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CH. 1. TIHE STANDARD MODEL

1.0. Introduction

Gauge theories have proven to be a successful framework for relativisitic
quantum mechanical models of elementary particle interactions. Recently a
standard model of these interactions has emerged which consistently describes
all known facts of elementary particle physics, This model is based on the
electroweak gauge group SU(2) x U(l) of Glashow-Weinberg-Salam (GWS) and the
SU(3) color gauge group of quantum chromodynamics (QCD). The fundamental
particles which interact according to these gauge symmetries belong to the

three lowest spin representations of the Lorentz group.

These are classified as follows:

**Matter fields: (spin 1/2 fermions)

*Leptons: non-strongly interacting fermions.

e ,u ,T

. . a
*Quarks: the strongly interacting constituents of hadrons: U

a=1,2,3 or R,G,B: the three types of SU(3)-color involved

in QCD interactions.

n = u,d,c,s,t,b...?: the different flavors involved in

SU(2) x U(l) electroweak interactions

**Gauge bosons: (spin 1)

*Photon y: mediates electromagnetic interactions.

+
*Intermediate Vector Bosons (IVB's): W ,Z°: mediate charged and

neutral current weak interactiomns.



*Gluons G:: mediate the strong interactions. (There are 8 gluons,

since they transform as the adjoint representation of the color
SU(3) gauge group, I G: = 0.)
a=1

*%
Higgs bosons: (spin 0) ¢+, ¢°: these are responsible for spontaneously

breaking the electro-weak SU(2) x U(l) symmetry. Three bosons are "eaten"

+
to give the W, Z° mass, while n = Re¢° survives and has mass X 100 GeV.
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1.1. The Glashow-Weinberg-Salam (GWS)-Model of Electroweak Interactions

1.1.1, Particle Spectrum and Symmetric Lagrangian

The model is based on the gauge group SU(2) x U(1l). 8SU(2) is isomorphic

to the group of 2 x 2 unitary matrices with determinant = 1. It has
2

2 - 1 = 3 generators Ti, i=1,2,3, satisfying
(r, 737 = 1tk (1.1.1)
where eiJk is the Levi~Civita tensor (5123 =4+ 1). Ti are called the weak

isospin generators, Since this is a 3 parameter group, there are 3 gauge

bosons: At, i=1,2,3.
.- There are 2 particularly important representations of Ti:

1) The fundamental rep. given by Pauli matrices:

1 0 1 P 0 -1 3 1 0
1 0 i 0 0 -1 (1.1.2)
1 14 ]
Tab 3 % a,b=1,2; 1i=1,2,3

[Ti,Tj] = ieiJk '1‘k

2) Regular, real or adjoint rep. given by the structure constants of the

group
™ = -ic 1jk = 1,2,3
ik ijk »25
— = -
0o 0 o0 0 0 +1i
1 =|o o -i 2 =0 o0 o (1.1.3)
0 +# 0 10 0
= - -
0 -1 0
2 =l4 0 o0
0 0 0

rd, ) 1etik ok
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U(1l) is the one parameter, abelian group of phase transformationms.
Its generator is called the hypercharge: VY, the single associated gauge
boson is B .
o
Each of these subgroups has its own coupling constant; g and g' for
SU(2) and U(l), respectively.

The gauge bosons transform inhomogeneously under the group. Consider

+1griet -1 ~igTe

the SU(2) subgroup first, if U(w) = e 8L W and U (w) = e TB2'Y yhere
™ is any matrix rep. of Ti and Tew = et

TeA' = U(w) T-A U'l(w) - l-(8 U(w)) U'l(m) . (1.1.4)

==u = =u g u
Infinitesimally this yields

U) 3 L+ 4gTow; UL 31-igTow. (1.1.5)
Hence A transforms as
—u
- i -l -l
ToA" = VLA, - UG,DIT (1.1.6)

(1 + g DA T + T(-1g I )] (- 1gu'D)

"
|3

- 4+ To
k Tij) 2_3ug

jki

A+ 1goda(rT
S B3

k
A+ i ) + Te3
T ig wJAu(ie Tl) T ug

A
-
A, +T-(3w - gwx A)

]
1
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.- where we have taken w to be infinitismal. Thus we see that the transforma-

tion of Au is independent of T, that is for infinitesimal w

A' = + .

A éu (25u w+ g Ax w (1.1.7)
+ ] - -tia!

For the U(l) subgroup, U(8) = e 1g'6y and U 1(e) =e '8 ey’ where y is

an eigenvalue of ¥ (i.e., just a number): the hypercharge of the representation
under consideration. Therefore

i
8"

-1 -1
B' = UyB U~ -
) yB, [au uju

=yBu + y(au 8) . (1.1.8)
whether 6 is finite or infinitismal.

Each gauge boson transforms only under its associated subgroup; being invariant

under the remaining subgroups. That is éﬂ transforms under SU(2) only, under

U(1l) transformations éﬂ = éu it is invariant. Likewise Bu transforms under
U(1) only, under SU(2) transformations BL = Bu it is invariant.
wh N in.

The gauge invariant kinetic energy term for the gauge bosons (Yang-Mills
fields) is built from the antisymmetric, covariant field strength temsor for

each group:

1 u@) : Buv = Bqu - Bqu
B' = 3 B' - 3 B'
uv vV Nt
= B + .3 (3 8) - 3 (3 = B .
uv u( v ) v( u ®) uv (1.1.9)
Accordingl -1 g "V = - i B' B'"Y is a Lorentz and U(l) invariant:
8L 4 Tuv 4 Tuv '

1 .
[- A is a conventional normalization factor].

2) sU(2):

Let us try the above construction on SU(2). We start by considering

i 2 :
Fooo2 aat_gal.
uv v VvV
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-F “ -3 A" =3 A -3 A
rom avév vV=q =V vy (1.1.10)
+ g(au_ﬁ_;v -3 A)xuw
+ g(A 3 w=-A ]
g(A x93 w A x 3 w)
v v 0
we get F> "V =7 TV 4 ng’/;zg,/f’i?
—uv — -y = "~y -
+ 2gF '(éy x M - éP X ng)
(1.1.11)

2 Hv
+g(E, x w)(F " x w)
+ 282@1.1\) X 2)'(5_\’ X 'c)u_ui - Au X Bv_u_)_)
£ g2 x oM - A x %)

cu\)"
FE Y 1

that is, Fiv as defined above is not a suitable building block for an
invariant kinetic energy term. We have to replace the simple derivative

au with the covariant derivative Du. This is defined as

z - igT-A
D, =3, - 1igl*A (1.1.12)

Then we define Ftv as where again we use any rep. Tt of Ti

J

. . - oA
TE, =D (T8 - D(TA)

T-(QA -3A) - ig(T-A ) (T-A)
+ 1g(T-A)(T°4)

=T+(d A -3 A )—igAJAk\gTJTk— k7l
- v u

U
iki, g, ki
= . -3 A + ge AA T P
T-(3 A -3 A) + e TAA, (1.1.13)
=T.[3A -3 A +gA xA
_T_[uév oAt oBA Al
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Thus we get:

F = 3 A -3 A +gA xAv (1.1.14)
—uv H=V Vi —u -
or Fr o= 3 al - 5 al & g MR,k
uv v v uv
Let's check that Euv does indeed tranform homogeneously:

First we evaluate

» l= +
géu X Av géu X éw gaug X év + gA x avg

=y
(1.1.15)
+ SZA x (A xuw) + gZ(A x w)x A
-u -V = = e T
Now use the Jacobi identity (cyclic perm. of triple product)
[Ti’[Tj :Tk]] + [TJ’[Tk’Ti]] + [Tk, [Tl’Tj]] =0
. (1.1.16)
and [Ti’Tj] = isijkT
to obtain the well known identity )
€532%kme ¥ S5uafimt T fkiefqme T 0 (1.1.17)
this leads to
gé; X A® = géu X év + g(Bug X Av + éu X avm
(1.1.18)

2
+g (éu xA) xu
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Recalling eq. (1.1.10) we secure
-F—uv = E‘u\) + gf_w X W (1.1.19)

which is homogeneous as required! Hence we ha&e for
infinitesimal transformations

A=A +gA xw+?3d
- —u -

Cl
-

W
that

» .-Fu-'uv =

1
% zuv

1 2(F
TRE Ly FE S TS (1.1.20)
The second term on the r.h.s. vanishes identically, and the third drops for

infintesimal w. So
1 _. JHV 1 uv
-G EVET - EVE (1.1.21)

Thus, the SU(2) x U(1) invariant pure Yang-Mills part of the GWS Lagrangian

is given by

(1.1.22)

Note that due to the non-linearity of the SU(2) field strength tensor

i
va, -

&=

uv . S ;
Euv-g now includes trilinear and quartic self-interaction terms for

the non-abelian gauge field Ai.]
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We next consider how the fermions are incorporated in the model. The
GWS model is based on a chiral SU(2) gauge invariance; that is, parity
violation is built into the model by assigning the right and left handed
fermions to different representations of SU(2). All the right-handed fermions

(see Appendix A for Dirac matrix and other conventions)

1

¢R ZR=3 1+ ys)w =y (1.1.23)
are SU(2) singlets
wé = vy (1.1.24)
while all left-handed fermions
boELEE (L-v)v =y Y (1.1.25)
L 2 5 -

are in the fundamental rep. of SU(2) (i.e. doublets, two dimensional

representations of SU(2) called 2 of SU(2)). As mentioned above the fundamental

representation of Ti is given by the Pauli-matrices: Ti = % ci thus for
finite w
b = UGy, where  U(w) = eHielre (1,1.26)
For infinitesimal w:
- iz ..
¢L ¢L + 7 wg ¢L (1.1.27)
Both wL and wR transform non-trivially under Y
ig'yLe
t o= =
¢L U(G)WL e 123
ig'yg8 (1.1.28)
' = =
pL= U@ =e g
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or for infinitesimal ©

e -
-
0

|
b+ ig'y o)

¢§ = wR + ig'yRewR . (1.1.29)
The quantum numbers Yi» Vg are chosen so that the quantum numbers of wL,R
for T3 and Y are such that the electric charge Q is given by Q = 4 Y,
where the diagonal operator for SU(2) is the third component of isospin T3.

(An alternate convention is: Q = T3 + Y/2, but then 2g' - g' so factors of

1/2 compensate in the Lagrangian.)

In the GWS model, the fermions are arranged in 3 families, or generations.
Each of these consists of a SU(2) doublet of left-handed quarks, a SU(2) doublet
of left-handed leptons, 2 right-handed quark SU(2) singlets and one right-handed

lepton SU(2) singlet., More explicitly, these are as follows:

1) The Electron Family:

2) The Muon Family:

3) The Tau Family:

1

Since T3 ++-§ o~ the isospin quantumnumbers of the doublets are

+-% for the upper field

- %-for the lower field .
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We can then list the T3,y,Q quantum numbers for the fields:

r? y Q=TH+y
(ve,vu,vT)L + 1/2 -1/2 0
(e.u.r)L -1/2 -1/2 -1
(u.c,t:)L + 1/2 + 1/6 + 2/3
(d,s,b)L -1/2 + 1/6 -1/3
(e’u,T)R 0 -1 -1
(u,c,t)R 0 + 2/3 + 2/3
(d,s,b)R 0] -1/3 -1/3

(Note we have suppressed the SU(3) color indices of the quarks: i.e., each

u,d,c,s,t,b stands for 3 fields, one for each color R,G,B.) 1In general let us

call each lepton doublet ZmL’ and each quark doublet e where m =

sHL T
3253
for the 3 families, and each right-handed field by e

R’ u_, d

mR

where

TR R

(Often we will suppress the generation index m alsc.)
The fermion kinetic energy terms in the SU(2) x U(l) invariant Lagrangian
are also obtained by replacing Bu by the appropriate covariant derivative Du

defined analogously to eq.(1.1.12).
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First recall the variations of the fields under our SU(2) x U(l)

transformations: (w,8 infintesimal)

o Ml A 7 gty - l%"—e L
of =+ hawe o B
ei =ep - ig'eeR
u = uR+§—i-g'6 uy (1.1.30)
az = dp - 50
[These equations apply for each family.]
Consequently, the covariant derivatives are D = au - ig T*A - 1g'yBu,
D8, = (3 - %5 EO ig— B L
D = (éu - _g_a LA -i-‘g-: B ay

o
o
|

= (3 + ig’B
(u gu)eR
21 .
DuuR (3u -3 Bu)uR

i
+ =g (1.1.31)
(3u g Bu)dR |

o
=

[« %

]

3

The SU(2) x U(l) gauge transformation of these covariant derivatives is, for
example, given by

LI tot
(DulL) DuzL ,

- ig ; igg!
- G, - 18 gt + 28 B (8, + Foaea - S50 (1.1.32)



- -i—g- . _—i-gl &g_'.
{1+ 5 Wo > 8] [3 RL + =5 B RL]
1g, ig . 1g' ig?
R R A WK S el S A A R - TR
Using
g:Aow = Aj“’“ O
3 (1.1.33)
= ad kK
A w [isjkio. + ij]
= 1grAxu+aw,
we obtain
D) = [(1+38 g-18 g5p -850 +38 35,
Wi 2 We- T N AV R I ) (1.1.34)
or equivalently
- ig ., - 1is'
(DulL) 1+ 5 weg > 6](Du2L) (1.1.35)
That is if
' =
R'L U(m,e)lL (1.1.36)
with U(w,8) = U(w)U(8) then
' = 1
(DulL) U(m,e)(nuzL) also ! (1.1.37)

Similarly for the other terms. Thus we can indeed turn the globally

invariant fermion kinetic terms

1 a. i e i o i d i 1.1.38
lLiﬁlL + quﬁqL + eRléeR + uRléuR + deédR ( )



-21-

into locally gauge invariant ones by replacing the ordinary derivatives
au with the appropriate Du covariant derivatives.

Before doing this recall that wL = Y_y, so

(1+Y5)

N

_ .1 . o_=
(W) =4 v =¥ 5 A-vdy = v

<
t
(]
<1

Y v =Y Yy vy v ' (1.1.39)

=vY'y_v,

<1

(¥g) Y”wL = YuY+Y_ y = 0!

So the kinetic terms are of the form

(wL)iﬂ /2N (wR)ib Vg (1.1.40)

(wL) etc. unle%s stated otherwise)

1

Now if (the notation EL

N =
123 Uy _ (1.1.41)
then
T N '
wL wLU ¢LU (1.1.42)
and
o= sut o, (1.1.43)
L L
Similarly @é = ERU-l. Thus we have for the covariant deriavtive kinetic
_énergy terms
G iby )t = b’y = § U Uiby
L L L L L L
= P iy, (1.1.44)

i.e., it is gauge invariant. Thus the SU(2) x U(l) gauge invariant fermion
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kinetic energy terms may be written as follows:
= 1 a e_ip @i d_i 1.1.45
LF 2LinzL + qLiqu + engseR + uleuR + dendR . ( )
(recall that we are implicitly summing over each family: e,u,T,...).

At this point we note that not only are the gauge bosons massless but zlso

the fermions are massless:

vy

PO YYo= oy, v+ vy

+ o + o
VY vyt ey vy vy v

+ o + o
=V Y ybpt vy (1.1.46)

$L‘J)R + $RwL

But for SU(2) x U(1l) all LH fermions are doublets and RH fermions are singlets,
thus we cannot make a SU(2) x U(l) invariant mass term! We must intro-

duce Higgs scalar bosons to spontaneously break the local SU(2) x U(l) to
U(l)em so that only the photon remains massless and the fermions gain mass.

Now to accomplish this dual task we introduce a complex scalar Higgs field

¢ in the doublet of SU(2) (4 hermitian (real) fields)

+ +

) ) has Q= +1
¢ = ¢o ¢o has Q-0 (1.1.47)
since Q = T3 + vy,
¢ has y = + %
So for w,® infinitesimal
o = ¢ + 1B oy + 18 o
(1.1.48)
DIJ¢ - [BU -—jizg—g'éu —B;LBUH)

and as usual ¢' = U(w,8)d for finite (w,9)



We can make invariant Yukawa interaction terms of the form
q.¢ d 2. de
L” "R * "L*°R (1.1.49)

Now _
qL¢ is SU(2) invariant

but since q has y = + %36L has y = -4%
1
and ¢ has y = + )

a =+1_1_,41

qL¢ has y = + 5 3 + 3

Since dR has y = -

Wi

9y, ¢ dR is also U(1l) invariant.

similarly for EL¢ ep- Of course we can sum over the families and have

inter-family couplings

d -
an 9 ¢ an + h.c
- d - d* + + o
Ton 9L ® 95 ¥ Ton G ¢ Y 9 (1.1.50)
= d a d* d +
rmm qu ¢ an + an an ¢ qu
and
r¢ 1 ¢ e+ h.c
o mL aR «C. (1.1.51)
- I‘mn ZmEL¢enR + I‘mn enR 0 2mL

However, this looks at first as if there is no u mass since EL¢ u_ has

R
y= - %—+ %-¥ %—= 1 (Q=+1+#0 also!) But we can also couple to the

hermitean conjugate of ¢; ¢+



Now GT

' -
So ¢'f' =¢TU1

g

That is if ¢ transforms as (2, + %) under (SU(2), U(1))

then

2=

if ¢' = U¢ !

*
But for SU(2) 2 and 2 are equivalent:

So

but

hence

¢

this implies

Defining

then

that is

5:

We can write the

o7 =0T - BT us

on =4 - o), o
R TN
-GiT - (102)+ ci(icz)
o

="+ 18 ohHT ueo i)

’ .
(16%™) = (0% ¢") + L& u-g(ic®") .

$ = io ¢*
51 =5 +3E wod

$ is a 2 of SU(2),like ¢!

0 1 ¢-—‘ ¢’o'i‘
-1 0 ¢°U N

Yukawa coupling as

(1.1.52)

+ * 1
¢ transforms as (2, - ) under (SU(2), U(1)).

if ¢ is a 2 of SU(2)

(1.1.53)
(1.1.54)
(1.1.55)

(1.1.56)

(1.1.57)

1
(2, - E)

(1.1.58)
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9y $up
where 1 1 )
$: SU(2) singlet, y = - 5- 32" 3

i
. 2
upt SU(2) singlet, y = +-§

SO

Thus we have the Yukawa interaction terms:

—-—— e r}
Lyuk = Tmn Mo *enr
d -
+ (1.1.59)
an qu ¢an
T
*Ton Gon YR o+ hece
As we will see not all the F:;d’u are observable due to
our similar T3, y's for each generation and similarly for the RH
fields i.e. we can redefine some of the couplings away. In addition to

the Yukawa interaction we have the gauge couplings and the Higgs self-

interaction
t +
L¢ = (D:¢) D Z ; V¢ $) ., (1.1.60)
V(p ¢) =u” ¢ 6 + A(d )
where
D=0 - %gg-Au - lgl B ) (1.1.61)

So we finally have the SU(2) x U(l) gauge invariant GWS Lagrangian: gather-

ing terms: .

ym F ) k
1 Hv 1 Hv
L = - —=—F +F "= =
D ym RIS T
where Fv= Bu_v - avéu teh x4 (1.1.62)
- aqu - avBu



-y ; = ; Y : 1.1.63
2) LF sz 1¢2mL + 9 1¢qu + e r 1¢emR ( )
+umRi¢umR+dmR1EdmR
where
- - -j;g- - lg—'—
Du,Q.L (au ] g__A_.u + > Bu)JLL
- _1is . _ ig'
Dqu (au 2 Eéu 6 Bu)qL
(1.1.64)
= 1
DueR (8u + ig Bp)eR
- 21
D = (au 3 8By
i .
DudR + (8u + 3 g Bu)dR
| + u +
3) L¢ = (Ducb) D7¢) - V(¢ ¢) (1.1.65)
where )
+ - 2
V($'e) = u2¢'¢ + AT " (1.1.66)
- _ig ., _ ig'
D¢ = (3, - Foa -EB)e
_ pe = d -
4) Lyuk - an JLmL ¢ ®aR + I‘mn g ¢ an (1.1.67)
R
+T0 q  § up+ HC.
where
2% 4°7
§ =107¢ = _ (1.1.68)
-¢

Let's recall the SU(2)xU(l) gauge transformations which leave this Lagrangian
invariant: ’

-1 i -1
1) AT = - - — ’e 5
ToAl = U,0) Tra, U (0,8) = < (3 U(w,8)07 (w,0)
(1.1.69)
1') A' = A +[3w+gA xw]
—u —d W= —H -
where +ipweT
U(w,8) = e 82 (1.1.70)

since éu is U(l) invariant.



! =
2) RL Ul(w,e)lL

=27~

' v - 1 _ ig'
2") ZL QL + 5 8 Q'E'QL 5 ezL
L
where + l-gm o - B¢
o T2sET T,
Uz(m,e) e
Note: I! = Z.U Y(w,0)
L L2 ’
- - i = ig' 7
' = - — . -
R T B TS )
3) qf = U (w,8)q
' ' = i . ig'
3') qp =9 * 38 we g+ g bq
L
where + %-q weg - ig 8
U (w,8) = e
-ig'e
| -
4) R-© e

5) up = e Uy

' " = _21 '
5") g (1 + 3 8 8)u

_ig'y

6) dﬁ e 3 drR

] v _i_g_'_
6') dR (1 3 8)d
7) ¢' =U¢(wse)¢
7 ¢' =11 +-%5 weo +
where

(1.1.71)

(1.1.72)

(1.1.73)

(1.1.74)

(1.1.75)

(1.1.76)

1.1.77)

(1.1.78)

(1.1.79)

(1.1.80)
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1.1.2. SPONTANEOUS SYMMETRY BREAKING, PARTICLE MASSES,

COUPLING CONSTANTS, MIXING ANGLE, ETC.

We now desire to spontaneously break the SU(2) x U(l) symmetry down to

u(1) Consider the vacuum expectation of <¢> # O
EM
1 0] _

<¢> '75 EV} v = real. (1.1.81)
Then

oi[SJ £0 so the vac. is not invariant under all SU(2)

transformations
1

and y[SJ #0 since ¢ has y = + 1/2 so U(1) is also broken.

But
Q[s] = (T y)[e] = (-é— a3+ %—1){3] = [(1) 8} [3] - 0.

The Q, that is EM symmetry,is not broken. 1i.e. ¢° has zero charge.

However, since

<0[¢]0> = <o|u " ugu ™ u]0> (1.1.82)
= <0°|¢°]o">
if }0) is invariant vjo> = 0>
So <0|¢]0> = <0]¢”|0> (1.1.83)
thus —1- [O]= U (w’e) -—1- [O} (1.1.84)
2 v ¢ /2 LY :

Contradiction! Hence U|0> # |0> that is

l0> is not invariant
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Now we ask to look at the minimum of the potential V for ¢ = 1 (3)
/2
_ . 2.F .42
V() = u"¢lo + A(¢7¢) (1.1.85)
(1.1.86)
but 2 (1.1.87)
hence
(1.1.88)
‘af///" &L :;<D
2
< rL <9
< v

v/ 2

ARV

Now V~ = v(u2 + sz) if u2 > 0 the minimum of V is at v = 0; this is
the symmetric solution. If uz < 0 V has extrema at v = 0

v = /—uz/)\ .

vV = u2 + 3Av2 at v=20 V** =y <0+ v =0 maximum

while at v = /Luz/x >V’ uz - 3Au2/k

-2u2 > 0, a minimum
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So we choose the spontaneously broken mode minimum

v = v’—uzll u2 <0 (1.1.89)

We can eliminate the Goldstone bosons by the Higgs-Kibble transformation:

defining 4 new fields £, n by

~1E-g
o 0 g'areGoldstone bosons and n is a Higgs mesor
b = e v+n
2 (1.1.90)

We can now exploit the gauge invariance of the theory to transform away the §'s.

Make the SU(2) gauge transformation with

>
> 3 (1.1.91)
w = 5
2gv
then
>
4 = U (B=35 D=00 (1.1.92)
. 0
so that $° = only.
+
=1 (1.1.93)
V2
We must re-write the Lagrangian in terms of ¢~; A; s, L7, q%, 7, u’, d°.

The form of the Lag. is the same so we just drop all primes and replace ¢ with
v +n

[O] everywhere:
5 1

So 1) Lym remains unchanged.

2) LF remains unchanged

These do not involve ¢



=1
L, =32

¢ u

-V(n + v)

1 2r—~1
nafn + §(v + )70 1, [g g-éu + g°B¥ gg-éu + g‘Bu (

(1.1.94)
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Now

, | + g“B" g(ay - 1a})
H ~nH
g O*A” + g'B" = , (1.1.95)

g(Ai + iAg) -gA” + g-B¥

it is convenient to define

PR "SR -
u (1.1.96)

4,3

.
Hi

So

—a .M a2 ,0
O 1 [go-A" +g"B"] (1)

+ 2 2 (1.1.97)
= 2g2wuw'“ + (g+ g~ )ZuZu

Thus

=13 ¥y - [ 2 . A 4
L > Buna n [ 5 (v+n)" + A (v +n)]

J (1.1.98)

1 + - 2 .2
+3 v+ n)Z[ZgZWuW G )zuz“]
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Since V' = 0 the terms linear in n vanish, we find
1 2 2 ab 3, .22
L, =7 2,ndn - 3= n° = Zln" + bvn” + 6vTn’]
(1.1.99)
+ -
+%(v2 + 2nv + n2)[2g2WuW L (g2+ g'z)ZuZu]
Now we define Mw =3, the mass of the Wt, then
2 (g2 + g2 2
M- = BT B y M
z 2 w
g (1.1.100)
Now let 2 = tan ®
g W
with 6, = weak or Weinberg angle,
So
MW
M = A
z cosb, . (1.1.101)
Also
R -3 S
e = = gsinyg
/gZ+ g12 v (1.1.102)
and Z_ = cosb A3 - sind_ B
H w ou w U
(1.1.103)
A = sinb A3 + cosf8 B
u w u wu

There is no AUAu term so the photon is massless as it should be since U(l)FM is

unbroken.
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The [mass]2 of n is

+ uz + 3X v2 = mﬁ =+ uz - 3u2 = —2u2
w2 = -2u% > 0 . (1.1.104)

The remaining terms are higgs meson self-interaction terms and higgs vector

interactions. So we finally secure

Loy gl 2122 Aok 403
Lq> > Buna n-gFmn 4(n + 4vn7)
é.gM
+gM WP e Y g ¥
T 2
cos Sw

(1.1.105)

2
+ % g% n? w:w'“ +1 2 zuz“n2

cos 8
w
st wtwr iz 2
w U 2 'z ™4
We can now re-write Lyy and Ly in terms of Au, Zu, WE
Recall
3
YA c -S,,A
@ = DG
A3 c S,,2
which implies ¢ )=« ) ()
B -S C
that is
A3 = cos® Z + sinf6 A
u wu w u
B = -sin8 Z + cos 6 A (1.1.106)
u W WU
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_ig- i i
2 LA T B
i B 3 2—
= - = A “ -
2 gugBU g(AlJ 1Au)
. 2 3
A" + 1A -gA ‘B
g(u u) gh, 8B
e el
=-% z Jgl+g't  +g 2 W
2o g 2gg °
+g /2 W £ E_z - A
2. .2 2 .2
g+ g g+ g Ju
— Vo
lmLiﬁ sz = v.e ig (e )
mL
+5 e = g2+ g'z z +72 g Wt
ok ok, 2
.2 2g8
+ 2g ¥ 5 -
2 .2 2 .2
g+ g g+g

(1.1.107)

mL
mL

(1.1.108)



-36~

and

e. ife. = e, ife

- NTeag
+ eR( g [ 31n6w2 + cosewA]eR

|2 ]
= gg
RY PSR TSR VST éi=:=ZT2 R

We can combine these two to give

= ;L iﬁuL+ eije
2 . .
g *tg S WM -8 = M
+ 2 Zu [vLy 23 + 3 . 7 e Y e
12 _

+ —E— & y' e ]
2 ,2 "R R
g +g

+ ng' [GL Ve + e w"vL]

(1.1.109)

(1.1.110)
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Next we consider

q ibq + wibu, + 4, iBdy

=  uifu + didd
g re [ y" +5ﬁ_-_giayud (1.1.111)
+ Y
2 e Alle # g4 gl LT
4 g'2 - u 4 g‘z By
ok e anmavali e Sy S S A )
g +g2 +
2
2 ! i
MEREIRRY dpy gl

I ACRICRE RS
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this_altogether;LF can be written as

CL inL + eife + uigu + didd

-f-
+eAJu +-}-(J“w +J

vLﬁL___JaL_ Mz

z

where the electromagnetic current sz is given by

—[+%Gyu-—§-ayud-—éy el

The charged weak current Ji is defined by

- 2

=2(a vM*y + g +H

(epy vy +d; v~ w)

= @ Ya-vgv +3 Y a-vw
weak neutral current is given by

- e e

LYy L

(1.1.112)

(1.1.113)

(1.1.114)

(1.1.115)
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=;L*{vL+231ne ey e-eLy e
-5 Sln26 uYLl u+u Yl-l
3 wy %
2 .2, 5. ML _ = M
+ 3 sin ew dy  d dL Y dL
So we have the 3 types of currents:
H _ (o H — +d Heq
1 I, = (e (I-ygvy +d v (1 Ys)um) (1.1.116)
U T H
2) T _=qy by Y ¥
= wo " (1.1.117)
L 2= w  _ls uw, _Z M
=+ 3 YnY Ym 3 de dm Y “n
B =Ry T gy
z 5
-2q.sin%8 .My (1.1.118)
M w'M M *
T S = M. _3F M
=S Y mepy ety - dpydy

;20 = ow _2-w o claow
+2$1n6w(eve 3u\(u 3dY d)

where Ti is value of T3 for Uy (i.e., 0, + %) and Ay is the charge and M
sums over all fermions.
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The masses of Mz and Mw can be estimated by the low energy effective theory.

+
Recall W— has a propagator like

and 2°11ike

(1.1.119)

at low energy.

Leff
[o4
2 - GE
=+ @857 +hec — ><‘ /\5‘
8M
G
- F ..u .t
=+ Y17 + h.e.
that is vz ( wowi c-) (1.1.120)
G 2
7§ -8 -1 ] (1.1.121)
2 SM‘?; )

Now recall e = gsinew 3 e2 = 47a

So 2 2 .
2 A e’ (37 GeV)
m = 5— = (1.1.122)

F 8sin 6 sin26
w w

M = 3? GeV
w 51new
(1.1.123)
M
M = A = 15 _GeV to lowest order.

z cosf sin28
w w

4) Finally we must evaluate the Yukawa Lagrangian to determine the fermion

masses.

e - 0 0
Lyuk - rmn sz e _ + Pd a d
nR mn mL nR
v + n v +n
ﬁ; V2
u v +n (1.1.124)
+ T 9oL u R + h.c.
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]
3

e v +nj - d v+nil =
mn [ V2 ] emL enR + an [ V2 } dmL an

u v+ nl-
* Tm [T]umL ug T hec.

= -
eL M eR + eL h eRn

+
uLM up uLh upn

= .4 = .d
- + .
dLM dR + dLh an h.c
where
e _- -v e . u d
an = 5 rmn ; similarly for M and M
and e = 1 e _ zle (1.1.125)
mn Y2 “mn v mn
- =8 © . u d
ZMW an , similarly for h™ and h .

The 'mass matrix is in general not diagonal; the weak interaction fields

we have been using are not the "physical" fields i.e. mass matrix

eigenfields. Generally the an are complex and non-hermitian. But we can
e,u,d |

still diagonalize the mass matrix by a left-right transformation for M H

Wehave 3 x 3 matrices call them M with real, positive eigenvalues m, 5Mm, My

that is
— -
ml 0
+
Maiag ™2 = A MAR S ia2e)
_0 m3-

(i.e. (ml,mz,m3) = (me, mu, mT) or (mu, m mL) or (md, m_, mb)).

where AL and AR are 3 x 3 unitary matrices (AL = AR if M is hermitian) .
+.

Further we can almost determine AL and AR uniquely by noting that MM and

+
M M are hermitian:
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+ * ot +
M) =MM ; MM =MM . (1.1.127)
and that
U t . -
M OWOA S AMAMNA T,
Ly
=M M+ = my
diag “diag
2 (1.1.128)
0 m3
ff = *J +M - M
AgM M Ap =AM A AM Ap = Myiag Mdiag
-—2 —y
m1 0
- o2 (1.1.129)
2

+
We can determine AL and AR by diagonalizing MM , M1ﬁ using simple linear

algebra. This fixes A.L and AR only up to 3 arb. phases for R and 3 for L

that is if we let

R

4
. 11 0 (1.1.130)
R | ‘ .
K - ei¢2L ;
R
R 0 ei¢3L
L R _|
Then
at ol
+ o+t ¥

2
MM = K M
g T Qe

2
Mdiag.
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and also

ot 2 (1.1.132)
1] | .
AR MM AR - Mdiag

So Aﬁ obey the same equations as AR. However, we still can use

L L

+
AL M AR = Mdiag. to determine the phase differences

%L - ¢iR since

v + | - + .
Ay MAR TR My K (1.1.133)

“106yp - #18)

mle 0

= m,e
-1 (¢
| 0 mqe
Each term must be real and .positive
¢, = ¢ !
i iR (1.1.134)
E¢i

So KL = KR = K only are arbitrary.
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(Alternatively we can redefine phases for the fields
R
u, TR
.1.
' =
b

Lyuk maintains -the same form only if K = Iﬂi')

So back to mass eigenstates. Defining new fields (concentrating
onuw, u for the moment)
o= At (1.1.135)
up = AR
where I've now put a superscript W(eak) on all the fields in the SU(2) x U(1)

interaction basis - i.e. give the fields we've been working with in the Lagran-

gian a superscript W, The mass-eigenfields now have no superscript.

Similarly for

w d w e

d, = e = '
LA LAt (1.1.136)
w _ ,d w _ ,e

dp = Apdg egp = g8 -

The mass and Yukawa interaction terms now become diagonalized

TW U W -W . u W
L}'uk uLM u uLh upn + ...
- T u,u __g = ,utuu
“LATivl Agr M upAp MiAgupn ...
. — —_
mu 0 m 0
u
£ .7
e " m v, - nu
= -u c R ZMw L m, “r
0 ®
t 0 m-E

+ ... (1.1.137)
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| mu 0 uR«ml
= £ 2. c T
w e
0 T R

L. - L -
o 7] u z

—_—_ “ L

+  u_cpt m
| R'R, : + ...
R R o4 CL J
B M 'R |
Finally yielding
. _g_ T <+ o g
Lyuk o+ ZMW n][mu uu + m ce + m tt
- - - (1.1.138)
+ mddd + mSSS + mbbb
+mee +m Uk + m_TT
e U T
So Lyuk only measures the eigenvalues - i.e. the masses. We would like
to determine the rest of F:;d’u, i.e. AL’ AR' To do this we express the

gauge couplings in LF in terms of the mass eigen

Since T3 and ¥ (hence Q) are the same for each generation we find

JU

EM? Jz have the same form [ns change]. Thus the GWS with left-handed-fermion

fields in doublets has no flavor changing neutral currents [no strangeness

changing currents:GIM ], However, the JE becomes

Ju

W M. w i A P w
w e 1 YS)V +d vy (1-yg)u

mI

+ - d+
Py DA W+ I A ar Al (1.1.139)

(LB]

Uoqo + 3 M-
Y (1=vg)v d y (1 YS) Au
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where gt

OKD
a7
aE

ma m (1.1.140)

and

\)L = AL \)L

since neutrinos are massless and we just associate VoL with e Ac is

the generalized Cabibbo matrix - it fixes the flavor structure of J:. So

through gauge interactions we can determine some of the T:;d’u. Note that
as before : K
- m
2mL e,
h— L
and (1.1.141)
B u
cmn 1
qu =
d
m
- L

d

=’ R’ e g are SU(2) singlets.

transform as SU[2] doublets, while u
AR cannot be measured in the GWS model,since it never appears in the
currents.We can only determine some of the AL; that is Ac which appears
in J%.
w
Acare all the Higgs couplings the GWS model can measure!

Ac is a 3 x 3 unitary matrix since the AL are and

_ 4t v
A=A A (1.1.142)

so it has 32 real parameters. But recall there are 3 arb. phases for each
AL' It appears we can choose 6 of the Ac parameters at will, they are not
observable and can be chosen for convenience. Actually, 5 of the phases only
can be chosen to put Ac in a convenient form. The other phase does not occur

in the Lagrangianm and so is irreélevant. .
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So Ac depends only on 9 - 5 = 4 real parameters.3 of the parameters
represent rotations of the families into each other. The AEE-parameter,
an observable phase angle,measures the amount of CP violation in the
original Yukawa couplings. Kobayashi and Maskawa first expressed Ac this

way and so Ac is called the KM matrix.

AKM in this 3 family (6 quark) GWS model can be written as

3 c, -s,C, -s.s, -
bt T + 5G4 CiCCqy SZSBe_ia C152C3"Czs3e—is (1.1.143)
L S5 €108y S0+ 0,8, ¢ Cz°3e-ia.d
%, 92, 63 are the 3 rotation angles, and & is the CP violating phase.

Phenomenology of the KM version of the GWS model:

1) AKM not well determined

a) |c1] = 0.9737 + 0.0025
_ +0.21
|s3| = 0.28_ "2

from B-decay and semi-leptonic hyperon decay.

b) KL - K_, mass difference -

S
0.1 < |s,] < 0.7
2
¢) € parameter for CP violation in Kaons - s,s_sind = 0[10_3].

23

2) Neutral current interactioms:

v - hadron, v-e, e-hadron
> sinzew = 0.229 + 0.009 [exp.]

+ 0.005 [theory].



3)

4)

5)

~4,8—

Higgs mass mn = ¢y=2u = 2% v

v = 246 GeV from GF

m = V2) 250 Gev

various arguments: m < 200 GeV .

Charmed hadron decay, non-leptonic hyperon and kaon decays, AI = =

CP violation, KL - KS mass difference: all seem to be compatible

with the model.

CERN UAl Preliminary measurement of wi mass

M = 81+ 5 GevV!
W X

1
2 ’
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1.2 QUANTUM CHROMODYNAMICS

1.2.1. Particle Representations and the Symmetric SU(3)
Color Lagrangian

The theory of strong interactions is based on the gauge group SU(3)
of color. SU(3) is the group of 3 x 3 unitary matrices with determinant
1. There are 32 - 1 = 8 generators for this group and they obey the com-

mutation relations

i 43 . k (1.2.1)
[T, 771 lfijkT

where ‘

Ti i=1...,8 are the generators of the group and fijk

anti-symmetric structure constants for the group. These are given by:

is the completely

(recall for SU(2) fijk = eijk i,$k =1,2,3)
fl3= 1
f =f = f = f =+-1'—
147 246 257 345 2 2 (1.2.2)
- I §
£156 = F367 2
-1 7
f458 2 /3
=1
fo8 =3 73

all others [not related by permutations] = O. As in the SU(2) case we

. i
have 2 representations of the T~ that are very important.

1) The fundamental representation of SU(3) called 3 (triplet of SU(3)) is
given by the 8 Gell-Mann A" matrices which are the analogs of the three

Pauli matrices for SU(2). These 3 x 3 matrices are



=50=

1 0 0 0 0 l—
A3 = o -1 o/ , 2 o o o] ,
0 0 0 1 0 0
- ) L. _J
0 0 -i 0 0 0
Az = o o ol , A6 - o o 1| ., @23
_i 0 OJ _0 1 O_J
o 0 0] 1 0 0
7 8 _ 1
A = 0O 0 -i , AT = Ve 0 1 0
0 i 0 0 0o =2
Then we represent T:L - Tiz% )\i and [Ti, " ] = ifijk Tk. Also we note
that Tr[AiXJ] = ZGlJ and the anti-commutator is
L3y 244l k 1.2.4
{7, A} 36 +2dijk)\ (1.2.4)
where dijk is completely symmetric in its indices and its non-zero elements
are given by
di1g = dppg = d33g = ~dggg = V1/3
d146 = 9157 = 79247 = dose = d3uy T (1.2.5)
= - = - =+ 1
= dy55 = d3g = "d377 = * 3

dpss = 9558 = dgeg = d778 = /5

Every 3 x 3 unitary matrix U(¢l,... ,¢8) of determinant 1 has 32 -1 = 8 inde-

pendent matrix elements and is given by

18s i
. + —= A
ve=etigs®® _, 2 71 (1.2.6)
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2) The second important representation is the adjoint representation

given by the 8 x 8 matrices made fromthe structure constants themselves:

i
TF = -1 £,
ik i3k (1.2.7)
i.e.
6 0 0 0 0 O O0 O
0 0 +1 0 0 0 0 O
0 -1 0 0 0 0 0 0
6 0 0 0 0 0 +1/2 0
Tt = 0O 0 0 0 0-1/20 0
0 0 0 0 +1/2 0 0 0
0 0 0-1/20 0 0 O
0 0 0 0 0 0 0 0O
etc.
Then [Ti, Tj] = ifijka as a consequence of the Jacobi identity
i _j_k ik 4 1 _§,q =
s rI T+ o, v TN A, LT 20 yielding
m—
fspefiom * frinfiom ¥ fige fkom? =0
So
Fiee fiom ~ Fixefiom = fije Fokm (1.2.8)
Since fijk is completely anti-symmetric thus

(1), ('i)szm - D D = lfijz('l)fzkm

- [T, TJ]=ifij K

k
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Since SU(3) is an 8 parameter group we have 8 vector bosons Gui,i =1,...,8
These transform inhomogeneously under a gauge transformation; for any repre-

sentation Ti of SU(3)

let U(s) = eﬁgsi'E . o =yl = e-igsil (1.2.9)
and the transformation is defined analogously to (1.1.4)

TG = U®IE, U@ - gis— G, U . (1.2.10)
Infinitesimally U=z1+ig 9T 1 :1-1ig¢'T (1.2.11)

and we find that

T.G' =T.G + T.9 + T. TG (1.2.12)
= -u =-u = u2 leg [o-T, T u]
=T.G + Tk[a 4 + g f clgl ]
—u kjiu
Thus
Tt igk (1.2.13)
= <+ + el
Gu Gu au¢i gsf:LJkGu¢
or defining (A x E)i = fijk AjBk
G' =G +03¢+ghtG ,
G, =& +to e+l x¢ (1:2.14)

As in the SU(2) case we can form the anti-symmetric covariant field strength

tensor by using the covariant derivative:

D = 3 -ig TG (1.2.15)
u u S

T.F =D (T.G) - D (T-C ) (1.2.16)
— TUV H =V v = —u

which yields
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F = 3G -3
—Hv =V vgu + gsgu X E\)
or : : . L (1.2.17)
Fr = G- - 3 Gt J
v 3.6, 3,6, + RPN o
Once again Euv transforms homogeneously
using - - -
U lU =1 = 3 U 1U = -U 13 U
M H
T.F -1
. = U . . f
TEy=U@ IE U@ (1.2.18)
Infinitesimally we have
TF' = T-F + . .
IEy=LE, ig [¢-T, T E]
. R § 3 k
T (Fw + gsfiijuv 6]
' =T
Euv Euv + gsEuv X ¢ (1.2.19)

analogously to the SU(2) case equation (1.1.19).

Thus the SU(3) invariant pure Yang-Mills part of the QCD Lagrangian is

L =- % F_ -
ym HY (1.2.20)

The leptonic matter fields are invariant under the SU(3) color transform-
mations as are the Higgs fields. For each flavor the quarks transform as
a fundamental triplet of SU(3): let qae {ua, da, ca, sa, ta, ba}, where

f indicates the flavor u, d, ¢, s, t, or by a =1,2,3 = color = R,G,B,

The fundamental representation is given by T+ = % A" and
ig
] b
' =U@)q=e? ¥= gq (1.2.21)

where q and q' are column vectors with 3 rows. Thus infinitestimally

ig
@ _ a s .,yab b
@' = a5 @M (1.2.22)
Thus the covariant derivative is defined by
igs
ba=10, - 2€]ld (1.2.23)

and as usual
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v - S v '
= - S .c
(Duq) [3u > __u]q
ig
-1 -1
=[3 -—2UrA.GU =~ - (3 U)U
[u 7 UA-G (u YU "JUgq
which gives (D q)' =UDgq
8 r u (1.2.24)
The invariant kinetic energy terms then become
g ibgq (1.2.25)
- = - -1
since q' = qUu = qU
->
we have (q 1Bq)' = (q i¥Bq) (1.2.26)
Note that we must sum over flavors and colors so
- -a b
q inq: q? 1wab qf (1.2.27)

We see that SU(3) invariant mass terms are also allowed (ignoring
the fact that these break SU(2) x U(l) but assume they arise from the -
Higgs mechanism discussed previously). Thus the current quark mass term is

-z me aaqa . The mass "matrix"
£ £f'f
terms are unchanged under the AL and AR transformations. Thus the QCD

is taken diagonal since the kinetic energy

Lagrangian is

v - -
PV + 3 iBq - mqq (1.2.28)
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1.2.2. Asymptotic Freedom and Confinement

The most important property of QCD is its asymptotic freedom. That
is the momentum dependent coupling constant decreases to zero as the
momentum increases due to the anti-screening properties of the gluons.

The renormalization group equations provide the formal techniques for
discussing the asymptotic properties of a theory.

Generally speaking the normalization of field operators is determined

Z
from the asymptotic conditions which state that a field ¢(x) —lfi——+ ¢out(x)
X = o |
0 in

where ¢out are the free outgoing and incoming field operators. Thus ¢ is

:

in

normalized to the free field, that is the propagator is normalized on mass
shell with residue one.

When one deals with massless theories, on-shell normalization is
usually not possible due to the infrared singular behavior of the Green
functions. Thus we must normalize the field operators off mass shell at
some normalization mass uz < 0. In addition, the coupling constant should be
defined at the off-shell mass uz. As will be seen, the observables are in-
dependent of this field normalization. This invariance of the
observables with respect to the field normalization gives rise to the
differential equation known as the renormalization group equation.

In order to be concrete let's consider the self-interacting scalar
¢4 model with renormalized (finite) parameters mass m and coupling constant
g. The field operators (and observables) are only determined uniquely

when we specify normalization conditions on the propagator and 4 point

function. That is we must specify the relation of myg to the mass of the
particles and their interaction strength. Usually these conditions are specified on

mass shell, but even for this massive theory let's specify them off-mass shell so
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as to avoid possible IR singularities in the Green functions as m - 0. Further,
m is a mass parameter and is not necessarily the physical mass m
(i.e. the position of the pole in the propagator) thus we can fix its

value at some momentum which we take to be zero for convenience

A;l(o,mz,uz,g) - o’ (1.2.29)
where (A;l)AF is the (inverse) propagator and uz j.mz the normalization
mass to be discussed below.

The normalization of the field ¢ is specified usually by normalizing
the residue of the propagator on shell to be 1

2 2 2
-i(k —mp)AF(k ) | 2_2 =1 (1.2.30)

=m
P

but keeping in mind that this diverges as mp + 0 we normalize the field

off mass shell:

L2 2 2 2 2
-i(k —mP)AF(k ,m LH ,g) = 1 at k =u (1.2.31)

Finally the coupling constant must also be fixed. This is done by setting

it equal to the vertex function at a specified off-shell momentum:

2 2 .
T(ky,ky,kqsk, m 07 ,8) -ig _ (1.2.32)

2 2

2 2 e
at ki =y (ki+kj) ==y izj ,

wie

where T is the 4 point vertex (1PI) function. Thus to summarize there
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is no unique choice of renormalized parameters m and g and these must be

defined in the theory. We choose the conditions

1) A;l(O,mz,uz,g) - m2 (1.2.33)
2) TI(k,,k,,k.,k m2 uz ) = =i
l, 2’ 3, 4, ’ ’g g
(1.2.34)
2 2 2 4 2 e
at ki = u (ki+kj) = S-u izj

Further the normalization of the field operator ¢ is fixed by requiring the

"off-shell residue" condition

2 2 2 2 2
3) -i(k —mp)AF(k ,m LU ,g) = 1 at kT o= o, (1.2.35)

(where mp is the physical mass determined from A;l(mi,mz,uz,g) = 0; actually

we could choose any [mass]2 # u2 here, even 0). These conditions uniduely
specify the field operator ¢ = ¢[x,m2,u2,g].

If we change the normalization point u - u', we find that new
parameters m' and g' can be defined using the normalization conditioms (1)
and (2) in terms of u', m', g' such that the new field operator differs only

by a new normalization from' the old field

Zl/2 ¢(x,m2,u2,8) (1.2.36)

v2

2
¢'(x,m"",u'",g") =
where the field normalization condition (3), in terms of u', m' and g’',

will determine Z.

The renormalization group is defined as the group of transformations

;1

p > o' Gom ey = 2% s ale) (1.2.37)

It is trivial in the sense that the transformation only changes the

(arbitrary) normalization of the field operator (the physical parameters
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like mp are unchanged). Field operators related by a renormalization

1/2

o' = 2 ¢ are called equivalent. Two sets of parameters m,u,g and m',u',g'

are equivalent if the corresponding field operators are equivalent. Thus

1/2

the set of all fields related by ¢' = Z ¢ and the set of all parameter
triples (m,u,g) are divided into equivalence classes.
Towards determining Z,m',g' it is useful to introduce the effective

or running coupling constant which is invariant under renormalization group

transformations ,

4 73
i 01 vV -i(k,- k.) T
i R i( 3 mp)AF( J) (1.2.38)

2 2 2 2
g(k ) = g(k sM ,U ’g)
where ki are some constant momenta such as those defined by

2 2 2 4 e s
K2 = k4, (ki+kj) =3 k°, izj (1.2.39)

Thus for ¢ - 21/2 ¢ we have AF - ZAF and T +~%7 I' so the running coupling

constant g(kz) - g(kz) is a renormalization group invariant. Because of

(3) we can re-express (2) as

(1.2.40)

[]
(1]

@ gt = gaa’upl|

k =u2

We can also introduce the effective residue r, by the dimensionless ratio

.2 2 L2 2 2 2 2
ratn?te) = -1 a6tk (1.2.41)

It is further assumed that the Green's functions obey scale invariance in
the sense of engineering dimensional analysis; so if we scale all dimensionful

quantities by X we find

22 .22 n-4 2 2
G(xy,eeenx A, ,8) = AT TG(AR AR LML) - (1.2.42)
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This implies that dimensionless quantities are functions of dimensionless

parameters g, kz/uz, mz/u2 only. 1In particular

2 2 2 2,2 2,2
r(k",m",u",8) r(k“/u",n"/n7,8)

i

) (1.2.43)

2 2 2 2,2 2,2
g(k sI , | sg) g(k /]J ,m /u 28)

Thus we can write the normalization conditions (2) and (3) as

r(l,mzluz,g)

[
[

J-

(1.2.44)

2, 2
g(lym /l-l ’g) g °

We now change p - u' and apply the renormalization group transforma-

tion

¢'(x,m'2,u'2,g') = Zl/2 ¢(x,m2,u2,g) . (1.2.45)

The normalization condition (3) for ¢' now reads

—i(kz-mé)AF(kz,m'z,u'z,g') =1 at  kr=yp? (1.2.46)
implying —i(kz—ms)ZAF(kZ,mz,uz,g) = 1 at k2 = u'z (1.2.47)
Thus

-i<u'2-m12,)AF(u'Z,mz,uz,g) -zt (1.2.48)
So ‘
7t = rainteinle (1.2.49)

. 2, . . . .
Since g(k”) is a renormalization group invariant

g2/t mt it e = g2 /% ,m1u,g) (1.2.50)
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Setting k2 = u'z and applying condition (2) for the ¢' variable

1

g(l,m'z/u'z,g') = we have

1.2.51)
2,2 2 (
g' =gl /um /u® »8)
" Finally since
A;l(kz,m'z,u'z,g') = % (k ,mz,u »8) ' (1.2.52)
Normalization condition (1) implies
' 2 1 2
m = E'm
(1.2.53)
Since the normalization conditions uniquely determine ¢; then

Z1/2

if p > y' we find ¢' = ¢ with Z,m',g uniquely determined above.

If two field operators are equivalent

1/2 2 2 (1.2.54)

2 .2
¢'(x,m' sU' ,8') = 2 ¢(x,m ,u ’g)

then the Fourier transforms of their time ordered functions are related

12,2 n/2

Glky,--nsk ,m'Su' ") = 2V Gk ,kn,mz,uz,g) . (1.2.55)

100 1’7"

Hence we can differentiate w.r.t. ' and setting u' = u we find the

standard form of the renormalization group equation

2 3 3 3 2 2
o - 1.2.56
(0" gz * B gy * Vg gz ¥ Y] GG,k mtute) = 0, )
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2,2 2,2
2 3! . Bg(u' /u , 1M /U ’g)
B = u 'a_ﬁ—y’z = 3
u'=u 5 L
u U'z 1
which yields uZ
2, 2
dg(x,m /u,g)
8 9x
x=1
and
y = - 13nz _ 11 oz
= -1 = -z
2o U 22 ﬁ‘z—
H 11'_=11 . u'=p
5 L
1 r 11 or
= - —1 —'2- = + = ———;2-
2 M 2 r u
3 H ' 3 H 1o
which yields u=u H =
2, 2
¥ = + 1 dr(x,m /u ,g)
2 Ix _
x=1
and
1
y = 2 8m'2 m2 °Z _ m 3Z
- - __z" -_— — _2—_'-"2
o au'2 . 3 2| | z° 5 E
H=u u U =u u u':u
. .2 3r n2 Br(x,mz/uz,g)
- L
3 %2_ p'=y o x=1
which yields
v, = 2’y

(1.2.57)

since r(l,mzluz,g) =1 . (1.2.58)

(1.2.59)
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. 2, .
Note that since g(k™) is a renormalization group invariant

2 2 ,2 2 2 2
gk",m'"",u'"",g") = gk",m",u",g) which upon differentiation gives
[ 2rrpdoay =25 g(k%) = 0
U og m Jm :
(1.2.60)

Before studying the solutions of the RGE let's check that physical

quantities are RG invariant, that is independent of u. If P(mz,uz,g) is

2

a physical quantity then it is independent of uziue.P(m' ,u'z,g') = P(mz,u2 g)

which implies

W24 p@2uen| = o
du
u'=n
yielding
2 3 ? 3 1 p(mZ 42 =
[u -372.4- B _3_g-+ ’Ym ﬁz] P(m",u",g) = 0. (1.2.61)

For example the physical mass, mp’ should be independent of nu. Now

-1, 2 2 2 1 -1,,2 2 2
A (kT ,m"u'%,e") = S A (kT,m,u,8)
F ¢ & zF 7 8 (1.2.62)
2 2
so both =0 at k- = mp y

More circuitously we recall the running residue

—i(kz—mi) _ Agl(kz,mz,uz,g)r(kz,mz,uz,g) (1.2,63)
So defining
D = [l ﬁz + 8 g—g + ﬁz] we have (1.2.64)
[ 3%7 + 8 %g Y 3%7] imi .
- oont 4 2o, (1.2.65)
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from above

-1 -1

DAF = ZYAF (1.2.66)
and since r is defined through the two-point function
2 _,2 ,2 - 2 2 2
r(k“,m',u"%,e") Zr(k",m",u",8) . (1.2.67)
So
Dr = -2yr . (1.2.68)
Thus
2 :
Dmp f 0 (1.2.69)

as required of a physical quantity. Also the S-matrix for any n-particle

process is given by

—i(ki—mz) -i(k%-m?) 2 9
SCkysevesk) = | ——F L 26k, k)
rz(k@ r=<kp n k2=m?
ip
_ 1/2 -1,,2 172 2 _ 2 2
= (k Yag (kD). (k )by (kn) G(ky,-- o5k sm7,0u,8) 2oz (1.2.70)
ip
So
ps = (2 206 + 0™ 24 ahe
(1.2.71)
= -mr(rn/2 nG) + (- nY+2nY)rn/

F

Thus the S-matrix is independent of u.
We can use the RG to find the behavior of Green function,
when we scale all the momenta. In order to simplify the derivation we

will consider the theories to be massless (we will look at large momenta
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compared to mass scales in the theory) the RGE becomes in the massless
case

2 3 d 2
B— - = .
[U 3;7 + ag + nY] G(kl, ’kn,u 9g) 0 (1‘2'72)

with B = B(g); Y = v(g) only and the running coupling constant and residue are

2,2
r = r(k /u 98)
(1.2.73)
-.2,2 2,2
gk™/uT) = gk"/uT,g)
By dimensional analysis
2 2,.2
G(Ak,u",g) = A"G(k,u“/2%,g)
(1.2.74)
= "M% wle
by the RG where now
- 2
zt = (%)
2 -2 1.2.75
g' = s(x,8) = g(A") ( )
The RGE can now be used to find r and é; recall
2, ,2 2,2
g(k /u' 98') = 8(k /u 9g) ’ (1.2.76)
R 2 .. 2 2
differentiating w.r.t. k= and setting k= = u'" yields
12 dg(x,p') - ly ag(x,g)
1
u ox <=1 u ox " (1.2.77)
x=
H
implying
2
og(x,g
B a(g') = (g )
H X u'2 (1.2.78)
X =7
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2,2 2 '
For w'"/u~ = A" we find a differential equation defining the running

coupling constant

- i )
X; bg;i-' E) - g(g) with the initial condition g(1,g) = g-

Also we have that (1.2.79)
2 2
kil ey =zl (1.2.80)
Thus
2=+ 85 = -2y (1.2.81)
5y 32 .2,
letting k2/u2 = AZ with uz 5%7 = -AZ 3%7 this becomes
2 3 3 2 _ 2
[°)\ 3)\2 + —ag]r(A ’g) = -ZYr(A 38) (1.2.82)
with initial condition r(l,g) = 1. The solution is
g(2%,g)
+2 J 1151 dx .
2 B(x)
r(A7,g) = e g (1.2.83)
Let's check this by differentiating
2.2, 482 1@ (2 2, 4 g 23 ¥(8)
-2 +B8]r = 2 Y + 8 2= - .
[ 2zt B ag]r 3(§) [( 532 + B ag)g]r 2 3(g) B(g)r
(1.2.83)

But é(kz/u'z,g') = g(kzluz,g) which gives

[‘lz 5%2‘+'B%§]§ = 0 and hence r given by (1.2.83) satisfies (l.2.82)_
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So -
g(A<,g)
+2 J %%ﬁ% dx (1.2.85)
r(Az,g) = e g
and
- ) )
Az 3 (gk, ) - B(g) with g(l,g) = g . (1.2.86)

Hence we find the asymptotic Green  function is given by

=32
+ ‘[g( ) - (X) dx
2 a B(x) 2 - 2 1.2.87
G()\k,u ,g) = A e g G(k9u ,80\ )) ( )
So the large momentum (Ak > m) dynamics is completely controlled by the
running coupling constant; whose behavior in turn is determined by the
B function.
Recall
B(g) = 2BaE)
=1 (1.2.88)

and in perturbation theory é is given as a power series in g and hence so

is B. Suppose 8 begins in order g3 as it does in gauge theories)

3 (1.2.89)
B(g) = bg
then

298 .3
AT VAR (1.2.90)

This equation is easier to solve when we introduce the coupling constant

(Az) = é&ﬁlﬁl the fine structure constant
@ = b ’ . (1.2.91)
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Then

AT 33z = 8mbe (1.2.92)

' a(l) -
1-8ra(1)bani

2
a(A7) 5 (1.2.93)

As X increases a(lz) increases if b > 0 but decreases if b < 0, i.e. B < 0.
If B < O the theory is called asymptotically free since a(xz) -+ 0 as
Xz + o, Note as A decreases a(kz) > » as the denominator approaches 0
for the asymptotically free case. This is perhaps an indication of confine-
ment; the interaction strength grows as distance increases; however the
perturbation expansion can no longer be valid as a(lz) grovws.

We can apply this type of analysis to gauge theories in general
(ignoring the technical difficulties of gauge invariance, scalar fields and
masses) to find a similar RGE and running coupling constant a(lz). For

theories including YM fields and fermions a lowest order perturbative

calculation of R(g) yields

_ 311 4
8 = =35 3 @ - 3 1]
(1.2.94)

where CZ(G) is the quadratic Casimir operator for the adjoint representation

of G

C2(G)6ij = fiklfjkl . (1.2.95)
For example )

C2(SU(N)) = N and CZ(Ul) = 0.

(1.2.96)
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TF is related to the Casimir operator for the fermion representations

= Loprried
Ty 5 5 Tr(T°T)) (1.2.97)

where we sum over all fermi (left and right) representations. So we see

for TF < l% C2(G); B < 0 and the theory is asymptotically free, there are

not enough fermions to screen all the non-abelian charges

For QCD CZ(SU(3)) = 3 and TF = number of families = %—number of flavors
(for QCD) = F.

For SU(2) in the GWS model
CZ(SU(Z)) = 2 while again TF = F ; and for the

U(l) of hypercharge

1,2
T, = Yt

NI

2
YR =

wlwn
rri

where we are assuming A > Mw’ Mz ormq the quark masses so that we can
treat the theory as massless (also we have neglected the scalars in the

theory necessary for the Higgs mechanism). So we find
3
g
s 4
Bacp oz 1 -3 F1 <0

- 3 .22 4
BSU(Z) = = -5%;2- [——3_ - § F] <0 (1.2.98)

'3 20
BU(l) = +—‘g'—z32n —§F >0 .

Thus QCD and SU(2) are asymptotically free and as(kz); aSU(Z)(AZ) decrease

as the momentum Ak increases, while aU(l)(Az) increases. Note that our B differs b

a factor of-% from others, for example, See D.J. Gross in Methods in Field Theory,

. 3
Les Houches 1975, since our RGE is in terms of u2 —éi-whlle others use u 5;—
u
) 2 3
andus—= 21.1 —2'.
u e
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Coupling
constant

alQ?]

Vel

Unification
2,2 >
L [Gev]2

1.3. The Standard Model: Summary

We can summarize our discussion of the standard model of electroweak
and strong interactions based on the group SU(3) x SU(2) x U(l) by listing
the Lagrangian first in terms of the unshifted fields then .in the unitary

gauge.

SM
L = Ly t LF + L¢ + LYuk

1) L = gHV oL g gy Lo oWy (1.3.1)
= 4 Tyuv 4

1
- = F
™M 4 “pv — —uv —

where the anti-symmetric covariant field strength tensors are

F = 9A -3A +gA xA
“—uv v v—u —u -
(1.3.2)
B = 9B -3 B
uv H Vv vV H
G = 3G -3G +gG xG
—uv v v—u s =V
-W.. W -W.. W -W.. W -W., W =W, W
= +
2) LF leﬁzL + quﬁqL + eRlﬁeR + uRlﬁuR debdR (1.3.3)



-70-

where the covariant derivatives are

W _is ig' W
D & (o, -=F oA +=5-8]ly
ab wb ig ig' ab ‘&g ab, Wb
D = 9 - « A - B) S - — G
W . W
D = +ig'B
18R (au ig u)eR
I S T "Bs g yabl Wb
u R 3 U 2 == YR
R ig Wb
ab . Wb i ab s abld
D d = 9 + = ¢g'B - A+G R
u 9R [( w13 g u)d 5 ( _n)

where a,b = 1,2,3 = R,G,B and the generation indices have been suppressed.

+ +
3) Ly = (@87 0" - V(')
= H (1.3.5)
where the Higgs potential is
+ 2.t +..2
V(ip ¢) = u ¢ ¢+ A(d ¢) (1.3.6)
and the covariant derivative is
= _ig ., _ig’
D¢ G -3 24 -8 (1.3.7)
. e W d -W , W u =W~ W
4) bue = Ton*nr%enr * Pmnqu¢an * ndm? VR Yt h.c. (1.3.8)
where
. ot.
4 = [fq)-] : (1.3.9)
In the Higgs unitary gauge we find
1) I S N pv _ 1 wv _ 1 ATV
LYM 2 KuvK 4 Fqu 4 HuvH 4 guv G
_ . WY _ BV, 1 2 TRV u.* 2
ig[sin eWF cos ewH ]wuwv + 7 [wuw WVW (W Wu) ]

(1.3.10)
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where
= dW -4dw
v TRV
+
oo Lol
u J3 o M H
4% -
W = W
[u] "
du = au - iglsin ewAu + cos eWZu]
F = 3 A -23A
Hv HV AU
H = 32 -32
uv v vu
. 3
Z cos 8_-sin 6 A '
[ u] = [ . eW W] [ u] H £ - tan o
Au sin 6 cos ew Bu g W
- - - ig - ig
2) L = vLiﬁvL + eide + ul(l - —7—-Agglu + dl[l - —E—'Afgld
- 1)
+ e gV + B (MMt 4+ BT Yy
U em )2 Wu W u 2 Z7u
2v2
= i = '
where e = g sin ew g'cos eW and
H - JH
a J =
) I quMYwM
= 2 2gm, L3 omg ¥
+ 3% % T3 de dm ®nY °n
voooT M- 7 Moo
b) Iy ey (1 Y5)v+dY(l YS)A-KMU
u = _Hm3 = M
c) J, = T°(1-vy )y - 2 Y
7 'JJMY v Y5, quM wM
= T M, — S WM =M. _ 3. M
vLY 123 ey eL + u YU dLy dL

;20 =u, _2=-u 1l oow
+ 2 sin 6w(ey e-j3uyu + 3 dy~d)

where AKM is the Kobayashi-Maskawa matrix.

(1.3.11)

(1.3.12)

(1.3.13)
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1 u 1 22 A 4 3
3 l = = -= -4
) Zanan > N :(n+4vn)

2 1 22 +-~
+ MgreMn + 7 g IW W H

(1.3.14)
1.2 My, 1 2.
+ 2 [MZ + coszeW n+ 4 cos ew n ]zuz
where
v [ _37 Gev]
MW 2 sin ew
Y, 75
M = (: - GeV]
Z cos Gw sin 26w (1.3.15)
mi = -2112(5 200 GeV)
and
sin26w = .,229 + .009(+ .005)
- . - - - - - -
4) LYuk 1+ Eﬁ; n][muuu + m cc + mttt + mddd + m_ss + mbbb

+ m_ee + muuu + mTTT] . (1.3.16)



