb a 3 of SU(3) .
Under SU(2)
s 3-3 =
a . | b=3 for a,b=4,5
“% 0 otherwise
then for a=1,2,3; b=4,5
ab' _  ab , ., b-3 ac . 2.1.102
v = Y +igs__Ju this is a 2 of SU(2) . (2,1,102)
For a=4; b=5
45! 45 1 5 2 4e
= i i 2,1.103
Y b+ dgs__q¥rT + dgs__qip ( )

but wib is antisymmetric so a # b

45" 45 1 45 2 45
= i i 2.1,104
v Yo+ dgspyp + dgsyuy ( )
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a 1
but Si + S§ =0 = S, for SU(2). So wgs = w45 an SU(2) singlet. Finally
L
X a
for ¢£a = ¢La since a=1,2,3 only and W = 0 for these values; thus ¢La

is also a SU(2) singlet.

Once again the hypercharge is given by

- %-539 a,b=1,2,3
a _ 1l .a _
w = + 5 abe a,b=4,5
0 otherwise .

So for a=1,2,3; b=4,5

ab' _ ab . 1, 1y ab (2.1.105)
o= v +ige(- 5+ gy

thus y = +-l for Wib- For wéS we find

6
45' 45 s 1 1y 45
¢L = wL + i GEE + EJwL (2.1.106)
45 X
So y = +1 for wL . Finally
1 = ig _ 1 _ Ly,,be
La bra* 73 Capc "3 -3V
= 106 (- 2 (2.1.107)
¢La + 1ge( 3)¢La
thus ¢La has hypercharge y = —-%. So we find indeed that

10 = (3,1,-2/3) + (3,2,+1/6) + (1,1,1)
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where
ab .
wL »a=1,2,3,b=4,5 is the (3,2,+1/6)
wgs is the (1,1,1)
and ¢ = = b¢  4,b,e=1,2,3 is the (3,1,-2/3)
La 2 eabch a,0,C=L,4,7 18 € *Te )

We can then relate the fields

u?
+ L ca
e | 4| and up to the 10 of SU(5) by
dL
0 ug —ug u1 dl
c c 2 2
—u3 0 uy u d
(2.1.108)
wib = 1 +u§ —ui 0 u3 d3
V2
-u -u --u3 0 e+ *
-al —a? - -t o L

The 1/V2 is a convenient normalization factor. Thus we have incorporated
the 15 quarks and leptons into two SU(5) representations (for each

family) the 5 and the 10.
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Following Langacker it is useful to display the fermion representa-

tions in a cryptic form

Vv v AY)
- e Cc H [od T Cc
5 d s b
- a _ a - a
€ L H L T L
(2.1.109)
ua Ca ta
10 e+ uc u+ cc r+ tc
a a a
a a a
d L s L b L

where we are in the weak basis (the superscript w 1is suppressed). The
SU(2) doublets are arranged in columns. The SU(3) transformations act
on the -script a. The remaining 12 generators of SU(5) mix adjacent
columns.

We must now construct the SU(5) invariant kinetic energy terms

for our two left-handed representations, recalling the SU(5) transforma-

tions
.o b ) . 4 ib
YLa Yra = 18w ¥y Vg~ 18T vy
w'ab = ¢ib + igw:wgb i bwic (2.1.110)
ab i_i.a cb i i.b ac

bpooF ig(w™T™) Mt ig(w™TT) w
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Thus we define our covariant derivatives by

® ¥,

and

ab
(4

We can check the 5 case to see that it remains a 5

®v,)}

3,8 +ig(TlAl)b]wLb

c d b

b ig
] +
[ uGa 75 (Td cu) ]w
ig
[a 6 + e Aau]wLb
[3 6a63- g(TlAl)aab .g(TlAl)bda]w
b _ ig e a.b ig e f b a, cd
[aua 4 5 (TfA ) Gd 75 (T déc]w
ig ,a /b ig ,b cd
[aua Gd 5 Acusd e Ad ) ]¢L .

ig
[3 5 + s Aau]wLb
(3 62 + 38 (A% 4+ /7 5 W2 + 1gu"a -
wa o au ua ¢ ap
2
b c c (ig) b.c
(Dqu)a - igma(au(sb /5 Abu)ch + waAbquc

2
+ (ig) [ cAb b.c c,b

J2 Y% au waAbu - waau]ch :

(2.1.111)

(2.1.112)

b . d
lgw:Ac)](wLb_lgwbde)

(2.1.113)
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So as expected

v = _ 4. b
(Dqu)a (Dqu)a lgma(Duq)L)b (2,1.114)

(Dqu)a transforms as a 5 of SU(5) also. Thus the SU(5) invariant KE terms

are

L= GXW), - G i) (2.1,115)

Notice that, in the last term in the above equation we are not overcounting

due to the 1/Y2 normalization factor in wib. Expanding this somewhat
= (T y3rsq:D _ g ,b
Le = G7rpe, - 2 &dw,
- . b, g ,ba; cd
- @) [186%60 + B 350+ B 0s?yy (2.1.116)
L"ab ¥l /7 dc 'L

using the wid = _wgc we find

= (T \a b _ b _ _5
Ly = G%ips] é‘a]‘%b (¥,) , [1762 /_A W (2.1,117)

As expected the gauge coupling for the 10 is 2g compared to g for the 5

since the 10 is twice the dimensionality.



SU(3) x SU(2) x U(l),
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Before studying the Higgs sector and SU(5) spontaneous breakdown to

let's express this fermion kinetic energy Lagrangian

in terms of the SU(3) x SU(2) x U(l) fields. First consider

- .a.b
(wL)/Aé wLb

H

L

aclac23c3g‘ -3
e)
1 1
G, Cq
_ 28, Gg
Y30
c) @ -2
Y30
X, X,
Y, 1,

L

-~
}-{l ?l
x? 72
3'(3 ?3 Yu
3
(.W_ + iB.) W+
2 /30
3
w- (__ 1’]__ + _.3_B.)
2 /30
u
J

(2.1.118)



N

2B

- =5

/30

(G
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3
Gy X
3
¢, X,
- ﬂ) X3
/30
3
)—(3 (K__ + 3B
V2 50
33 wh

(2.1,119)



cldc2dc E— _ ;e
| IL
r
eja; - 4 i +
/30
gd; - 2B 4 +
a Y30
g - Zas
a /30
)-tadc + 33’ e- +
30
.§adc - ——33/ ve +
a 30
-

"'c'bp,ac 2 ¢
d - —4d
dI. b La [3—0'1..
~ ~
}4_3_'_},‘
——1 |2
+ e -~V
I_.EJL M+ _Z_a
V2
- -~
— -
+d°? xx N
L Laa —ve
L

— e
‘)Hﬁéh -V
\ e)
{ -\
—
¥y, | €
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(2,1,120)



Now recall

SO

dc b

1) L

S

=,

- T
CwR.
T -1
_q)RC
T
Yu
_T -1 u <Ta
dp, € yhedy
T uT=Ta
+ de dR
—a
dRY b
-
)4 e
_2| L,
V2 L
-
.
3
o
V2
zL(lcz) .
H
T
0 ~-1) Ei
_ V2
o .
1 o) |w
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(2.1.121)
s iY2Yo
(2.1,122)
w
(io )2
w|  Fr
V2 (2.1.123)
-‘-\
w|[o +1
2
3 L
. B Y
V2
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3
¥
_ 2
=4 . g1
- H ——
L v2)
r 9
= —E /2_ 2
L _ y—3 L
+ W -
2
.. >
- 1 .
=l — oK QL where recalling
V2
Loah = L3t
2 == 2 b a
r 3
u
W
3 w+“
I
75 T (2.1.124)
w2
2
- 4
Note also for the d-quarks
¢ b c _ =a_a
dy, ’QidLa = " dpfpdpy
- <a .c.d.a
= = do (T8 )pdpy (2.1.125)
-a,.ij.a
= - 2T,
V2 =a a
= - B
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yielding

- .a,b V2 = 2 =

@)%y = =S 3 (a@d, + —— T Bd

L) AV 2 9r R /ﬁRBR
1- 3 -
- gk +— [¢ B ]
/E L L /36 L
- =a
c ar—_— 1 - - c
+ dL ,-'Xéxé,zL + QL [,ﬁa] dLa

and of course (integrating by parts for the d-quarks)

-a, - = - .
wL;QwLa + dR%}dR + QLLQRL

Next we consider the invariant term made from the SU(5) 10.

(2.1.126)

(2,1.127)



()

ab

a cb
c

(IP

N

) a cb
L ba c
-
0 ECB -c2 Gl
—L_1C3 0 -cl 1-12
Tr ac? -GCl 0 u
3
-u1 -u, -u3 0
- - - —+
-d1 -d2 --d3 -e
.
G .
_ 2B ¢ )—(2
V30
G3 _ _2B =3
3 /3
3
X, W ,_3B
2 /30
Y W [-
g 9
c c 1 1
0 u3 --u2 d
c c 2 2
“u, 0 uy d
x u; -ui 0 3 d3
1 3 +
-u- -u~ -u e
b -d? - oo
. o
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(=
w

]

(2.1.128)
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After tedious calculation we find

- cb _ 1 ¢ c _ = b _ 5
(wL)aEAiwL = 7 luy Bupy -u Ay - d gd)

LA M e - K a3 B a_ o 68+
uL /3—OLLLa LaJé-aL La/'3—0L L/B—O_L
rXB \r\
aill ,W+ u?
r:_g__T 2
- u
L2244 W
W - a7,
| 2] )

Lk
= I (S ciupk
+ Yu[uLjY L €k9 Y dL]
=+ u j jiks _u ¢ (2.1.129)
+ .1,
Y glepyup +em iy Y

Now recall our charge conjugation formulae:

— T
cabec _ T -1 b -Tb _ T =Tb _ _-b
1) up Baupp T Tup,C f“ZCUR B +“Rag§ up RgﬁuRa
—+,+ _ -—=¢,-—¢ _ _-T -1, -T _ == -
2) e Be, e j.B’eL e C ,B’CeR eRB/eR
_E‘.- a c -a
3 = - )
) UL A a RB/uRa (2.1.130)



Also

ol
8
o
5‘: |
;8
o

and similarly

Thus finally

a cb

(wL)aBAch
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b - b
- RQE“Ra - fpuy

/2 -a a V2 - ab
=5 S AeBpupy - 5wy (@ pur

- b _ 2= a.b
'dLagidL = -7 4,84
1 V2 -a a V2 - ab
= 5 e ey - 5 eB)uy
V2

Y30 V30 2
i H -ciu k
+ {Xu[ dLjY L EjikuL Y uL]

i u+ -ci u.k
+ Yu[uLjY e ejikuL Y dL] + h.c.}} .

(2.1.131)

(2.1.132)

(2.1.133)
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The diagonal space-time derivative terms are

- .ab =T s o/ ab
) oo = (wL)ba%zﬁL
~ _c_3 _2 _
0 u -uc ul
—3 =t -
-u 0 u u,
—2 —1
= 1 _.C =
= 3 Tr u u 0 ug
--u1 -u, -u3 0
- - - —+
—dl -d2 —d3 -e
.
c c 1
0 u3 -u2 u
c c 2
~uq 0 uy u
x u; -uc 0 u3
—ul -u —u3 0
-dl -d2 -d3 -e+
\
a
—— /-\ u
S O P A I
SNe—~ L d

-a. - ./a _ =L/l
= upiply, - L7 - Side

- . b
= (wL)ab¥¢%i

ol

[a9]

[=7)
w

x i3

(2.1.134)
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Putting all this together and regrouping the terms we get

Lp = Ll - %24 + % g By
+a vt - i%-gfé; - ;%g g B )&, - 3%-(A:§;)§]q:
+ E;iyu[au +-§§% Bu]e£
'l - i:if_; B )& - 5 G )2 Tup
+d 1y [ (+ +-;§g B )& .;% (&ﬂgu)sldz
+';§ Xl vl - 3y " JlkuL ) (2.1,135)

0 I e | S S S T g "¢ iuk
Yl gyey F v vdp g+ ey Ty T+ heeld

Thus we see that the first 5 terms reproducé the SU(3) x SU(2) x U(1l)

1 1 - ' = z 1
standard model as long as we can identify g gSU(Z) g /58 (this
v3/5 comes from the normalization of the hypercharge Y) and g, = 8- At
large momentum we can ignore the spontaneous symmetry of the SU(5) and
indeed the coupling constants merge to be given by g (more on this later).

The last two terms change quarks into leptons and vice-versa (i.e., they

violate baryon and lepton number conservation).
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s . , 2
2.2. Proton decay, unification mass, sin“6w, etc.

The vertices involving the X and Y bosonsin LF change the quarks

into leptons and each other so the X and Y's are often called lepto-quark

bosons or di-quark bosons. The Feynman diagrams corresponding to these

vertices are

+ + c
e e )
leptoquark
a vertices
X Y Y
a a a
u? a
d
cd cd
u u
di-quark
vertices
x2 Y
a
uP &b

We can estimate the proton (neutron) decay rate from such an X or Y
exchange.

The proton is a bound state of 2u and 1d quarks while the neutron is
2d and lu quarks. Thus we have processes of the form p > e+(aq) where (qq)
form a neutral meson such as no,po,w,n... Or n -+ e+(Gd) where the (ud)

can be n_,p—, etc.



-118-

The Feynman diagrams for such decay are

r d e+ u e+
> - > >
X
P Y
(n) 3 u uc d uC
- - ) »— >
u > u ~M . u u
- (d) (d) (&) > (d)
d e+
Y
u 2
o
u u
(d) - (d)
e — P —
X
Y
u da¢
ac — P

or the nuclepn

P~ ;M+
or

-0
n -+ 9w

can decay into an anti-neutrino plus meson such as

+ + +
M =1m,p
o o o
M =7 ,0 ,0,n etc.



-119~

for example

d v¢
—p— -
Y
Pn) u ac
— > rop
w(d) . a(d) M (M)

If we assume Mx v My>> mp, the proton mass,then we can take the X,Y

propagator to be l/Mi. Thus our Feynman amplitude goes as

2 a 2
EE N —%- a. = &
v M 5 " 4w (2.2.1)
pS X
then the proton lifetime should go as
Y
Tp ’\1_2 —5' o : (2.2.2)
Q: m
5P
30 . P .
for o ~ GQED and Tp > 107" yrs. the lower experimental limit we find
M 2 10 Gev . (2.2.3)

We will next consider the spontaneous symmetry breaking of the SU(5) and

independently determine MX from knowing the low energy gs,gSU(z),g' and the

RGE to be *= 1014 GeV in agreement with our proton decay estimate.
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There are two points of symmetry breakdown in the Georgi-Glashow
model. First we must break the SU(5) symmetry to SU(3) x SU(2) x U(1)
and then as usual we must break our SU(2) x U(1l) down to Uem(l). As
drawn earlier we have the momentum behaviour for our coupling constants

as shown below.

2 \
8@} g, (@)
I
3
2
. ! o,
Mz ) MZ - -~ Q
w } X N
SU(3)xGLL) SU(5)
%'S'UG) x SU(2) z UL} o
81> 852 84 are the U(1l), SU(2) and SU(3) effective coupling constants.

Recall at energies > Mx we found that

R 1 . .
g = 32 33 = V/; gl all unification occurs at a single point Mx.

Remember
2 2 El
sinZe = &~ . %t 5 .3
w 2 12 2 2 3 8 (2.2,4)
g tg g, +g L1+
and
o _ 23_ _ g sin ew ) g, sin ew _3 (2.2.5)
o 2 2 2 8
s gs &s g3
. 2
experimentally sin ew = .23 < 3/8
a 1
and @ = 10 cev?) 2z 35 < 3/8

]
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But we know that 8 = gi(QZ) and to compare our SU(5) predictions to

these values of ew and a/a,. found at low energy we must use the RGE.

5

Recall our RGE for o, the fine structure constants

-,.2
)\2 aj_(_k_é_g.l = B(é) where g(l’g)= g (2.2-6)
? X
with g3
83 = - 32 [11 - %F]
327
g3
B, = - 22 [_232 - %F] (2.2.7)
327
g3
By =+ —1_2"292 Fo.
32T
- _ 3
So in general for Bi(gi) = bigi and
-2,.2
2. 8 9 29
ai(Q ) = = Q" = A™M",M some mass scale or momentum
scale (2.2.8)
then %
22 —L - grp o2
2 i'i
3 2
X gai(Q ) (2.2.9)
= 7
2 3 Q
ith o (M%) = 5 e found
w i 4
2 ai(Mz)
a.(Q7) =
1 1 - 8ra, ()b, 1n Q2 /2 (2.2.10)
That is
2
1 1 _ Q
5~ 2 -87b.1n =5 . (2.2.11)
a, (@) o (1) M

. 2
Now for M2 = M2 in our SU(5) case as Q2 = M2 we find a.(Qz) z ai(M )y =
2 X X i x
&4 s o .
—= . We find thatd and — run, and are given by
4m L ag
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a
sinzew . = +1_ -
4T %
- 1 - 87 a_b_ 1n QZ/M4
a1+a ( 11 X
1 - 81 ab, 1n QZ/M}Z( (2.2.12)
. %
T 4. +a. [1-8m(a.b, - a,b.)ln Q2/M
1 2 1’1 272 X
o 8r o 2
- 1 2 Q
- 1+ [e¢ b, - a,b,]1n =3]
al + az al + a2 171 2 MZ
X
2 ’ Q2
sin 6 = g [1+ ___8__ [5 1" b2] 1n 7] (2.2.13)
4r(l + ) M
x
1 20
Now b, = — F
b. = ___1_5 22 _ 4 g (2.2.14)
2 391 3 3
So 5 bl - b2 = 5 independent of F
48 T
With a.b. - a.b _._Bi(b _b)=53(_]i)_1_ we
373 2°2 4w 3 2 4w 3 39 2
find , 2
2 =311+ (S—) 1n &
sin = o —5
w 8 481r M2 (2.2.15)

and



E

Q1
QI
()]
o

yielding

*QED
4
s
) , 2
and rewriting sin ew
In general we
a
QED
as
a
s

i.e.

find

et
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o

e Sinzg

a3

a 1-8ma b, 1In Q2/M2
2 373

%3

2=

' 2,2
1--8m12b2 In Q /Mx

% 3 Q2
——[1+( ) In 5] [1 -
@3 8 M2

X

4sw

55

! g_
48m Sriin ]

2+ (5—> (5 *1 2

X

2
3 g2y 33 Q&
8 [1+ (4W)l6ﬂ MZ]

X

from QCD that

1 2 10 GeV2

12w A~
2,2 -
25 1n Q°/A
1

and agpn = 0(0) T 3707

QED

] sin ew

8ﬂ(a3b

3 - azbz)ln

.25GeV < (c,t) threshold

(2.2.16)

2
Q
w2

X

(2.2.17)

(2.2.18)
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This implies

sin26w * .19 at Q2 = 10 GeV2
This is close to the measured value of 0.23. This yields

Mx = 1016 GeV and Tp > 1037 yrs.

Since Tp ~Mi it is very sensitive to corrections for Mx' 1f we more
carefully apply the RGE and include Higgs and threshold effects

Mx z 1014 GeV and Tp it 1030 yrs.

and sin29 T .21
w
Before discussing the spontaneous symmetry breaking in more detail,

let's review what we have done so far in building the SU(5) Georgi-

Glashow Model.
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Review of the SU(5) Georgi-Glashow Model

We have built our grand unified theory on the SU(5) group. This
group has 24 generators which in the fundamental representation are
given by

a,c c.a l .a.c .
(Tb)d = Gbsd - 3-5b6d (a,b,c,d = 1,...,5) obeying the defining

algebra of SU(5)

€y - ga@pC _ sCoa . . _
d] GdTb Gde . The fundamental 5 dimensional repre

sentation is defined by the transformation property

[Ti, T

b d
01¢ = S + 1g (e TG (2.2.19)

¥ + ig Syt
d
and the fundamental 5 dimensional representation is defined by the trans-

formation properties of the complex conjugate of ¥ namely

= Syt
¢, = (9)

and
L

b.a,d . d
0o = ¢, ~ 18w T), ¢4 = ¢, - ig 0w by (2.2.20)

[mi are the 24 parameters describing the SU[5] transformations m: = 0].
All higher dimensional tensor representations transform as the appropriate

products of the 5 and 5 representations. In particular the matter fields

were taken to belong to the 5 and 10 dimensional representation of SU(5)

that is (for each generation)

e ] ¢ _c¢ 1 13
d1 0 u3 u2 u d
c c c 2 2
d2 -u, 0 u; u d
z - c ab _ 1 c _.c 3 3
5 Via = d3 10 by 77 u, u 0 u d
1 _2 _3 +
e u ut -ut 0 e (2.2.21)
- 1 2 3 +
| ve 11 B d -d d” -e 0J L
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where under SU(5)

A
- _ b
by = ¥, - lew v (2.2.22)
and
.ab _ ab . _a ,cb b, ac
b b tlew Yyt igwch . (2.2.23)

The SU(3) x SU(2) x U(l) generators were embedded in the SU(5) generators
according to

a

. a
b with parameters A, we choose

1) for SU(3) transformations generated by L b

A: if a,b = 1,2,3
a
w =
0 otherwise
a _ b.a _ ,b.a
where Xa = 0 then waTb = AaLb ,
2) for SU(2) transformations generated by S: with parameters s: we choose
a=-3
Sb-3 a,b = 4,5
a
W, =
0 otherwise
with sa = 0. Then mbTa = sbSa
a ab a'b

3) The U(l) hypercharge transformations are generated by

3 a 5
r T+ T T
a -

1 b
=1 b=4 b

Y=-3

N

So we choose

- % 062 for a,b = 1,2,3

a
“ T 1 a
+ 5 Odb for a,b = 4,5

0 otherwise
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Then

So under the SU(3) x SU(2) x U(1l) transformations the 5 and 10 have the

properties

1) 5:  a) bra0 @ = 1,2,3 transforms as (3, 1, + %)

L]

b) wLa: a = 4,5 transforms as, (1, 2, —%ﬂ

2) 10: a) wib; a=1,2,3, b=4,5 transforms as (3,2, + %D

b) wi’s transforms as (1,1, + 1)
-1 b -
c) ¢La 25 e ch, a,b,c, = 1,2,3 transforms as (3,1, —-%)

verifying the choice of notation.

In addition we introduced the 24 gauge fields Aﬁb which transform

as the adjoint transformation under SU(5) (for global SU(5) trams.); for
local transformations we have the inhomogeneous term also to give

a' _ ,a a
A = A, * V2 3, up

. a,c c.a
+ 1gwcAbu igwatu .

(2.2.24)

Under the SU(3) x SU(2) x U(l) transformations we found the transformation

properties of Agu

24 = (8, 1,0) +  (1,3,0) +  (1,1,0)
a _ a + W°
Ab = G + W, + B
u bu u’ u 0
(2.2.25)
= 5 = 5
+ (3’ 2) - 6) + (39 23 + E)
=a a
+ (X7, Y) + (Xa, Ya)

where we summarized this decomposition in the matrix notation
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B =1 ab
1 _ 2B 1 1 sl =1
(G1 7?39 G2 G3 X Y
2 2 _ 2 2 =2 =2
Gl (G2 730 B) G3 X Y
3 3 3 2 3 =3
€ € (63-7pB) X Y
g - ;
W 3B +
\]
v % % % Crtimt TV
3
- W 3B
7 ¥y Ty W 75t 75
) H
L m—
(2.2.26)
The SU(5) gauge invariant Lagrangian making up the Georgi-Glashow model
will consist of 4 pieces
Su(5)
= + + +
L Lym LF L¢ Lyuk (2.2.27)
where so far we have discussed LF and lym with
= - -]L Tr F FU\) 2.2.28
ym 4 v (2.2.28)
where
- i
F o 0,4 = 34 - ¥ (A ,A,] (2.2.29)
and s
! = + 2
A=A 23w+ 1ig [w, Au] (2.2.30)
] _
implying Fuv = Fuv+ iglw, Fuv] (2.2.31)

. \Y . : . . .
thus leaving Tr Fquu invariant. The fermion kinetic energy terms are given

in terms of the covariant derivative

- b ig b
@), =38, +7§Aau]wLb (2.2.32)
and
ab _ ab _1ig ,a b _ig ,b .a, cd
(v = 13,88, v K 84 = 7 Ay S vp (2.2.33)

thus
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—~
]

- .a . - . ab
F = @) i(® wL)a - (wL)ab i(® b))

G 1186 - K 1y, (2.2.34)

- cqcd . 28 ga,.Cb
),y (1867 + 58 L2107
\j
Under local SU(5) transformation L = L, as desired. Before studying the

Higgs sector we expanded the LF in terms of the SU(3) x SU(2) x U(l) fields

and found after a tedious amount of algebra:

- 7 M _ig . 3i
Lp =21y B, -4 +738 8,11
= TR S - U | sa _ 18 a, b
+ qaL Y [éu 2 g-—u V60 g8 ) b 2 L-E%)b]qL
- g H i6
+ e~ iy B + ) Bu]eR (2,2.35)

a - isg a _1ig .G ,a

- u 2i a _1ig. .c 314D
+dp 1y [(3u + 755 Bu)db > (A _u)b]dR

<3 =j ,
+§2- El...1+ % [l +heed

Thus the first set of terms are just those of our standard SU(3) x SU(2) x

i = = ' =
U(1l) GWS model but with Bsu(2) & su(3) g' v5/3 g
So —
_ ,GWS, _ - -
Lp = L7 (8 = 8gy(3) = Bsu(2) /5/3 gr(1)’
=i, o+ _ == M -ci u k
+ -5% {Xu[dLjY e — e Y dLj + €5y U Y uL] (2.2.36)

sir = vt - HsC -ci p.k
+ - + + +
Yu[ uLjY eL VerL ¥ dLj EjikuL Y dL] h.c.}
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From the last set of terms we are able to guestimate the nucleon lifetime.

Since these terms lead to baryon number changing processes such as

u<d et
x2 a
X
b a?
u di-quark process lepto—-quark process
we have typical proton decay processes such as
r d e+
> >
J X
P u u®
P — }
+ o} u u M
Thus we could have p + e T »
[e] -
o
w
n e e

Since when we do spontaneously break the SU(5) symmetry the X and Y IVB
will have a large mass we can estimate such a process,just as'we related

the GWS theory to the old 4-fermi theory,by replacing the X,Y propagators

with-JE for low enérgies. The proton decay amplitude will go as
My
£ .5 £
Y ag = 2.2.37
2 2 5 7 4n ( )
x X
Thus the proton lifetime should go as
1 ¥,
r ~ = X . (2.2.38)
P a2 m5
5 p

We can independently estimate Mx from the assumption that the SU(3) x SU(2) x

U(1) coupling constants all unify at the same energy, Mx,and use the RGE t
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a

relate our high energy (LF) predictions for sin28w and ??E to the measured
]

"low'" energy values and hence obtain Mx and Tp. For energies > Mx we found

g =8 T 83 y73 8- (2.2.39)
Thus at high energy (> Mx)

g
2 1 _
sin ew 5

N
0 jw

(2.2.40)

2 .2
P EE. g2 sin ew
5

s 2 g
&3 3
Our renormalization group analysis told us that

, 3, @)
Q — 5 = 8Wbiai where

3Q

2 .22
Q" =AM

(2.2.41)

209

- 3 2, _°
By(8y) = byg; and «;(Q7) = —=

with the initial conditions that

) gi 8 } i=2,3
ai(Mx) = W 8, = (8 (2.2.42)
/3/5g} i

(]
-

The solution to this equation is

1 __ 1 __ grpml

2 2 i
ai(Q ) ai(Mx) M

and

o
|
I

, F= # of families
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Putting all this together we found

2 2
i22s - 3 8y 23 1, QO
sin Ow 3 1+ (Aw) ian In MZ] (2.2.44)
x
o 2 2
QED . 3 11+ &y 3B 10 L
a 8 4w 2
s leT™ M
X
Thus
2 .1 SEQED(QZ)
sin®8 I =+ 5 — (2.2.45)
6 9 2
@ Q)
&QED 1 2 2 2
From QCD we find - :-Eg at Q© = 10 GeV-. Thus sin ew 2 0.19 at
s
Q2 = 10 GeV2 from our above analyses. This is close to the exp. 0.23 wvalue.

This yields M.x’=1016 and Tp > 1037 yrs. After a more careful RG analysis

including Higgs and heavy quark thresholds we find

1
M = 10*4 GeV ; T_ z 107 yrs.
X P

sin26 .21
W
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2.3 Spontaneous symmetry breaking and fermion masses

The SU(5) symmetry will be spontaneously broken to SU(3) x SU(2) x
U(1l) by allowing the SU(3) x SU(2) x U(l) invariant components of an
adjoint (24 dim) representation of Higgs fields get a large ~0(1014 GeV)
vacuum expectation value. Let's call this Higgs field ¢§. Then the Higgs
doublet that breaks the SU(2) x U(1) ~» Uem(l) will get a vacuum expectation
value of 0(100 GeV). Since the 5 of SU(5) contains under SU(3) x SU(2) x
U(l) transformations a weak doublet

1 1
5 = (3s1, - 3) + (1129 + 2)

we embed our usual Higgs in a 5 of SU(5) of Higgs fields, call it H. The
(3,1, - %) fields in H°® will also mediate proton decay and so will have to
be made very massive. Thus consider the two Higgs fields ¢z a 24 of SU(S)

and B2 a 5 of SU(5). As with the gauge fields we can represent ¢ as a matrix

_ ,.b _a.c
63 = (b, To)g

e MR S S T
= Hi Hg (Hg - 7%—(-)-HB) ﬁ3x ﬁ%
"1 "xo 13 (%O ¥ %i%) 4
"o ) e B (-%; * —3%6)
i (2.3.1) -

where

cd
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24 = (8, 1, 0) + (1, 3, 0) + (1, 1, 0)

a _ ,a
¢b = Hb + H, H + HB

+ (3,2, -5/6) + (3,2, +5/6)

+ @ B + @

x By H, )

Xa’ "Ya (2.3.2)

Similarly the 5 can be written as

a Hl
H® = HZ
B> (2.3.3)
+
¢
where under SU(3) x SU(2) x U(l) transformations
H1’2’3 is a (3,1, —-%)
and
(¢+) is a (1,2, +%)
° (2.3.4)

As usual we construct the SU(5) gauge covariant derivatives for these

fields. Under SU(5) transformations

7% = + ig m:Hb (2.3.5)

and

a . a,c . c.a
= ¢b + ig wc¢b - ig wbcbc (2.3.6)
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Thus
a a i a b
(@ m* = (3,87 - 73 A7 T (2.3.7)
and
a _ ad _ 1 a.d | 1 d.a, . c
(Du¢)b = [auscab 7%‘Auc6b + 7% Aubdc]d)d (2,3.8)

In addition to the covariant kinetic energy terms

u.t a u,.b a
o'm, o, ©')) @)} (2.3.9)
we can also make quadratic, cubic and quartic invariants from these fields.

As usual we have mass terms which are quadratic

ba _ 2
¢ 0y Tré
(2.3.10)
BE® = u'm
a
we can also make quartic terms from these
2 b d 4
(Tré%) also  ¢20%50p = Tre' is SU(S) inv. as (2.3.11)
a'm?
are HH Tro? and HZ¢§¢2HC = ulosn ]

Also there are cubic invariants
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3 +
Tré and H ¢ H (2.3.12)

So we have exhausted all possible invariants up to and including

dimension 4 (renormalizable) in the fields ¢ and H, hence L

¢

is given by

-
]

topy &1 b M. a _
(DuH)a (D°H ) + 2<Du¢)a @¢), -V

1
2

@ »" @' + 5 (0 "] - v (2.3.13)

where the SU(5) invariant potential is given by

2
- _ M 2 a 2.2 | b 4 ¢ 3
vV = -ir‘Tr¢ + a(Tr¢ Yo+ > Tr¢ + 3 Tré
2
v + p\ +...2
- 3 HH+ 4 (H H)

(2.3.14)

+ of'H Tre? + su om+ yaTon

with u2 > 0, vz > 0 and the "wrong" sign on the mass terms is already
made explicit so as to spontaneously breék the SU(5) = SU(3) x SU(2) x
u@) » su(3) x Uem(l)' In order to simplify our calculations we will
impose a discrete ¢ -+ -¢ symmetry at the SU(5) level thus C =y = 0.
Since it is discrete when it is spontaneously broken no Goldstone bosons
will arise. Now we must find the absolute minimum of this potential

since we must perturb about it. Since we desire to break to SU(3) x Uem(l)
we must give SU(3) singlets and charge-zero fields vacuum values. Thus

in the 24 this corresponds to H_ and H° and in the 5 ¢O. We define

B

the vacuum values (to agree with BEGN: Buras, Ellis, Gaillard and

Nanopaulos, Nucl. Phys. B135 (1978) 66) to be
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- =
0
0
0 1
{o|u|o) = 0 t.e. {l6|0) =7 v
v
)
_JZ-J
v 0
v
olsloy =
< |¢I v (2.3.15)
-2 -Few
0
s.e. (olujoy = - 530
1
QIl0) = - 7 v,
To find the minimum we must differentiate V
b v Vv
LGa + —al = 0 —F = 0 and (2.3,16)
30 9H
b a
V,E,V V,E,V
o
3 a, _ .a _
I (V+L¢a) —¢a 0

where L is the lagrange multiplier enforcing the ¢: = 0 constraint.

a _
0) ¢2 =
1) -u? 42+ a Treled + 2682650
b fob +boc . toeb ) (2.3.17)
+ 180 + 20 HHo + B[H 0 H® + H oH ] 0

o = (o)
B = (H)
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2
2) - L8+ 3 @mE® + o e’ + p"W?| =0
¢ =4o)
H = (H)

Thus we have 3 equations for v, Vo e, from 2) above we find

111) Ave

(2.3.18)
vz = —59- + 150.V2 + aezvz
+ -92-Bv2 - 3BEV2 + -g— €2V2 =0
We can solve for L by taking traceof 1 then we can eliminate it
from our equations using ¢: = 0 this implies
3 +
5L + 2b Tr(¢”] + 28 H ¢H =0 (2.3.19)
Hence 2 b 2.b +..b
W, = a Tre“p, + 20H Hy,
b 2, . b 3
+ 2b(4¢4), - £bS Tro
Tb.c T e, b 2, .+ ...b (2.3.20)
+ B[R ¢ H + H $ H] - SBH 0HS
for a=b =1 Wwe find
a) u? = [E + E—z-]vz + o VP + 2By
weEalnT T %V
2 3,63 _ 3 _532
V2
2. % 3 _¢
*58 3 G2
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for a=b = 4 we find

2
3 v 2o _afd L E 42 34 E
b) (2+2)Vu = a[2+2]v (2+2)v
w23 L E _1y (3 4§43 3
avo(2 + 2)v + 2b( l)(2 + 2) v
2 3 L &3 3 _£43:,3
- s -G+ - G-
2 (2.3.22)
2. Yo 3 _ E.
t g5 G-
for a=b =5 we find
3 _ ey 2 _ __ A5,y 23 _¢E
2,3 _ By, _ oon(3 - 3.3
—avo(2 2)v 2b(2 2) v
(2.3.23)
2 3 ,.8y3 _ 3833
v2
2, o 3_¢
+58 5 G-V
v2
+28 2 (-1)E - Sy
2 2 2

0f course we can obtain condition c by adding -(3 x (a) + (b)) this

is just the vanishing trace condition. So we have

2
a) u2 = a[%;-+ %ZJVZ + o vi + 2bv2
(2.3.24)
2 _ 3L EN3 3 Ey3,.2
v2
2, 0 3_¢
+ 5 8 2 (2 2)
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2
3,82 - i3 482348 23, ¢
b) (2 + z)u a[2 + 5 1v (2 + 2) + avo(2 + 2)
+2b(_+€)3 2 (2.3.25)
2 -3+ 53 3532
+s b3 -G+ G-
o2
2, 0 3_¢
582 G-

Add these 2 and simplify to obtain our 3 equations determining v, vy, E.

Thus our 3 equations for v, Vo’ € are

2 2 2
o onery 1Mo 1 o T
- 50 2 100 25 20 2
b bv
(2,3.26)
2 _15 _ 2 7.2 2 3
1) uo= ) av. + 2 bv® + av + 10 Bv
av-. 2,9 .2 2 8
+ > e + 10 bv € 10 ve
2
AV
iii) v2 = —EQ + 15 av2 + %-sz - 3Bev2 .

+ (a + —szez

let's investigate these solutions first by ignoring the SU(2) x U(L)
breaking i.e. setting v, =¢=0and B =a =0 and so we are left with
eq. ii only

2 2

Tl %T.(lsa + 7b) (2.3.27)

This mass should be very large since the X, Y gauge bosons have mass

squared
2 _ 2 _ 25 2 2
Mx = My =3 &8V (2.3.28)

Thus v2 ~ Mi. (Further the potential can be shown to be positive for
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a > - -I—E— and that b > 0 for this SU(3) x SU(2) x U(l) extrema to be
an absolute minimum). Next we could add the pure H potential, but
keeping o = 8 = 0 still, in order to break SU(2) x U(l) down to Uem(l).

Then € = 0 but v, # 0 and we find still uz = % (15a + 7b) and now

2
2 _ Avo
V=73 2 2 (2.3.29)
2 gV,
with the W and Z masses given by M‘,= 4 So while
v - O(Mx)
v, " O(Mw)

Unfortunately the colorful Higgs fields H a = 1,2,3 and Hi a=1,2,3

mix so that one linear combination is eaten by the Y gauge boson to

give it mass but the orthogonal combination remains massless; further

these can result in proton decay - yielding too short a life-time Thus

we indeed need the mixed ¢-H potential terms which solve this difficulty.
When we add in all terms to the potential it can be shown for b>0,

B <0; a>-~- % that the SU(3) x Uem(l) is an abs. minimum and for

a,8 = 0 this solution should yield our previous v, v solutions. So

¢ >0 as a,8 + 0 and € <<1. Thus equation i yields

2 4
3 B Yo (2.3.30)
e=ﬁ-———i+0(—4)<<l. $ e
bv v

while u2 is large so we can neglect the Be and €2 terms yielding

2 15 2 7.2 2,3 .2
uto= 5 av +2 bv +<xvo+10 BVO . (2.3.31)

The last 2 terms being a small perturbation to our previous u2 equation.

The third equation,ignoring the highest order correction,yields

2
AV
\)2 = —23+ 15 avz +-3— sz - 3Bev2 . (2.3.32)
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The first thing we notice is that the W, Z masses will be of order v
and we do not want v to be very large thus we will require a delicate
cancellation amongst the v2 (very large) terms in order to keep v2
small. This adjustment or "fine tuning" of the «,8 parameters is an
unasthetic aspect of the model and is known as the hierarchy problem
or naturalness problem. In order to keep the hierarchy of masses

Mx >>Mwor v ;> v, we must fine-tune the parameters in the theory to
" one part in ¥ .10 24! Further when radiative corrections to the

2
v

potential areotaken into account this fine-tuning of the parameters
persists and will involve re-adjusting the cancellations in each order
of perturbation theory. However supersymmetric theories, since
their renormalization properties are improved compared to ordinary field
theories, will obviate this fine-tuning problem in each order of pertur-
bation theory.

Once the parameters are adjusted in the tree approximation the re-
sulting hierarchy will be preserved as long as the supersymmetry is main-
tained.

Adjusting the parameters so that vo'¢<v, we find that previously
massless, colorful Higgs field now has [mass]2 ~ sz ~ Oléi).

Although this Higgs exchange leads to proton decay we assume its
contribution is small compared to the X,Y exchange since the Yukawa
couplings are in general small compared to the gauge coupling.

This will complete our discussion of L¢. It is left as an exercise
to calculate the various mass matrices in this sector! Finally we study
the Yukawa interaction of the Higgs fields and fermions and find the
fermion masses. Since the 5 and 10 are both left-handed fields we

first review what a mass term looks like for these. Recall a mass term
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mixes the left and right handed fields and our right handed fields are

charge conjugate fields

c_ _, T -1 _ T
U}R = WL C - wLC . (2.3.33)

Thus the mass terms are of the form

‘1’§¢L thie. = ‘”;“’L + E’L‘”}i
T - =T
= wLC¢L + ¢LC¢L . (2.3.34)

The Yukawa terms are of the same form with Higgs scalars; for the SU(5)
we have the bilinear matter fields

T

wLa

+ h.c.
CwLb h.c

T be

wLa CwL + h.c. (2.3.35)

Tab cd
wL CwL + h.c.

These products decompose into irreducible representations according to

5 x5 =10+ 15

w
b
[
o
n
w
+
~
wu

(2.3.36)

—

10 x 10 = 5 + 45 + 50

We note that none of these products contains the adjoint representation
24; thus there is no Yukawa céupling to the ¢§ Higgs field. This is good
since v ~ MX and this would imply some of our matter fields would have too
large a mass.

In order to obtain a more realistic fermion mass spectrum we must
introduce additional Higgs fields i.e. the 45 to couple to these bilinear
forms. However, for "simplicity'" we will consider our model with only the

5 and 24 of Higgs. The only Yukawa couplings are then
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T ab _*
by, C ¥ H +h.c.
d Tab d (2.3.37)
an a c e
eabcde wL C wL H + h.c.
where € is the 5 dimensional totally anti-symmetric tensor. It

abede

is this 2nd term which will also contribute to proton decay. Once again
we can introduce inter-generation mixing so that the most general Yukawa

lagrangian has the form
_ T ab .t
Lyuk " Ym mea ¢ wnL Hb
(2.3.38)

Tab cd e

+ T ¢ H

mn abcde me wnL

+ h.c.
Tab

cd e ., .
ol C wnL SabcdeH is m~n symmetric.

where T =T since ¢
mn nm

. . a _ 1 a

The fermion mass terms are obtained from <b|H lO) =7V, 65.

Studying first the 5 x 10 term

T a5 1
Ymn mea ¢ lJ’nLV’Z— vo

(2.3.39)
v
o - a5
T Y2 Ymn mea wnL
Now
c
di
Ya ~ e 3 So (2.3.40)
L
pea _ @T
R ¢ La
-cTi
C dL
=T =cT
C eL but C dL = dR
T T (2.3.41)
- - _ ¢
“er and Gy p = vg
- - -_T _ -+cT
CeL = Ce
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So
dl
ca e+
1 = H
R —vC (2.3.42)
R
= a5 _ 1 = 13 o+
Yora Yar = 75 (s dar T %R nr)

The mass term becomes

T a5 1
Ymn mea ¢ wnL 72 Vo t h.c.
= l"-v vy [d a4+ e+ et ] + h.c
2 'o'mn  mRi nL mR nL Tt (2.3.43)
= ,d -+ e +
= dR M dL + eR M er + h.c.
where d M? vo
Mo " Y 2 Yme : (2.3.44)

(Md here is the adjoint of the d-mass matrix in the GWS model). Thus
SU(5) with the minimal Higgs fields requires the d-quark and electron

masses to be the same. That is

md=me
mg, = m (2.3.45)
m = o

This result should be interpreted, as with the equality of coupling

constants result, as a prediction at Q2 > Mi. The RG analysis can be

applied to the fermion masses to obtain for Q2 < Mi [BEGN]

d,s,b dés,b
m (QZ) m (Mx)
S el R I N
n (Q%) m (MX)

e,u,T €,H,T
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. ay @] 5 e @
$—0 I || 4% In [
11 - 3 0.5 (MX)

as(Mi) (2.3.46)
This yields mb = 5.3 GeV (for QCD A = 300 MeV) where the accepted

value is around 5 GeV. For m oz 470 MeV which is a bit high compared

to the 150 - 300 MeV accepted values. The mass of the lighter d quark
is quite uncertain so a meaningful comparison is unattainable, however,
the ratio md/mS z %ﬁ is obtainable from meson, baryon mass spectra.

\

The SU(5) prediction is
1 . .
= — = —— : quite a difference

Thus the minimal Higgs SU(5) model is not the most satisfactory model;
one can introduce a 45 of Higgs in addition to the 5 to yield a correct
prediction for md/ms.

Next we consider the other mass term

Tab cd 0
+ h.c.
r'mn EabcdS me CwnL V2 h.c

4Vo Tab chd
= + h.c.
V2 Pmn 8abc45 me CwnL h.c

by
_ _o0© Tab ., c4
=77 Tuon fabe ¥ L Wy, * bec
o (2.3.47)
4v

_ 27 Tij . k
=75 I'mn eijk me CunL+h'C'

8v

o) cT i
= u Cu + h.c.
V2 me mL; alL h.c

8v i

o -
= ' u u + h.c.
Y2 mn mRi nL h.c

=u_ M%u_ + h.c.
R L h.c

where
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8v
" u

= Q T =M
0 =7 T =M (2.3.48)

Thus we can combine these fermion mass terms to yield

= MY

W W
u_ +
mass R L

w, . d . w
R4 (2.3.49)

-4 W. +w
+ et + h.c.
ez M® e h.c
where with minimal Higgs
MY = M*ﬂr; Md =M , otherwise they are arbitrary
and the superscript W reminds us we are in the weak interaction basis

not the mass eigenstate basis. As in the GWS model we can diagonalize

these 3 x 3 matrices by L,R matrices,

m 0
1 t
Mitag. = m, = A MA (2.3.50)
0 m3
for Mu,d,e. As previously the AL are determined up to diagonal phase
R
+ +

matrices KL by diagonalizing MM ; M M. The phase differences K{KR are

determinedey demanding M to be real and positive. So KL = KR = K

diag.

is arbitrary and can be used to put the matrices in a convenient conven-
tional form.

Recall in the standard GWS model only the K-M matrix was observable

o ™

et
observe the A;’d and AL in the SU(5) model through the lepto-quark and

%
1

A; . In general we will be able to

di-quark interactions and when the Higgs structure is non-minimal. How-

ever, for our simplified case of the 5 and 24 of Higgs only we have

+
Md = Me so that Ai R = AE‘R . Also MY = MUT S0
> ’
uf u g _ U T
(A MAp = Myiag,) (2.3.51)
u - EL TR
B Mdiag. - AR = AL

ut u gy
AL ™ A
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*
this implies A; = A; K where K is a diagonal matrix of phases
uniquely determined by Mdiag. being real and
positive. (2.3.52)
. . u _ ,u*
Since, if AR = AL K , then
Au+= K+ A;T
* *
So u'MuAg - KT A;T MUAY*
+ u _ g4
K Mitag.® = Maiag. (2.3.53)

Thus we see that the charged weak current, since it involves left-handed

fields will still only depend on the K-M matrix,

Ay = &7 A" (2.3.54)
[ 10, N
While the AKM and phases K = e 0
_i¢2
e (2.3.55)
_i¢
0 e 3

(only 2 phases: omne overall phase 1is arbitary) will be observable in

the di-quark interactions. Recall
a¥ = AUy dw - dd
L AL L L AL L
Wo_oau, w _ ,d
up = AgUr dp = Agdyp (2,3.56)
Vi o ATt o a4t
ep” = AL e Aer
Wy _ et + d +
e’ T Ap eg = A%

Note for the charge conjugate fields we

eigenstates i.e.

must define the appropriate mass
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[
—~
o
~
(@]
Q.-

(2.3.57)

n
”~~
[N

o

o
S

That is
c _
dL =C dR (2.3.58)

it is not A:fdzc

So in terms of the mass eigenstates the X and Y interaction terms in LF

become
fi {XJ[d v e - e vds + gel m Ku ]
L. Jlk L Y
J J
=i, = Mie _ = ou b+ (2.3.59)
L Ve ¥ dLj uLjY Aem BL

€41k ';1 “KAKM d®1 + h.c.}

Thus we have investigated the minimal SU(5) GUT. For additional features
of the model or for a more detailed account of proton decay, Langacker's
review article provides an excellent account as well as the references

contained therein.



