
§3.3 CROSS-SECTIONS

So far we have derived a procedure for calculating the transition probability am-
plitudes Sfi for any process in QED. Next we would like to relate Sfi to experimentally
observable quantities in particular cross-sections. We have calculated transition am-
plitudes for several processes involving definite spin and polarization of the initial and
final particles. In general this is not measured but rather the initial beams of particles
are spin-averaged while we sum over all final polarizations. We will have to see how to
do this also in our cross-section calculations.

To be definitive let’s first consider the scattering process between two initial par-
ticles, either e± or γ, colliding, interacting and resulting in a final state with n final
particles. The initial particles’ energy-momentum is p1 = (E1, ~p1),
p2 = (E2, ~p2) and is labelled pi, for i = 1, 2. Similarly, the final particles’ energy and
momentum are labelled p′f = (E′

f , ~p ′
f ) for f = 1, . . . , n. The initial and final parti-

cles are in definite spin and polarization states also. Recall that the S-matrix element
always has the form

Sfi = δfi + (2π)4 δ4(Pi − Pf )Mfi, (3.3.1)

where δfi represents the normalization of the free incoming and outgoing states. Since
we are interested in the transition probability we consider |Sfi|2 for i 6= f . Notice
however that we will have [δ4(Pi −Pf )]2 = δ4(0)δ4(Pi −Pf ), a meaningless expression.
The reason is twofold; first, we should initially consider transition amplitudes occurring
for a finite time ±T , square it for the probability, and then let T −→ ∞, as described
in the adiabatic hypothesis discussion. Hence

2πδ(Ei −Ef ) =
∫ +∞

−∞
e−i(Ei−Ef )t′ dt′ (3.3.2)

should be replaced by

2πδ(Ei − Ef ) =
lim

T → ∞

∫ +T

−T

e−i(Ei−Ef )t′ dt′

=
lim

T → ∞

{
2i

sin
[
(Ei − Ef )T

]

i(Ei − Ef )

} (3.3.3)

to give the transition amplitude for time 2T .
However, in any process, decay or scattering, we are not interested in the total

transition probability but in the transition probability per unit time, or transition rate.
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in the limiting sense. This yields

wfi =
lim

T → ∞
|Sfi|2

2T

= 2πδ(Ei − Ef )
∣∣(2π)3δ3(~Pi − ~Pf )

∣∣2 ∣∣Mfi

∣∣2.
(3.3.10)

That is, more directly,

|2πδ(Ei − Ef )|2 = 2πδ(0)(2π)δ(Ei − Ef ) (3.3.11)

but

2πδ(0) =
lim

T → ∞
lim

Ef → Ei

∫ +T

−T

e−i(Ei−Ef )t dt

=
lim

T → ∞ 2T.

(3.3.12)

Since 2T is the time during which the transition has taken place, |Sfi|2 divided by 2T

is the transition rate.
In a similar manner we have the spatial momentum delta function squared, which

is also nonsense. We should be using momentum wave packet states rather than plane
wave states. Then at the end of the calculation, i.e. after squaring Sfi and calculating
a density, we may take the plane wave limit. More directly we could place our particles
in a finite volume or box (T << V

1
3 to avoid reflections). Then

∣∣(2π)3 δ3(~Pi − ~Pf )
∣∣2 = (2π)3 δ3(~Pi − ~Pf )

lim
V → ∞

∫

V

d3x
(
e−i(~Pi−~Pf )·~x)

= (2π)3 δ3(~Pi − ~Pf )
lim

V → ∞ V.

(3.3.13)

We can then define the transition rate per unit volume or transition probability per
unit space-time

wfi =
lim

V → ∞
wfi

V
= (2π)4 δ4(Pi − Pf ) |Mfi|2 (3.3.14)

where wfi is the transition rate density to one definite final state. To obtain the
transition rate to states with momenta differentially close to ~p ′

f for f = 1, . . . n, we
must multiply wfi by the number of states in the volume d3p′f around ~p ′

f , f = 1, . . . , n.
Since we normalized our states to the continuum, we have that the density of

states is
〈~p |~q 〉 = (2π)32ωp δ3(~p − ~q ) (3.3.15)
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and so ∫
d3p

(2π)32ωp

|~p 〉〈~p | = 1. (3.3.16)

Hence there are
d3p′

f

(2π)32ωp′
f

states differeentially close to ~p ′
f , and the transition rate per

unit volume into all states differentially close to ~p ′
f is thus

wfi

n∏

f=1

d3p′f

(2π)32ωp′
f

. (3.3.17)

Returning to our case of two incoming particles and n-outgoing particles, the
differential cross-section dσfi is defined in the laboratory frame as the transition rate
density per target density per incident flux

dσfi =
wfi

nt FI

n∏

f=1

d3p′f

(2π)32ωp′
f

, (3.3.18)

where
nt ≡ target density

= number of scattering centers per volume

and FI ≡ incident flux

= rate of incoming particles per area.

Now if we take particle 2 as the target particle we have that, due to the momentum
normalization,

〈~p |~q 〉 = (2π)32ωpδ
3(~p − ~q ), (3.3.19)

that the ~x-space normalization is found from the ~x-wavefunction

〈~x |~p 〉 = [2ωp]
1
2 ei~p·~x. (3.3.20)

So the probabiltiy of finding a particle per unit volume is [2ωp], and the target density
is then

nt = (2ωp2). (3.3.21)

Similarly the incident particle flux is just the incident particle density, also 2ωp1 , times
the relative velocity of the two particles in the lab frame vrel. Thus the incident flux is

FI = 2ωp1vrel. (3.3.22)
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Putting this together we find

dσfi ≡
wfi

nt FI

n∏

f=1

d3p′f

(2π)32ωp′
f

=
1

2ωp12ωp2vrel

n∏

f=1

d3p′f

(2π)32ωp′
f

(2π)4δ4(Pi − Pf ) |Mfi|2
. (3.3.23)

We can write the expression ωp1ωp2vrel in a more Lorentz invariant way. (No-
tice that all frames in which the particles are moving collinearly will yield the above
expression.)

ωp1ωp2vrel = ωp1ωp2

∣∣∣ ~p1

ωp1

− ~p2

ωp2

∣∣∣

=
[
ω2

p1
ω2

p2

(
~p2
1

ω2
p1

+
~p2
2

ω2
p2

− 2~p1 · ~p2

ωp1ωp2

)] 1
2

=
[
ω2

p2
~p2
1 + ω2

p1
~p2
2 − 2ωp1~p1 · ωp2~p2

] 1
2
.

(3.3.24)

But recall
(p1p2)

2 = (ωp1ωp2 − ~p1 · ~p2)
2

= (ωp1ωp2)
2 + (~p1 · ~p2)

2 − 2ωp1~p1 · ωp2~p2.
(3.3.25)

So we find

ωp1ωp2vrel =
[
(p1p2)

2 − ω2
p1

ω2
p2

− (~p1 · ~p2)
2 + ω2

p2
~p2
1 + ω2

p1
~p2
2

]1
2

=
[
(p1p2)

2 −m2
1m

2
2 − ~p2

1~p
2
2 − m2

1~p
2
2 −m2

2~p
2
1

− (~p1 · ~p2)
2 + ~p2

1~p
2
2 + m2

1~p
2
2 + m2

2~p
2
1 + ~p2

1~p
2
2

] 1
2

=
[
(p1p2)

2 −m2
1m

2
2 + ~p2

1~p
2
2 − (~p1 · ~p2)

2
]1

2

(3.3.26)

Now if the frame is such that the colliding particles momenta is co-linear or one
particle is at rest we have

~p1 × ~p2 = 0 (3.3.27)

and thus either ~p2 = 0 or
~p2 = α~p1, (3.3.28)
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then the last two terms cancel to yield

ωp1ωp2vrel =
[
(p1p2)

2 − m2
1m

2
2

] 1
2

(3.3.29)

in all colinear frames.
So the lab frame cross-section takes the form

dσfi =
(2π)4 δ4(p1 + p2 −

∑
f p′f )

4
[
(p1p2)

2 − m2
1m

2
2

] 1
2

∣∣∣Mfi

∣∣∣
2 n∏

f=1

( d3p′f

(2π)32ωp′
f

)
, (3.3.30)

which is our final Lorentz invariant definition for the cross–section.

Two important colinear frames are:

1.) The laboratory frame; ~p2 = 0 (massive particle)

ωp1ωp2vrel = ωp1m2
|~p1|
ωp1

= m2|~p1| (Lab) (3.3.31)

2.) The center of mass frame; ~p1 = −~p2 , vrel = |~p1|
ωp1

+ |~p2|
ωp2

that is vrel = |~p1|E1+E2
E1E2

=

|~p1|
ωp1+ωp2
ωp1 ωp2

, so

ωp1ωp2vrel = ωp1ωp2

{ |~p1|
ωp1

+
|~p2|
ωp2

}

= ωp1ωp2

{
|~p1|

E1 + E2

E1E2

}

= |~p1|(ωp1 + ωp2) (COM).

(3.3.32)

The differential cross-section dσfi given above is for transitions from initial states
with specified momenta and spins and polarizations to final states with specified spins
and polarizations and with momenta differentially close to a specified value. In an
experiment usually we will not polarize the spins of the incoming particles but just
average over them, and likewise we in general do not detect the spin states the final
particles are in but rather sum over all spin states. Of course some experiments do
study polarization effects but by and large they do not.

To make clear all of the above discussion let’s apply our definitions to calculate
the cross-sections in Compton scattering.
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where ~p′ = ~k + ~p − ~k′ is understood.
Now,

ωk′ =
√

(~k ′)2 + m2
γ = k′ (3.3.38)

since mγ = 0.
Unfortunately

ωp′ =
√

(~p′)2 + m2 =
(
(~k + ~p − ~k′)

2
+ m2

) 1
2

(3.3.39)

depends on k′ so we cannot do the integral simply. Using
∫ +∞

−∞
d4k′ δ

(
f(k′)

)
g(k′) =

g(k′
0)∣∣ ∂f

∂k′0

∣∣

∣∣∣∣∣
f(k′0)=0

, (3.3.40)

we find

dσ(e−γ → e−γ)
dΩ

=
|~k′|

2
|Mfi|2

(2π)2 2ωk′ 2ωp′ 4p · k

[∂(ωp′ + ωk′)

∂|~k′|

]−1

(3.3.41)

where ~p′ = ~k + ~p − ~k′ and ωk′ = ωp + ωk − ωp′ . That is, pµ
′ = kµ + pµ − kµ

′ and ∂

∂|~k′|
is taken with θ and ϕ held fixed. More specifically, most experiments are performed
in a frame where the electrons are at rest. Thus the lab frame has p = (m, 0, 0, 0) and
hence ~p′ = ~k − ~k′. So in this frame

ωp′ =
[
m2 + (~k − ~k ′)2

]1
2

=
[
m2 + (~k)2 + (~k ′)2 − 2~k · ~k′

]1
2
.

(3.3.42)

But
~k · ~k′ = |~k| |~k′| cos θ = ωkωk′ cos θ, (3.3.43)

so
ωp′ = [m2 + ωk

2 + ωk′
2 − 2ωkωk′ cos θ]

1
2 (3.3.44)

where we recall that ωk = |~k| and ωk′ = |~k′|. So we find

∂(ωp′ + ωk′)
∂ωk′

∣∣∣∣∣
(θ,ϕ)

= 1 +
1
2

1
ωp′

(2ωk′ − 2ωk cos θ)

= 1 +
(ωk′ − ωk cos θ)

ωp′

=
ωp′ + ωk′ − ωk cos θ

ωp′
.

(3.3.45)
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But ωp′ + ωk′ = ωp + ωk = m + ωk, hence

∂(ωp′ + ωk′)
∂ωk′

∣∣∣∣∣
(θ,ϕ)

=
m + ωk(1 − cos θ)

ωp′
. (3.3.46)

Now we can further use energy-momentum conservation to find ωk′ as a function of θ

and ωk.
ωp′

2 = (ωp + ωk − ωk′)2

= (m + ωk − ωk′)2

= m2 + ωk
2 + ωk′

2 + 2mωk − 2mωk′ − 2ωkωk′ .

(3.3.47)

From momentum conservation we had

ωp′
2 = m2 + ωk

2 + ωk′
2 − 2ωkωk′ cos θ. (3.3.48)

Equating these last two expressions we arrive at the Compton condition:

ωk′ =
mωk

[m + ωk(1 − cos θ)]
. (3.3.49)

So
∂(ωp′ + ωk′)

∂ωk′

∣∣∣∣∣
(θ,ϕ)

=
mωk

ωp′ωk′
. (3.3.50)

Hence with these results we have that the differential cross-section in the laboratory
frame

(
dσ(e−γ → e−γ)

dΩ

)

lab

=
ωk′2 |Mfi|2

16 (2π)2 ωk′ ωp′ mωk

[∂(ωp′ + ωk′)

∂|~k′|

]−1

(3.3.51)

becomes (
dσ (e−γ → e−γ)

dΩ

)

lab

=
1

(8π)2
( ωk′

mωk

)2 ∣∣∣Mfi

∣∣∣
2

(3.3.52)

with ωk′ = mωk

[m+ωk(1−cos θ)] .

With the kinematics out of the way we must now face the evaluation of |Mfi|2.
We consider scattering with unpolarized photons and electrons. Thus we must average
over the initial spin and polarization states of the e− and the γ, and then sum over the
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final e− spin and the final γ polarization. Thus the spin and polarization averaged-
and-summed cross-section in the lab frame is
(

dσunpol.(e−γ → e−γ)
dΩ

)

lab

=
1
2

2∑

s=1

1
2

2∑

λ=1

2∑

s′=1

2∑

λ′=1

(
dσ(e−γ → e−γ)

dΩ

)

lab

. (3.3.53)

This is called the unpolarized cross-section. In it,
1
2

∑2
s=1 represents the average over the initial electron spin,

1
2

∑2
λ=1 represents the average over the initial photon polarization, and∑2

s′=1

∑2
λ′=1 is the sum over the final spin and polarization states.

First let’s consider the electron spin sums. Note that Mfi has the form

Mfi = u(s′)
a (~p′) Γabu

(s)
b (~p). (3.3.54)

Thus
|Mfi|2 =

(
u(s′)

a

∗
(~p′) Γab

∗u
(s)
b

∗
(~p)
)(

u(s′)
c (~p′) Γcdu

(s)
d (~p)

)
. (3.3.55)

Defining
Γ̃ ≡ γ0Γ†γ0 (3.3.56)

we have
|Mfi|2 =

(
u

(s′)
d (~p′) Γdau(s)

a (~p)
)(

u
(s)
b (~p) Γ̃bcu

(s′)
c (~p′)

)
. (3.3.57)

Now, for the sum over s and s′, recall that

2∑

s=1

u(s)
a (~p)u

(s)
b (~p) = (/p + m)ab, (3.3.58)

so
2∑

s,s′=1

|Mfi|2 =
2∑

s=1

2∑

s′=1

u(s′)
c (~p′)u

(s′)
d (~p′)u(s)

a (~p)u
(s)
b (~p) ΓdaΓ̃bc

= (/p′ + m)cd(/p + m)abΓdaΓ̃bc

= (/p′ + m)cdΓda(/p + m)abΓ̃bc

= Tr
[
(/p′ + m)Γ(/p + m)Γ̃

]
.

(3.3.59)

Hence we just have to evaluate the γ-matrix traces when we spin-average.
Further consider the form of Mfi’s polarization dependence.

Mfi ≡ εµ(k, λ) εν (k′, λ′)Mµν(k, k′) (3.3.60)
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So a polarization sum implies

2∑

λ,λ′=1

|Mfi|2 =
2∑

λ,λ′=1

εµ(k, λ) ερ(k, λ) εν (k′, λ′) εκ(k′, λ′)MµνM∗
ρκ. (3.3.61)

Recall the polarization vector completeness property

2∑

λ=1

εµ(k, λ) ερ(k, λ) = −gµρ − kµkρ

(n · k)2 − k2
− nµnρk2

(n · k)2 − k2
+

(n · k)(kµnρ + kρnµ)

(n · k)2 − k2
.

(3.3.62)
Now for photons k2 = 0 and n · k = ωk, so

2∑

λ=1

εµ(k, λ) ερ(k, λ) = −gµρ − kµkρ

ωk
2

+
(kµg0ρ + kρg0µ)

ωk
2

. (3.3.63)

Now we can further simplify this by using the gauge invariance property of the theory.
Since the theory is gauge invariant we should obtain the same physical results

whether we use the fields Aµ(x) and Ψ(x), or the fields Aµ +∂µΛ(x) and e−ieΛ(x)Ψ(x).
In particular, all observables are gauge invariant if their operators commute with gauge
transformations U(Λ). So S-matrix elements are gauge invariant if

⊂ f |U−1(Λ)S U(Λ)|i ⊃=⊂ f |S|i ⊃ . (3.3.64)

That is, if |i′ ⊃= U(Λ)|i ⊃ and |f ′ ⊃= U(Λ)|f ⊃ then since US = SU we have

Sfi
′ =⊂ f ′|S|i′ ⊃=⊂ f |U−1(Λ)S U(Λ)|i ⊃
=⊂ f |S|i ⊃= Sfi.

(3.3.65)

Now

U−1(Λ)S U(Λ) =
TU−1(Λ) e−i

∫
d4x N [HIP

I ](x) U(Λ)

〈0|Te−i
∫

d4x N [HIP
I

](x)|0〉
. (3.3.66)

But
HIP

I = eAIP
µ Ψ

IP
γµΨIP , (3.3.67)

so
U−1(Λ)HIP

I U(Λ) = e
[(

Aµ + ∂µΛ
)
ΨγµΨ

]
(x). (3.3.68)

347



Thus

Sfi
′ =

⊂ f |Te
−i
∫

d4x N [HIP
I ](x)

e
−i
∫

d4x ∂µΛN [ΨγµΨ]|i ⊃

〈0|Te−i
∫

d4x N [HIP
I

](x)|0〉
. (3.3.69)

For infinitesimal Λ we find

Sfi
′ = Sfi − ie

∫
d4x∂µΛ(x)

⊂ f |TN [ΨγµΨ(x)] e−i
∫

d4y N [HIP
I ](y) |i ⊃

〈0|Te−i
∫

d4x N [HIP
I

](x)|0〉
. (3.3.70)

Thus if
∫

d4x∂µΛ(x) ⊂ f |TN [ΨγµΨ(x)] e−i
∫

d4y N [HIP
I ](y) |i ⊃= 0, (3.3.71)

the S-matrix is gauge invariant. Or, stated otherwise, since the S-matrix is gauge
invariant we have that the above expression is zero. Now since Λ(x) is arbitrary, this
implies that

∂ x
µ ⊂ f |TJµ(x) e−i

∫
d4y N

[
HIP

I (y)
]
|i ⊃= 0 (3.3.72)

where
Jµ(x) = N

[
ΨγµΨ

]
(x). (3.3.73)

Now when we have a matrix element involving a photon in the state |i, (k, λ) ⊃, for
scattering this photon always attaches to a vertex

⊂ f |S|i, (k, λ) ⊃ = (2π)4 δ4(Pi + k − Pf )Mf i+(k,λ)

= −ieεµ(k, λ) ⊂ f |TJ̃µ(k) e−i
∫

d4y N [HIP
I ](y) |i ⊃ .

(3.3.74)

Now gauge invariance implies that

kµ ⊂ f |TJ̃µ(x) e−i
∫

d4y N [HIP
I ](y) |i ⊃= 0. (3.3.75)

Thus if we change the classical photon wave function

Aµ(x) = const. εµ(k, λ)e−ikx (3.3.76)

by a gauge transformation Aµ −→ Aµ + ∂µΛ where Λ(x) = Λ̃(k) e−ikx we have that

εµ(k, λ) −→ εµ(k, λ) − ikµΛ̃(k). (3.3.77)
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The S-matrix is invariant since kµ ⊂ f |TJ̃µ(x) e
−i
∫

d4y N [HIP
I ](y) |i ⊃= 0. This means

that for any process involving photons,

Mfi = εµ(k, λ)Mµ(k), (3.3.78)

we have by gauge invariance

kµMµ(k) = 0. (3.3.79)

Now let’s check explicitly that the Compton amplitude is gauge invariant. Pulling
εµ(k, λ) εν (k′, λ′) out of M(e−γ → e−γ) we have

Mµν(k, k′) = (−ie)2
[
u(s′)(~p′) γν

i

(/p + /k) − m
γµu(s)(~p)

+ u(s′)(~p′) γµ
i

(/p − /k′) − m
γνu(s)(~p)

]
.

(3.3.80)

So if Sfi is to be gauge invariant then

kµMµν = 0 = k′νMµν . (3.3.81)

First

kµMµν = (−ie)2
[
u(s′)(~p′) γν

i

(/p + /k) − m
/k u(s)(~p)

+ u(s′)(~p′) /k
i

(/p − /k′) − m
γνu(s)(~p)

]
,

(3.3.82)

but by energy-momentum conservation k = p′ + k′ − p, so

/k u(s)(~p) = (/p′ + /k′ − /p)u(s)(~p)

= (/p + /k)u(s)(~p) − /pu(s)(~p).
(3.3.83)

Similarly

u(s′)(~p′) /k = u(s′)(~p′) (/p′ + /k′ − /p) (3.3.84)

but, from the Dirac equation,

/pu(s)(~p) = mu(s)(~p) and u(s′)(~p′) /p′ = mu(s′)(~p′). (3.3.85)
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Thus

kµMµν = (−ie)2
[
u(s′)(~p′) γν

i

(/p + /k) − m

(
/p + /k − m

)
u(s)(~p)

+ u(s′)(~p′)
(
−(/p − /k′ − m)

) i

(/p − /k′) − m
γνu(s)(~p)

]

= (−ie)2
[
u(s′)(~p′) i γν u(s)(~p) − u(s′)(~p′) i γν u(s)(~p)

]

= 0.

(3.3.86)

Note that each graph separately is not gauge invariant, only the sum of all the graphs
in that order of perturbation theory is gauge invariant.

Likewise one shows that

k′νMµν = 0. (3.3.87)

The importance of this is that in our polarization sum we have

2∑

λλ′=1

|Mfi|2 =
2∑

λλ′=1

(
εµ(k, λ) ερ(k, λ)

)(
εν(k′, λ′) εκ(k′, λ′)

)
Mµν(k, k′)Mρκ

∗(k, k′).

(3.3.88)
Now if kµMµν = 0 = k′νMµν we have that the polarization vectors for λ, λ′ = 0, 3

cancel each other; i.e. the
(

kµkρ

ωk
2 − kµg0ρ+kρg0µ

ωk

)
terms vanish. Thus

2∑

λλ′=1

|Mfi|2 = (−gµρ)(−gνκ)Mµν(k, k′)Mρκ
∗(k, k′)

= Mµν(k, k′)Mµν∗(k, k′)

= T
[
M(k, k′)M†(k, k′)

]
(3.3.89)

where
(
M†(k, k′)

)µν

=
(
M∗(k, k′)

)νµ

.
So first calculating the spin average cross-section

(
dσspin(e−γ → e−γ)

dΩ

)

lab

≡ 1
2

2∑

s=1

2∑

s′=1

(
dσ(e−γ → e−γ)

dΩ

)

lab

=
1
2

1
(8π)2

( ωk′

mωk

)2

Tr
[
(/p′ + m)Γ(/p + m)Γ̃

] (3.3.90)
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where

Γ = (−ie)2 /ε(k′, λ′)
i

(/p + /k) − m
/ε(k, λ) + (−ie)2 /ε(k, λ)

i

(/p − /k′) − m
/ε(k′, λ′) (3.3.91)

or
Γ = −ie2 εµ(k, λ) εν (k′, λ′) Γµν (3.3.92)

with
Γµν = γν

1
(/p + /k) −m

γµ + γµ
1

(/p − /k′) − m
γν. (3.3.93)

Now

Γ̃ = γ0Γ†γ0

= +ie2εµ(k, λ) εν (k′, λ′)

{
γ0
[
γ†

µ

(
+1

(/p + /k) − m

)†

γ†
ν

+ γ†
ν

(
1

(/p − /k′) − m

)†
γ†

µ

]
γ0

}

= +ie2εµ(k, λ) εν (k′, λ′)
[
γµ

1
(/p + /k) − m

γν + γν
1

(/p − /k′) − m
γµ

]

= +ie2εµ(k, λ) εν (k′, λ′) Γνµ.

(3.3.94)

So the spin averaged cross-section becomes
(

dσspin(e−γ → e−γ)
dΩ

)

lab

=
1
2

e4

(8π)2
( ωk′

mωk

)2

εµ(k, λ) εν(k′, λ′) ερ(k, λ) εκ(k′, λ′)

× Tr
[
(/p′ + m)

(
γν

1
(/p + /k) − m

γµ + γµ
1

(/p − /k′) − m
γν

)

× (/p + m)
(

γρ
1

(/p + /k)− m
γκ + γκ

1
(/p − /k′) − m

γρ

)]
.

(3.3.95)

Now we can work out the trace! Notice that

1
/p + /k −m

=
/p + /k + m

(p + k)2 − m2
=

/p + /k + m

p2 − m2 + k2 + 2p · k

=
/p + /k + m

2p · k

(3.3.96)
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and similarly,

1
/p − /k′ −m

=
/p − /k′ + m

(p − k′)2 − m2
=

/p − /k′ + m

p2 − m2 + k′2 − 2p · k′

= −/p− /k′ + m

2p · k′ .

(3.3.97)

So we have

Tr
[
(/p′ + m)

(
/ε′

1
(/p + /k) −m

/ε + /ε
1

(/p − /k′) − m
/ε′
)

(/p + m)

×
(

/ε
1

(/p + /k) − m
/ε′ + /ε′

1
(/p − /k′) − m

/ε
)]

=
1
4

[ Xaa

(p · k)2
+

Xbb

(p · k′)2
− Xab + Xba

(p · k) (p · k′)

]
(3.3.98)

where

/ε ≡ γµεµ(k, λ)

/ε′ ≡ γµεµ(k′, λ′)

Xaa ≡ Tr
[
(/p′ + m)/ε′(/p + /k + m)/ε(/p + m)/ε(/p + /k + m)/ε′

]

Xbb ≡ Tr
[
(/p′ + m)/ε(/p − /k′ + m)/ε′(/p + m)/ε′(/p − /k′ + m)/ε

]

Xab ≡ Tr
[
(/p′ + m)/ε′(/p + /k + m)/ε(/p + m)/ε′(/p − /k′ + m)/ε

]

Xba ≡ Tr
[
(/p′ + m)/ε(/p − /k′ + m)/ε′(/p + m)/ε(/p + /k + m)/ε′

]
.

(3.3.99)

Notice that if k ↔ −k′ and ε ↔ ε′ in Xaa, then we get Xbb. So only Xaa need be
calculated. Also, the interchange k ↔ −k′ and ε ↔ ε′ in Xab yields Xba. So only Xab

need be found.
Still these are very messy expressions involving the trace of up to eight γ-matrices.

We can simplify things by first making use of the lab frame and the fact that we can
always work in a gauge in this frame where εµ(k, λ) = (0,~ελ(~k)) for λ = 1, 2.
Then

pµεµ(k, λ) = pµεµ(k′, λ′) = 0 (3.3.100)

and
kµεµ(k, λ) = kµ

′εµ(k′, λ′) = 0. (3.3.101)
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Now
(/p + m)/ε = /ε(m − /p) (3.3.102)

so
(/p + m)/ε(/p + /k + m) = −/ε(/p − m)(/p + m + /k)

= −/ε(/p/p + m/p + /p/k − m/p − m2 − m/k)

= −/ε(/p − m)/k.

(3.3.103)

Then

(/p + /k + m)/ε(/p + m)/ε(/p + /k + m) = −(/p + /k + m)/ε/ε(/p −m)/k

= +(/p + /k + m)(/p − m)/k

= /k(/p − m)/k.

(3.3.104)

So
Xaa = Tr

[
(/p′ + m)/ε′/k(/p − m)/k/ε′

]

= Tr
[
/p′/ε′/k/p/k/ε′

]
− m2Tr

[
/ε′/k/k/ε′

]
.

(3.3.105)

But /k/k = k2 = 0 and /k/p/k = 2p · k/k, thus

Xaa = 2Tr
[
/p′/ε′/k/ε′

]
p · k

= 2Tr
[
/p′/k + /p′/ε′2k · ε′

]
p · k

= 8(p · k)
[
p′ · k + 2(k · ε′)(p′ · ε′)

]
.

(3.3.106)

But p′ − k = p − k′, so ε′ · p′ = ε′ · k and p′ · k = p · k′.
So

Xaa = 8(p · k)
[
2(ε′ · k)2 + (p · k′)

]
(3.3.107)

and thus
Xbb = −8(p · k′)

[
2(ε · k′)2 − (p · k)

]
. (3.3.108)

Now we have Xab to evaluate. Using

(/p + /k + m)/ε(/p + m) = /k/ε(/p + m) + /ε(m − /p)(/p + m)

= /k/ε(/p + m)
(3.3.109)

and
(/p + m)/ε′(/p − /k′ + m) = −(/p + m)/ε′/k′ + (/p + m)/ε′(/p + m)

= −(/p + m)/ε′/k′
.

(3.3.110)
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So Xab becomes
Xab = −Tr

[
(/p′ + m)/ε′/k/ε(/p + m)/ε′/k′/ε

]

= −Tr
[
/p′/ε′/k/ε/p/ε′/k′/ε

]
− m2Tr

[
/ε′/k/ε/ε′/k′/ε

]
.

(3.3.111)

Using p′ = p + k − k′

Xab = −Tr
[
/p/ε′/k/ε/p/ε′/k′/ε

]
− Tr

[
/k/ε′/k/ε/p/ε′/k′/ε

]

+ Tr
[
/k′/ε′/k/ε/p/ε′/k′/ε

]
− m2Tr

[
/ε′/k/ε/ε′/k′/ε

]
.

(3.3.112)

The evaluation of Xab is messier than that of Xaa. It leads to

Xab = −8(p · k)(p · k′)
[
2(ε · ε′)2 − 1

]
− 8(k · ε′)2(p · k′) + 8(k′ · ε)2(p · k) (3.3.113)

so that, in fact,
Xab = Xba. (3.3.114)

Recall that
(

dσspin(e−γ → e−γ)
dΩ

)

lab

=
e4

8 (8π)2
( ωk′

mωk

)2 [ Xaa

(p · k)2
+

Xbb

(p · k′)2
− Xab + Xba

(p · k) (p · k′)

]

(3.3.115)
with the electromagnetic fine structure constant given by α ≡ e2

4π = 1
137.04 .

Finally putting all this together we obtain the initial and final electron spin aver-
aged and summed Compton scattering differential cross-section in the laboratory frame
for definite initial and final photon polarizations. This is known as the Klein-Nishina
formula

(
dσKlein−Nishina(e−γ → e−γ)

dΩ

)

lab

=

(
dσspin(e−γ → e−γ)

dΩ

)

lab

=
α2

4m2

(
ωk′

ωk

)2{
ωk

ωk′
+

ωk′

ωk
+ 4

(
εµ(k, λ) εµ(k′, λ′)

)2 − 2
}

.

(3.3.116)

Since εµ(k, λ) εµ(k′, λ′) = −~ελ(~k) ·~ελ′(~k′), we can simply perform the average and
sum over photon polarization to find the unpolarized Compton scattering differential
cross-section, hence we must evaluate

2∑

λ=1

2∑

λ′=1

(
~ελ(~k) · ~ελ′(~k′)

)2

. (3.3.117)
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Since (~ε1,~ε2,
~k

|~k|
) forms an orthonormal basis we have

~ελ′(~k′) =
(
k̂ · ~ελ′(~k′)

)
k̂ +

2∑

λ=1

(
~ελ(~k) · ~ελ′(~k′)

)
~ελ(~k) (3.3.118)

and thus
2∑

λ=1

(
~ελ(~k) · ~ελ′(~k′)

)2

= 1 −
(

~k

|~k|
· ~ελ′(~k′)

)2

. (3.3.119)

Similarly (~ε1(~k′),~ε2(~k′), ~k′

|~k′|
) is an orthonormal basis so

2∑

λ′=1

( ~k

|~k|
· ~ελ′(~k′)

)2

= 1 −
(

~k

|~k|
·

~k′

|~k′|

)2

(3.3.120)

but ~k · ~k′ = |~k| |~k′| cos θ so

2∑

λ=1

2∑

λ′=1

(
~ελ(~k) · ~ελ′(~k′)

)2

= 2 − (1 − cos2 θ)

= 2 − sin2 θ

= cos2 θ + 1.

(3.3.121)

So the unpolarized cross-section becomes
(

dσunpol.(e−γ → e−γ)
dΩ

)

lab

=
α2

2m2

(
ωk′

ωk

)2{
ωk

ωk′
+

ωk′

ωk
− sin2 θ

}
(3.3.122)

where the Compton relation gives

ωk′ =
mωk

m + ωk(1 − cos θ)
. (3.3.123)

In the low energy limit ωk << m and ωk′ ∼ ωk, the recoil electron’s kinetic energy
is negligible. Thus our expression reduces to the Thompson scattering cross-section

(
dσThompson

dΩ

)

lab

=
α2

2m2

(
1 + cos2 θ

)
. (3.3.124)
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