
CHAPTER 3.
QUANTUM ELECTRODYNAMICS

§3.1 GAUGE INVARIANCE AND THE SCATTERING MATRIX

When describing the interactions of particles we should make certain that the
symmetries of Nature are maintained by the description. We will always manifestly
maintain Lorentz invariance, hence the Lagrangian density describing the dynamics
of our fields will be a Lorentz scalar. If there are other internal symmetries that the
particles have these too should be manifest in the Lagrangian. And most important, if
the model contains gauge fields that is photon-like vector particles, we must maintain
local gauge invariance in the Lagrangian before the gauge choice is made. To make
clear these points we will discuss explicitly the interaction of charged massive spin 1

2

particles with the electromagnetic field, that is photons. To be concrete we will deal
with electrons, positrons and photons, this is known as Quantum Electrodynamics
or QED. The electrons will have charge −e (i.e. e = |e|), the positrons +e, their
common mass is m, by convention the electrons are called particles and the positrons,
anti-particles.

When the particles are widely separated we will imagine them to be non-interacting
and as we have seen a collection of non-interacting electrons, positrons and photons
can be described by the free Lagrangian L̂0 = N[L0] with

L0 = −1
4
FµνFµν + Ψ

( i

2

↔
/∂ − m

)
Ψ + Lg (3.1.1)

where Lg = − 1
2α

(
∂λAλ

)2 fixes the gauge so that the electromagnetic field can be
quantized in a Lorentz invariant manner. As we saw the physical state matrix elements
of the observables in the theory Pµ,Mµν , Q,N were determined by Fµν not the gauge
potential Aµ. The same physical situation is described by Aµ or A′µ = Aµ + ∂µΛ, by
the gauge equivalent class of photon fields. In order to quantize the theory we choose a
particular representative from the gauge equivalent class by means of the Stueckelberg
gauge term Lg and a choice of Λ where ∂2Λ = 0. The physical state matrix elements of
the observables were shown to be independent of these choices; we obtained the same
answer in the Coulomb or Stueckelberg-Feynman gauge for the energy- momentum and
helicity, etc..
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Now when interactions between the electrons and photons take place these should
do so in a manner that is not determined by each Aµ but only by the gauge equivalence
class of Aµ. That is the interactions should be such that the total Lagrangian, before
the gauge choice, should be gauge invariant. Indeed since the particles when well
separated are non-interacting their free multi-particle states form a complete set of
states for the Hilbert space of states (as well as the indefinite metric space V). Since
these are complete we can expand any state, even when the particles are close together
and interacting, in terms of the free states. That is, the observables form a complete
set of commuting operators; these observables’ physical state matrix elements depend
only on the gauge equivalence class of a particular Aµ. Hence the physical states of
the system at any time depend on the gauge equivalent classes.

Hence the full Lagrangian must also be gauge invariant – that is, depend only
on the gauge equivalence class of an Aµ to guarantee the observables also depend
upon the equivalence class. Of course our canonical quantization rules are designed for
particular fields, not equivalence classes of those fields. Then once again we must choose
a member of the equivalence class in order to calculate via the canonical procedure. We
will do this in a Lorentz invariant way, by adding to the gauge invariant Lagrangian, a
gauge fixing Lagrangian, in our case the Stueckelberg gauge term. The Gupta-Bleuler
subsidary condition will describe the physical subspace of states which the observables
leave invariant. The gauge invariance will gaurantee that the unphysical degrees of
freedom decouple from the physical matrix elements of observables. That is it will
demand that the photon couples to a conserved current and hence 1

α∂2∂λAλ = 0 as in
the free case. Of course at intermediate steps in a calculation we will now produce scalar
and longitudinal photons from the interaction, i.e. an electron is surrounded by a cloud
of virtual transverse, longitudinal and scalar photons. However, as we have seen in the
free case, when we project to the physical subspace all of these effects cancel out so that
if we start with physical states we end up after the interaction with physical states only.
We never produce scalar or longitudinal photons as physical particles. Alternatively
stated, only transverse photons are physical, that QED is sensible (unitary) for such a
subspace follows from the Gupta-Bleuler subsidiary condition definition of the physical
subspace and current conservation, that is ∂2∂λAλ = 0. This is a consequence of the
gauge invariance of the theory.

Well then, how do we construct a Lagrangian that is local gauge invariant. That is,
what does local gauge invariance mean for the electrons? In the free case we have seen
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that the electron Lagrangian is invariant under global (gauge) phase transformations

U−1(Λ)Ψa(x)U(Λ) = eiΛ Ψa(x) (3.1.2)

for Λ = constant. Then
U−1(Λ)Lf0(x)U(Λ) = Lf0(x) (3.1.3)

with

Lf0 =
[
Ψ

(
i

2

↔
/∂ − m

)
Ψ

]
(3.1.4)

and L̂f0 = N[Lf0].
This global symmetry led to the conservation of charge. By Noether’s theorem we

found a conserved current Ĵµ = N[Jµ],

Jµ ≡ Ψ̄γµΨ; (3.1.5)

with ∂µĴµ = 0 so that [Q,H] = 0 with Q ≡
∫

d3xĴ0. Q was the charge operator
Q = (N− −N+) so that multiplying Q by −e we find −eQ = e(N+ − N−) the electric
charge operator. Since Jµ is conserved it will be a good candidate for the current with
which the photons interact, as we will see.

A local gauge invariance implies that the physics remains unchanged, i.e. the
Lagrangian is invariant, if Ψ is multiplied by a different phase factor at every space-
time point. That is we demand that the total Lagrangian be invariant under the local
gauge transformations

U−1(Λ)Aµ(x)U(Λ) = Aµ(x) + ∂µΛ(x)

U−1(Λ)Ψa(x)U(Λ) = e−ieΛ(x) Ψa(x)

U−1(Λ)Ψa(x)U(Λ) = Ψ̄a(x) eieΛ(x) (3.1.6)

where now Λ = Λ(x) an arbitrary real scalar function of space-time and we have
factored the charge of the electron (−e) out of the transformation law. First note that
we cannot enforce this invariance without the introduction of interactions with the
photon field. The mass term in the electron Lagrangian is invariant

U−1(Λ)Ψ(x)Ψ(x)U(Λ) = Ψa(x) e+ieΛ(x) e−ieΛ(x) Ψa(x) = Ψ(x)Ψ(x) (3.1.7)
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but the kinetic terms involve a derivative of the field. Derivatives involve the field
at different space-time points, clearly it probes the space-time variation of the field,
hence it will involve different phase factors Λ i.e., the derivative of Λ. Thus the gauge
variation of the derivative of Ψ is

U−1(Λ) ∂µΨ(x)U(Λ) = ∂x
µU−1(Λ)Ψ(x)U(Λ)

= ∂x
µ

(
e−ieΛ(x) Ψ(x)

)

= e−ieΛ(x) ∂µΨ(x) − ie e−ieΛ(x)
(
∂µΛ(x)

)
Ψ(x).

(3.1.8)

So the kinetic term involves Ψγµ∂µΨ and the phases now no longer cancel

U−1(Λ)Ψγµ∂µΨU(Λ) = Ψγµ∂µΨ − ieΨγµΨ ∂µΛ(x). (3.1.9)

We see that the variation involves the current times the divergence of Λ. Similarly for
Ψ the adjoint field

U−1(Λ) ∂µΨ(x)U(Λ) = eieΛ ∂µΨ(x) +
(
ie ∂µΛ

)
eieΛ Ψ(x) (3.1.10)

So that
U−1(Λ) ∂µΨγµΨU(Λ) = ∂µΨ γµΨ + ieΨγµΨ ∂µΛ (3.1.11)

Hence we find that

U−1(Λ)Lf0 U(Λ) = Lf0 + eΨγµΨ ∂µΛ(x) (3.1.12)

The electron Lagrangian cannot be made invariant without introducing the photon.
Now we immediately see what we must do. Since −1

4
FµνFµν is already invariant we

do not have to alter it. We can also couple Aµ to Jµ. Thus we find that

U−1(Λ)JµAµ U(Λ) = U−1(Λ)JµU(Λ)U−1(Λ)Aµ U(Λ)

= JµAµ + Jµ ∂µΛ(x) (3.1.13)

since U−1(Λ)JµU(Λ) = Jµ, hence

Linv ≡ L0 − eΨγµΨAµ (3.1.14)

and
U−1(Λ)Linv U(Λ) = Linv. (3.1.15)
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The coupling of the conserved electromagnetic current in this way, called minimal
coupling or minimal substitution, has a deeper geometric origin. In calculating the
derivative of Ψ we are comparing the field at two different space-time points dΨ =
Ψ(x + dx) − Ψ(x). This is not a meaningful comparison since at each point we can
independently define the phase of Ψ. There is no reason that the phase conventions
for Ψ at xµ are the same for Ψ at xµ + dxµ. If we could bring the second vector to the
same space-time point with the same phase convention as the first and then take their
difference we would have a meaningful measure of their change. That is we should
parallel transport this vector to the same space-time point. In simply going from point
xµ to xµ + dxµ, the field becomes Ψ(x + dx) = Ψ(x) + dΨ = Ψ(x) + ∂µΨdxµ. Now we
would like to compare this vector (in charge space) at x+ dx to Ψ parallel transported
from x to x+dx. The parallel transported field is denoted Ψ‖(x+dx) = Ψ(x)+ δΨ(x).
The change of Ψ under parallel transport is linearly porportional to the distance of
transport dxµ and to the field Ψ itself since the change of the sum of fields under
transport must be the sum of the change of each field. Thus

δΨ(x) ≡ −ieAµ(x)Ψ(x) dxµ (3.1.16)

where the constants of proportionality Aµ = Aµ(x) depend on the space-time point in
question and are called the gauge fields (or gauge connection, those are the internal
symmetry space analogs to the Christoffel symbols in gravitational physics). As we
will see, these fields Aµ(x) describe the curvature of the internal symmetry space. If
there are no fields (Aµ(x) = 0), then δΨ = 0.

Hence we can now compare the two vectors (in charge space) in a meaningful way.
Defining their difference as the vector

DΨ(x) ≡ Ψ(x + dx) − Ψ‖(x + dx)

=
(
Ψ(x + dx) − Ψ(x)

)
−

(
Ψ‖(x + dx) − Ψ(x)

)

= dΨ(x) − δΨ(x)

=
[
∂µΨ(x) + ieAµ(x)Ψ(x)

]
dxµ.

(3.1.17)

We define the covariant derivative of Ψ as

DµΨ(x) ≡
(
∂µ + ieAµ(x)

)
Ψ(x). (3.1.18)

That is, a gauge transformation changes the phase of Ψ at x and at x+dx independently.
Thus to compute the change on Ψ in an inherent way we would like to move Ψ(x) along
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the interval from xµ to xµ + dxµ so that it has the same phase change at xµ + dxµ as
Ψ(x + dx). This is precisely how the parallel transport of Ψ(x) from xµ to xµ + dxµ is
defined; Ψ‖(x+dx) is the parallel transport of Ψ(x) from xµ to xµ +dxµ so that under
a gauge transformation

U−1(Λ)Ψ‖(x + dx)U(Λ) = e−ieΛ(x+dx) Ψ‖(x + dx). (3.1.19)

Since Ψ‖(x + dx) ≡ Ψ(x) + δΨ(x), this yields a transformation law for δΨ(x), the
change of Ψ due to the parallel transport (the change normal to the tangent of the
interval contour)

U−1(Λ)
(
Ψ(x) + δΨ(x)

)
U(Λ) = e−ieΛ(x)Ψ(x) + U−1(Λ)δΨ(x)U(Λ) (3.1.20)

But

e−ieΛ(x+dx)Ψ‖(x + dx) = e−ieΛ(x)
(
1 − ie dΛ(x)

)(
Ψ(x) + δΨ(x)

)

= e−ieΛ(x)
(
Ψ(x) + δΨ(x) − ie dΛ(x)Ψ(x)

) (3.1.21)

to first order in dxµ. Hence

U−1(Λ) δΨ(x)U(Λ) = e−ieΛ(x)
(
δΨ(x) − ie ∂µΛ(x)Ψ(x) dxµ

)
. (3.1.22)

As we have seen this equation plus linear dependence on Ψ of δΨ is satisfied by

δΨ(x) = −ieAµ(x)Ψ(x) dxµ . (3.1.23)

Further, the change in Ψ over the interval transforms as Ψ does under a gauge trans-
formation (to first order in dxµ) by construction

U−1(Λ)DΨ(x)U(Λ) = e−ieΛ(x+dx) DΨ(x)

= e−ieΛ(x) DΨ(x).
(3.1.24)

Thus the covariant derivative is such that

U−1(Λ)DµΨ(x)U(Λ) = e−ieΛ(x) DµΨ(x) (3.1.25)

unlike the ordinary derivative

U−1(Λ) ∂µΨ(x)U(Λ) = e−ieΛ(x) (∂µΨ(x) − ie∂µΛ(x)Ψ(x)). (3.1.26)
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So for Ψ we find

∆Ψ = − ie

2

∫

S

dSµν
[
∂µ(AνΨ) − ∂ν (AµΨ)

]

= − ie

2

∫

S

dSµν
[
(∂µAν − ∂νAµ)Ψ + Aν∂µΨ − Aµ∂νΨ

]
.

(3.1.34)

But for an infinitesimal contour we can replace the derivative of Ψ inside the
contour with the change in Ψ on the contour itself to first order accuracy so since
DµΨ = 0 on the contour, ∂µΨ = −ieAµΨ on the contour and inside the infinitesimal
contour so

∆Ψ = − ie

2
dSµν

[(
∂µAν − ∂νAµ

)
Ψ − ie

(
AµAν − AνAµ

)
Ψ

]
(3.1.35)

In the abelian charge case we are considering here AµAν = AνAµ so that

∆Ψ = − ie

2
dSµν FµνΨ (3.1.36)

where Fµν ≡ ∂µAν−∂νAµ is the curvature tensor (anti-symmetric field strength tensor)
for the charge space.

Since DµΨ has the same charge space “vector” character as Ψ, by construction we
have that they transform the same way under gauge transformations, if

U−1(Λ)Ψ(x)U(Λ) = e−ieΛ(x) Ψ(x) (3.1.37)

then
U−1(Λ)DµΨ(x)U(Λ) = e−ieΛ(x) DµΨ(x). (3.1.38)

This as we know implies that

U−1(Λ)Aµ(x)U(Λ) = Aµ(x) + ∂µΛ(x). (3.1.39)

That is

U−1(Λ)DµΨ(x)U(Λ) = ∂µU−1(Λ)Ψ(x)U(Λ) + ieU−1(Λ)Aµ(x)Ψ(x)U(Λ)

= e−ieΛ(x) ∂µΨ(x) − ie e−ieΛ(x) ∂µΛ(x)Ψ(x)

+ ie e−ieΛ(x) U−1(Λ)Aµ U(Λ)Ψ(x)

≡ e−ieΛ(x) DµΨ(x)

= e−ieΛ ∂µΨ + ie e−ieΛ Aµ Ψ
(3.1.40)
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which finally yields

ieU−1(Λ)Aµ(x)U(Λ) = ie
(
Aµ(x) + ∂µΛ(x)

)
. (3.1.41)

Further since ∆Ψ has the same character as Ψ we find that

U−1(Λ)Fµν (x)U(Λ) = e−ieΛ(x) Fµν(x) e+ieΛ(x), (3.1.42)

and, since it is an abelian phase factor,

= Fµν(x) (3.1.43)

as can be checked directly from the definition of Fµν and the Aµ-transformation law.
Note that the commutator of covariant derivatives yields the curvature

[
Dµ,Dν

]
=

[
∂µ + ieAµ, ∂ν + ieAν

]

= ie Fµν (3.1.44)

while the Jacobi identity
[[

Dµ,Dν

]
,Dρ

]
+

[[
Dν ,Dρ

]
,Dµ

]
+

[[
Dρ,Dµ

]
,Dν

]
= 0 (3.1.45)

implies
DρFµν + DµFνρ + DνFρµ = 0, (3.1.46)

which in the abelian case yields

ελρµν∂ρFµν = 0, (3.1.47)

the charge space Bianchi identity. Lately there has been a re-emergence of interest
in the speculation that this charge space curvature can be unified with space-time
curvature in a higher dimensional “space-time” unified field theory; this is known as
Kaluza- Klein theory.

Hence when we consider the evolution of the field Ψ in space-time we should con-
sider as physically meangingful the covariant changes in Ψ; DΨ. Hence the Lagrangian
describing the evolution of the matter field is given by

Lf inv =
i

2
ΨγµDµΨ − i

2
DµΨγµΨ − mΨΨ (3.1.48)
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where if DµΨ = ∂µΨ + ieAµΨ then
(
DµΨ

)† = ∂µΨ† − ieAµΨ†. So

DµΨ ≡
(
DµΨ

)†
γ0

=
(
∂µ − ieAµ

)
Ψ.

(3.1.49)

Note that since
U−1(Λ)Ψ(x)U(Λ) = e−ieΛ(x)Ψ(x) (3.1.50)

U−1(Λ)DµΨ(x)U(Λ) = e−ieΛ(x)DµΨ(x) (3.1.51)

and
U−1(Λ)Ψ(x)U(Λ) = e+ieΛ(x)Ψ(x). (3.1.52)

So
U−1(Λ)DµΨ(x)U(Λ) = e+ieΛ(x)DµΨ(x) (3.1.53)

and we find that Lf inv is gauge invariant

U−1(Λ)Lf inv(x)U(Λ) = Lf inv. (3.1.54)

Also writing out the covariant derivatives

Lf inv = Ψ
( i

2

↔
/∂ − m

)
Ψ − eΨγµΨAµ

= Lf 0 − eΨγµΨAµ (3.1.55)

the same result as we found with the minimal coupling prescription earlier.
In general we add to this the kinetic energy terms for the gauge fields

Linv = −1
4
FµνFµν +

i

2
ΨγµDµΨ − i

2
DµΨγµΨ − mΨΨ (3.1.56)

for the total gauge invariant Lagrangian. Since it is guage invariant the dynamics
depend only on the gauge equivalence classes of Aµ as required.

We could add to Linv other gauge invariant terms such as ΨσµνΨFµν or
(
FµνFµν

)2
,

etc. Those are excluded for two reasons: first, for the experiments we will discuss these
terms are not present; secondly, such terms will lead to uncontrollable numbers of
infinite terms appearing in the S-matrix, removable only at the price of destroying
predictability of the theory – i.e., an infinite number of parameters will appear only
to be determined by an infinite number of experiments! This situation is described
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as the theory being non-renormalizable. Only renormalizable theories can be given
a consistent interpretation at all energy scales. It can be shown but is beyond the
material covered in this course that only dimension 4 and less field monomials lead to
renormalizablity. Since Aµ has dimension 1 (in inverse mass units) Ψ, 3

2 and ∂µ, 1 we
find that ΨΨ is dimension 3, ΨγµDµΨ is dimension 4, and so are all renormalizable.
ΨσµνΨFµν is dimension 5 and makes the theory non-renormalizable. Similarly for
other terms.

Thus we find that the gauge invariant Lagrangian describing the interaction of the
elecrtons, positrons and photons is given by

Linv =
i

2
ΨγµDµΨ − i

2
DµΨγµΨ − mΨΨ − 1

4
FµνFµν . (3.1.57)

In order to quantize the fields according to our canonical quantization procedure we
must pick a representative from the equivalence class of fields Aµ. This we do in a
Lorentz invariant manner by again working in the Stueckelberg gauge. The total La-
grangian then becomes

L = Linv +Lg (3.1.58)

where Lg = − 1
2α

(
∂λAλ

)2 (also of dimension 4 so renormalizable).

The Euler-Lagrange equations describing the space-time development of the fields
are now:

1.) ∂L
∂Aν

− ∂µ
∂L

∂∂µAν
= 0 =⇒

∂µFµν(x) +
1
α

∂ν∂λAλ(x) = eΨ(x)γνΨ(x) (3.1.59)

2.) ∂L
∂Ψ

− ∂µ
∂L

∂∂µΨ
= 0 =⇒

iγµDµΨ(x) − mΨ(x) = 0, (3.1.60)

or explicitly writing out the covariant derivative

(
i/∂ − m

)
Ψ(x) = eγµAµ(x)Ψ(x) (3.1.61)
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3.) And the adjoint equation ∂L
∂Ψ − ∂µ

∂L
∂∂µΨ = 0 =⇒

iDµΨ(x)γµ + mΨ(x) = 0 (3.1.62)

or expanding the covariant derivative

Ψ(x)
(
i
←
/∂ + m

)
= −eΨ(x)Aµ(x)γµ. (3.1.63)

These are coupled, non-linear, partial differential equations. Needless to say we
cannot solve these equations analytically. We will utilize the interaction picture per-
turbative solution shortly.

First let’s recall the canonical commutation relations. Since the interaction terms
are time independent we see that the canonical momenta and therefore the ETCR and
ETAR are the same as for fermions and photons in the free case,

Πµ ≡ ∂L
∂Ȧµ

= Fµ0 − 1
α

gµ0∂λAλ

Π ≡ ∂L
∂Ψ̇

= −iγ0Ψ

Π ≡ ∂L
∂Ψ̇

= −iΨγ0.

(3.1.64)

The ETCR and ETAR are

δ(x0 − y0)
{

Πa(x),Ψb(y)
}

= −iδabδ
4(x − y)

or
δ(x0 − y0)

{
Πa(x)Ψb(y)

}
= −iδabδ

4(x − y)

and
δ(x0 − y0)

[
Πµ(x), Aν (y)

]
= −igµνδ4(x − y) (3.1.65)

All other ET(anti-)commutators vanish. Substituting the definition of the momenta
we find, as usual,

δ(x0 − y0)
{
Ψa(x),Ψb

†(y)
}

= δabδ
4(x − y)

δ(x0 − y0)
[
Ȧµ(x), Aν (y)

]
= igµν

[
1 + (α − 1)gµ0

]
δ4(x − y) ( 6 Σµ)

δ(x0 − y0)
[
Ȧµ(x), Ȧi(y)

]
= i(1 − α)∂i

xδ4(x − y).

(3.1.66)
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All other ETCR and ETAR vanish.
Note that taking the divergence of (3.1.59) implies that

1
α

∂2∂λAλ(x) = e∂µ

(
ΨγµΨ

)
(x) (3.1.67)

Adding equations (3.1.61) and (3.1.63) after multiplying (3.1.61) by Ψ and
(3.1.63) by Ψ implies

i∂µ

(
ΨγµΨ

)
= 0. (3.1.68)

Thus ∂λAλ obeys the free wave equation 1
α∂2∂λAλ(x) = 0. The physical states of

the theory will again be defined in a Lorentz covariant manner by the Gupta-Bleuler
subsidiary condition:

|Φ > is a physical state if ∂λAλ+
(x)|Φ >= 0. (3.1.69)

As previously, the global symmetries of the Lagrangian imply conservative laws via
Noether’s theorem. Poincare invariance implies that the energy-
momentum tensor and angular momentum tensor are conserved

Tµν = ∂νΨ
∂L

∂∂µΨ
+ ∂νΨ

∂L
∂∂µΨ

+ ∂νAλ
∂L

∂∂µAλ
− gµνL

=
i

2
Ψγµ

↔
∂νΨ − Fµλ∂νAλ − 1

α

(
∂λAλ

)
∂νAµ − gµνL.

(3.1.70)

Explicitly we can check that ∂µTµν = 0 and that the translation generator is Pµ ≡∫
d3xT 0µ such that [

Pµ,Ψ(x)
]

= −i∂µΨ(x)

[
Pµ,Ψ(x)

]
= −i∂µΨ(x)

[
Pµ, Aν (x)

]
= −i∂µAν(x). (3.1.71)

As previously Tµν 6= T νµ and we can apply the Belinfante procedure to define a
symmetric conserved tensor

Θµν ≡ Tµν − ∂ρG
ρµν

Gρµν =
1
2
[
Hρµν + Hµνρ + Hνµρ

] (3.1.72)
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where

Hρµν ≡ Πρ
rD

µν
rs φs

= −1
4
Ψ

{
γρ, σµν

}
Ψ + F ρµAν − F ρνAµ +

1
α

(
∂λAλ

)(
gρµAν − gρνAµ

)
.

(3.1.73)

Thus

Hρµν = −1
2
ερµνλΨγ5γλΨ + F ρµAν − F ρνAµ +

1
α

(
∂λAλ

)(
gρµAν − gρνAµ

)
. (3.1.74)

Hence

∂ρG
ρµν = −1

4
∂ρερµνλΨγ5γλΨ + ∂ρ

[
F ρµAν +

1
α

(
∂λAλ

)(
gµνAρ − gρνAµ

)]
. (3.1.75)

It is left as an exercise to find the final form of Θµν and to show that ∂µΘµν = 0,
Θµν = Θνµ, and that Pµ =

∫
d3x θ0µ =

∫
d3xT 0µ.

With Θµν the angular momentum tensor becomes

Mµνρ = xνΘµρ − xρΘµν , (3.1.76)

and it is conserved – i.e., ∂µMµνρ = 0. The Lorentz transformation operator then is
given by

Mµν ≡
∫

d3xM0µν , (3.1.77)

and it can be checked that
[
Mµν ,Ψ(x)

]
= −i

[(
xµ∂ν − xν∂µ

)
Ψ(x) − i

2
σµνΨ(x)

]

[
Mµν ,Ψ(x)

]
= −i

[(
xµ∂ν − xν∂µ

)
Ψ(x) +

i

2
Ψ(x)σµν

]

[
Mµν , Aλ(x)

]
= −i

[(
xµ∂ν − xν∂µ

)
Aλ(x) +

(
gµλgνρ − gνλgµρ

)
Aρ(x)

]
(3.1.78)

all as before.
As we have already indicated the Lagrangian still conserves charge, is globally

gauge invariant so that Jµ = ΨγµΨ is conserved – i.e., ∂µJµ = 0. Hence
Q ≡ −e

∫
d3x Ĵ0(x) generates global charge transformations

Q = −e

∫
d3xN [Ψ†(x)Ψ(x)]. (3.1.79)
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Using the ETCR and ETAR we have
[
Q,Ψ(x)

]
= +eΨ(x)

[
Q,Ψ(x)

]
= −eΨ(x)

[
Q,Aµ(x)

]
= 0.

(3.1.80)

We can no longer simply Fourier transform the interacting fields in terms of d3k
2ωk

since the fields will Oxnow create single particles as well as any number of pairs and
virtual photons thus k2 is not restricted to just k2 = m2 or k2 = 0 as in the non-
interacting case. To further study the field theory we will make use of the interaction
picture.

The field operators we have been considering above are in the Heisenberg picture,
that is they are time dependent

[
H,φ(x)

]
= −i

∂

∂t
φ(x) withφ(x) ∈ {Ψ,Ψ, Aµ}

[
H,Π(x)

]
= −i

∂

∂t
Π(x) Π(x) ∈ {Π,Π,Πµ}. (3.1.81)

That is, since H is time independent, Ḣ =
[
H,H

]
= 0, and the time translation

operator is U(a,Λ) with Λµν = gµν and aµ = (t,~0)

U(aµ = (t,~0), 1) ≡ U†(t) = e+iHt (i.e., U(t) = e−iHt) (3.1.82)

so that time translations give

φ(t, ~x) = eiHt φ(0, ~x) e−iHt

Π(t, ~x) = eiHt Π(0, ~x) e−iHt. (3.1.83)

On the other hand state vectors |A > in the Heisenberg picture are time independent

∂

∂t
|A >= 0. (3.1.84)

The other extreme is the Schrödinger picture in which the field operators are time
independent while the states carry all the time dependence. Identifying the two pictures
at t = 0 we have the Schrödinger fields φS(~x), ΠS (~x) and states |A(t) >S given by

φS(~x) = φ(0, ~x) = e−iHt φ(t, ~x) e+iHt
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ΠS (~x) = Π(0, ~x) = e−iHt Π(t, ~x) e+iHt (3.1.85)

and
|A(t) >S = e−iHt|A(0) >S = e−iHt|A > (3.1.86)

where the Heisenberg quantum fields φ(t, ~x) and states |A > are written without
postscripts. Since the two pictures are unitarily related the matrix elements of op-
erators are preserved

S< A(t)|φS(~x)|B(t) >S =< A|U†(t)φS (~x)U(t)|B >

=< A|φ(t, ~x)|B > . (3.1.87)

Further since HS = e−iHtHe+iHt = H we have ∂
∂tφ

S(~x) = 0 = ∂
∂tΠ

S (~x) and states
obey the Schrödinger equation

i
∂

∂t
|A(t) >S = H|A(t) >S . (3.1.88)

Intermediate to the Schrödinger and Heisenberg pictures is the interaction picture
introduced by Dirac. The Hamiltonian is split into a free, non-interacting part,H0,

plus an interacting part, HI , in the Heisenberg picture

H = H0 + HI . (3.1.89)

In the Schrödinger picture
HS

0 = H0(t = 0). (3.1.90)

The interaction picture is defined so that the state vectors evolve only according to the
interaction Hamiltonian (in the interaction picture); that is the free Hamlitonian time
evolution is removed from them. Hence we define

|A(t) >IP ≡ e+iHS
0 t|A(t) >S = e+iHS

0 te−iHt|A > . (3.1.91)

So that matrix elements are preserved

IP < A(t)|φIP (t, ~x)|B(t) >IP = S< A(t)|φS (~x)|B(t) >S (3.1.92)

we have that operators are related by

φIP (t, ~x) = eiHS
0 t φS(~x) e−iHS

0 t
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ΠIP (t, ~x) = e+iHS
0 t ΠS (~x) e−iHS

0 t. (3.1.93)

Applying this to HS
0 we find

HIP
0 = e+iHS

0 t HS
0 e−iHS

0 t = HS
0 . (3.1.94)

We can similarly relate the interaction picture to the Heisenberg picture via the
Schrödinger picture

φIP (t, ~x) = eiHS
0 t φS(~x) e−iHS

0 t

= eiHS
0 t e−iHt φ(t, ~x) e+iHt e−iHS

0 t,
(3.1.95)

also
ΠIP (t, ~x) = eiHS

0 t e−iHt Π(t, ~x) e+iHt e−iHS
0 t (3.1.96)

and
|A(t) >IP = eiHS

0 t |A(t) >S

= eiHS
0 t e−iHt |A > .

(3.1.97)

Note we have taken all pictures to agree at t = 0

φIP (0, ~x) = φS(~x) = Π(0, ~x)

ΠIP (0, ~x) = ΠS(~x) = Π(0, ~x)

|A(0) >IP = |A(0) >S = |A > . (3.1.98)

Also if there is no interaction, HI = 0, the interaction and Heisenberg pictures are the
same as expected from the construction of the interaction picture.

Now differentiating the field and momentum definitions for the interaction picture
we find

−i
∂

∂t
φIP (t, ~x) =

[
HS

0 , φIP (t, ~x)
]

−i
∂

∂t
ΠIP (t, ~x) =

[
HS

0 ,ΠIP (t, ~x)
]

(3.1.99)

The fields obey the Heisenberg equations of motion with time evolution determined by
the free Hamiltonian in the Schrödinger picture, HS

0 . But the time independent HS
0 is

HS
0 = HIP

0 , and we find

[
HIP

0 , φIP (t, ~x)
]

= −i
∂

∂t
φIP (t, ~x)
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[
HIP

0 ,ΠIP (t, ~x)
]

= −i
∂

∂t
ΠIP (t, ~x). (3.1.100)

Further, the time derivative of the state vectors in the interaction picture is given by

i
∂

∂t
|A(t) >IP = −HS

0 |A(t) >IP + eiHS
0 t i

∂

∂t
|A(t) >S (3.1.101)

from the definition of |A(t) >IP . In the Schrodinger picture

i
∂

∂t
|A(t) >S = HS |A(t) >S

= HS e−iHS
0 t e+iHS

0 t |A(t) >S

= HS e−iHS
0 t |A(t) >IP .

(3.1.102)

So
i
∂

∂t
|A(t) >IP =

[
eiHS

0 tHSe−iHS
0 t − HS

0

]
|A(t) >IP (3.1.103)

But HS = HS
0 + HS

I and eiHS
0 tHS

0 e−iHS
0 t = HS

0 and HIP
I = eiHS

0 tHS
I e−iHS

0 t. Thus

i
∂

∂t
|A(t) >IP = HIP

I |A(t) >IP . (3.1.104)

Thus |A(t) >IP obeys the Schrodinger equation with the time evolution given by the
interaction picture interaction Hamiltonian. Note however that although HS

0 = HIP
0 =

H0(t = 0) is time independent HIP
I is not! Since

HIP
I = eiH0t HS

I e−iH0t

= eiH0t HI(t = 0) e−iH0t = HIP
I (t),

(3.1.105)

we have −iḢIP
I =

[
HIP

0 ,HIP
I

]
6= 0.

Note also that the equal time CR and AR for Π and φ are
[
Π(t, ~x), φ(t, ~y)

]
±

= −iδ3(~x − ~y) (3.1.106)

(+ if AR, − if CR). Since the interaction picture fields are related to the Heisenberg
fields by a unitary transformation they obey the same relations

φIP (t, ~x) = eiHS
0 t e−iHt φ(t, ~x) e+iHt e−iHS

0 t
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ΠIP (t, ~x) = eiHS
0 t e−iHt Π(t, ~x) e+iHt e−iHS

0 t (3.1.107)

and U = eiHS
0 t e−iHt, U† = e+iHt e−iHS

0 t with UU† = 1. Hence multiplying the com-
mutation relations by U from the left and U† from the right implies

[
ΠIP (t, ~x), φIP (t, ~y)

]
±

= −iδ3(~x − ~y). (3.1.108)

Further ΠIP and φIP obey the same equations of motion as the free fields since

−i
∂

∂t
φIP (x) =

[
HIP

0 , φIP (x)
]

−i
∂

∂t
ΠIP (x) =

[
HIP

0 ,ΠIP (x)
]
. (3.1.109)

Thus φIP (x) and ΠIP (x) can be expanded as free-field creation and annihilation oper-
ators in momentum space as we have studied in detail.

Continuing with the time evolution of the states, the interaction picture state at
time t is related to the state at time t0 by

|A(t) >IP = eiHS
0 t e−iHt|A >

= eiHS
0 t e−iHt e+iHt0 e−iHS

0 t0 |A(t0) >IP

|A(t) >IP = eiHS
0 t e−iH(t−t0) e−iHS

0 t0 |A(t0) >IP .

(3.1.110)

This combination of exponentials defines the time evolution operator

U(t, t0) ≡ eiHS
0 t e−iH(t−t0) e−iHS

0 t0 . (3.1.111)

This operator relates interaction picture states at time t0 to those at t

|A(t) >IP = U(t, t0)|A(t0) >IP . (3.1.112)

Note also that the relationship of operators in the Heisenberg and interaction pictures
are given by

φIP (t, ~x) = U(t, 0)φ(t, ~x)U−1(t, 0). (3.1.113)

Either from the above definitions of U(t, t0) or from the IP Schrodinger equation we
find

i
∂

∂t
U(t, t0) = HIP

I (t)U(t, t0) (3.1.114)

274



along with the initial condition U(t0, t0) = 1.

Recall that we can solve this equation for the time evolution operator by iteration
as seen by re-expressing the equation and initial conditions as an integral equation

U(t, t0) = 1 − i

∫ t

t0

dt1 HIP
I (t1)U(t, t0). (3.1.115)

The solution is (see chapter 1.3)

U(t, t0) = Te
−i

∫
t

t0
dt′HIP

I (t′)

= 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtnTHIP
I (t1) . . . HIP

I (tn).
(3.1.116)

In our field theories we have that H =
∫

d3xH(x) and Ho =
∫

d3xHo(x), HI =∫
d3xHI(x) with H = Ho + HI. Hence in the interaction picture these become

HIP
I (t, ~x) = U(t, 0)HI (t, ~x)U−1(t, 0).

HIP
o (t, ~x) = U(t, 0)Ho(t, ~x)U−1(t, 0). (3.1.117)

Thus we can write the time evolution operator as

U(t, t0) = Te
−i

∫ t

t0
d4x HIP

I (x)

= 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

d4x1 . . .

∫ t

t0

d4xnTHIP
I (x1) . . . HIP

I (xn).
(3.1.118)

The utility of the interaction picture now becomes apparent. In high energy physics
we are typically interested in predicting the results of scattering experiments. That is
given some initial state |A(t0) > it evolves into the state |A(t) > at a later time where

|A(t) >= U(t, t0)|A(t0) > . (3.1.119)

We then ask what is the probality amplitude that the state evolved into a specific state
|B(t) > at time t, that transition probality amplitude is

< B(t)|A(t) >=< B(t)|U(t, t0)|A(t0) > . (3.1.120)

275



The question then arises as to how we should specify the initial states |A(t0) > and the
final states |B(t) > . When experiments are performed the initial states are prepared
in the remote past (t −→ −∞) so that the states contain definite numbers of particles
that are spatially separated and non- interacting. That is we will assume that at early
times HIP

I (t) is switched off so that the interaction picture and Heisenberg picture are
the same. The free interaction picture fields will then create and annihilate the particles
of the thoery with the states just being the Fock space states of the free Hamiltonian
H0 built up from the free fields. As the time proceeds forward the interaction turns
on and these free or bare states become dressed with their clouds of virtual particles
evolving according to the Schrödinger equation with HIP

I 6= 0 now. As these dressed
particle states approach the interaction region complicated scattering, annihilation and
creation processes go on. As time continues the old and new particles separate from the
collision region and their interactions drop off and only their virtual cloud remains. As
time proceeds we will assume that we can turn off all interactions again so that only the
free bare particles remain. Again these final states in the remote furture (t −→ +∞)
will be states of definite numbers of non-interacting particles. That is in the remote
furture we have HIP

I (t −→ +∞) −→ 0 and the interaction picture is again the same as
the Heisenberg picture with dynamics given by H0. The interaction picture free field
operators will again create and annihilate the final particles and the totality of final
states is built up as the Fock space of these operators. Since every initial state is the
final state of the experiment before it, it makes sense that the final state space is the
same as the initial state space. It is the Fock space of free particles. This process of
turning off the interaction and turning it on again is implemented by there being a
time dependence for the coupling constants of the theory. For instance in QED we can
imagine the electric charge e = e(t) to have a time dependence such as shown in Figure
3.1.3.

Initially we have our bare free particle states given by the free field creation opera-
tors on the vacuum, these are eigenstates of H0, ~P0, ~J0or ~J0·~k

|~k|
the complete commuting

set of Poincaré generators that are made from the free interaction picture fields which
for t > |T | coincides with the Heisenberg picture. Then as the time proceeds the par-
ticles become fully charged and are surrounded by a cloud of virtual particles, pairs
and photons and evolve further in time according to the full interaction Hamiltonian
in the interaction picture HIP

I (t).
As the particles spatially approach each other they also interact with each other

by the exchange of the virtual quanta surrounding themselves and given by HIP
I (t). As
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they spatially separate as time proceeds their momenta and spins have changed and
possibly some have disappeared and new particles have been created and they stop
interacting with each other. As the charge begins to vanish again the particles don’t
interact even with their virtual cloud until eventually we have bare free particle final
states given by the free field creation operators on the vacuum again, exactly in the
same manner as the initial states. This turning on and off of the interaction is called
the adiabatic hypothesis. In quantum mechanics with finite range potentials we were
able to show the equivalence between using localized wavepacket initial and final states
and plane wave states with the adiabatic hypothesis. That is since the plane waves are
spread over all space they overlap the support of the potential and the particles are
always interacting. Hence we must turn the potential off initially and finally in order to
simulate the non-interaction of separated wavepacket states. In order to avoid emitting
or absorbing energy through the Fourier transform of the potential’s time dependence
during this turning off and on period, it must be done slowly, that is adiabatically. In
field theory the particles are actually always interacting with their own cloud of virtual
particles and it will be necessary to further account for these self-interaction effects.
This is done through self-energy and charge renormalization, a topic covered in the
next course on field theory in which the adiabatic hypothesis will be more carefully
formulated in terms of asymptotic conditions.

So we now have a description of our initial and final states. We are interested in
describing a scattering process from some initial state to some final state. Let’s denote
the (bare) initial and final states by rounded brackets just to keep in mind our adia-
batic hypothesis procedure. Thus initially we have some state |i ⊃= |i(t → −∞) >IP

made from the initial vacuum state |0 ⊃= |0(t → −∞) >IP by the action of creation
operators of the free IP fields. This state evolves in time according to the interaction
Hamiltonian in the IP with the adiabatic hypothesis time dependence of the coupling
constants, thus at time t the state is

|i(t) >IP = U(t,−∞)|i ⊃ . (3.1.121)

We desire the transition probality amplitude for this initial state to evolve into a
specified final state at t → +∞. The final state, defined for late times, is denoted by
|f ⊃= |f(t → +∞) >IP again |f ⊃ is made by the action of the free IP field creation
operators on the final vacuum |0 ⊃= |0(t → +∞) >IP which is the same ground state
as the initial vacuum, the no bare particle state as written.
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phase. This additional phase difference will then be present between each initial and
final state. Hence we might as well factor it out of the definition of the S-operator. So
if

|0(t → +∞) >IP = eiϕ|0(t → −∞) >IP

≡ eiϕ|0 ⊃,

then the initial to final vacuum transition amplitude is given by

IP< 0(t → −∞)|0(t → +∞) >IP = e+iϕ =⊂ 0|U(+∞,−∞)|0 ⊃ .

Thus factoring this phase out of the S-operator we define it as

S ≡ U(+∞,−∞)
⊂ 0|U(+∞,−∞)|0 ⊃

=
Te
−i

∫ +∞

−∞
d4xHIP

I (x)

⊂ 0|Te
−i

∫ +∞

−∞
d4xHIP

I (x)|0 ⊃
.

Correspondingly the S matrix elements are given by

Sfi =
⊂ f |Te

−i
∫ +∞

−∞
d4xHIP

I (x)|i ⊃

⊂ 0|Te
−i

∫ +∞

−∞
d4xHIP

I
(x)|0 ⊃

.

We will evaluate eiϕ in section 3.2 but for now let’s choose the final vacuum to be the
same as the initial vacuum, that is the phase to be zero.

We are now in a position to apply these techniques to calculating scattering oper-
ator matrix elements in QED. Let’s recall the Lagrangian

L = Linv +Lg (3.1.126)

where

Linv = −1
4
FµνFµν +

i

2
Ψγµ

(
∂µ + ieAµ

)
Ψ − i

2
(
∂µ − ieAµ

)
ΨγµΨ − mΨΨ (3.1.127)

and
Lg = − 1

2α

(
∂λAλ

)2
. (3.1.128)

These are Heisenberg picture fields. In order to find our interaction picture fields
we must separate the Hamiltonian into free H0 and interaction parts HI . Since the
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interaction in QED is non-derivative this takes a simple form. Recall the Hamiltonian
density is

H = φ̇Π − L = T 00 (3.1.129)

writing L = L0 + LI with

L0 = −1
4
FµνFµν − 1

2α

(
∂λAλ

)2
+ Ψ

( i

2

↔
/∂ − m

)
Ψ, (3.1.130)

that is all bilinear terms in the fields in L, and

LI = −eAµΨγµΨ (3.1.131)

we see that H = H0 + HI with the non-interacting Hamiltonian made from the free
Lagrangian L0, H0 = φ̇Π − L0. Recall for non-derivative coupling

Π ≡ ∂L
∂φ̇

=
∂L0

∂φ̇
, (3.1.132)

so the interaction Hamiltonian is made purely from the interaction Lagrangian LI , i.e.
HI = −LI .

Thus in the interaction picture the operators are all Heisenberg operators multi-
plied by the time evolution operators U(t, 0)O(t, ~x)U−1(t, 0) = OIP (t, ~x). Thus

HIP
0 = H0(φIP ,ΠIP ) = φ̇IPΠIP − L0(φIP ,ΠIP )

HIP
I = HI(φIP ) = −LI(φIP ) = eAIP

µ Ψ
IP

γµΨIP . (3.1.133)

That is, for the interaction picture, we just replace in the expressions for the operators
in terms of the fields and momenta in the Heisenberg picture the fields and momenta
in the interaction picture. The S-operator is then given by

S = Te−i
∫

d4xHIP
I = Te+i

∫
d4xLIP

I (3.1.134)

or
S = Te−ie

∫
d4x AIP

µ Ψ
IP

γµΨIP

. (3.1.135)

According to the interaction picture the field operators obey the free equations of
motion [

HIP
0 , φIP (x)

]
= −i

∂

∂t
φIP (x)
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[
HIP

0 ,ΠIP (x)
]

= −i
∂

∂t
ΠIP (x). (3.1.136)

Equivalently rather than the Heisenberg equations of motion we can use the Euler-
Lagrange equations of motion from LIP

0

1)
∂LIP

0

∂AIP
ν

− ∂µ
∂LIP

0

∂∂µAIP
ν

= 0 = ∂µF
IP µν +

1
α

∂ν∂λA
IP λ

2)
∂LIP

0

∂Ψ
IP

− ∂µ
∂LIP

0

∂∂µΨ
IP

= 0 = (i/∂ − m)ΨIP

3)
∂LIP

0

∂ΨIP
− ∂µ

∂LIP
0

∂∂µΨIP
= 0 = Ψ

IP
(i
←
/∂ + m).

(3.1.137)

As before in order to minimize the algebra to follow we will work in the Feynman
gauge α = 1. The fields then obey the free field equations that we have analyzed
previously

∂2A
IP µ(x) = 0

(i/∂ − m)ΨIP = 0

Ψ
IP

(i
←
/∂ + m) = 0.

(3.1.138)

We can Fourier transform these fields in terms of the plane wave solutions to the wave
equation and Dirac equation

A
IP µ(x) =

∫
d3k

(2π)32ωk

3∑

λ=0

εµ(k, λ)
[
a(λ)(~k)e−ikx + a†(λ)(~k)e+ikx

]

ΨIP (x) =
∫

d3k

(2π)32ωk

2∑

s=1

[
bs(~k)u(s)(~k)e−ikx + d†s(~k) v(s)(~k)e+ikx

]

Ψ
IP

(x) =
∫

d3k

(2π)32ωk

2∑

s=1

[
ds(~k) v(s)(~k)e−ikx + b†s(~k)u(s)(~k)e+ikx

]
.

(3.1.139)

The interaction picture fields are related to the Heisenberg picture fields by a
unitary transformation, hence they obey the ETCR,

δ(x0 − y0)
{
ΨIP

a (x),Ψ
IP

b (y)
}

= γ0
abδ

4(x − y)

δ(x0 − y0)
[
Ȧ

IP µ(x), A
IP ν

]
= +igµνδ4(x − y),

(3.1.140)
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all other ETCR vanishing. As usual these imply the creation and annihilation operator
algebra for a,b,d:

{
br(~p), b†s(~k)

}
= (2π)32ωkδrsδ

3(~p − ~k)
{

dr(~p), d†s(~k)
}

= (2π)32ωkδrsδ
3(~p − ~k)

[
a(λ)(~p), a†(ρ)(~k)

]
= −gλρ(2π)32ωkδ3(~p − ~k)

(3.1.141)

with all other commutators vanishing;
{

br(~p), bs(~k)
}

=0 =
{
dr(~p), ds(~k)

}

{
br(~p), ds(~k)

}
=0 =

{
br(~p), d†s(~k)

}

[
a(λ)(~p), a(ρ)(~k)

]
=0 =

[
a(λ)(~p), bs(~k)

]

[
a(λ)(~p), ds(~k)

]
=0 =

[
a(λ)(~p), b†s(~k)

]

[
a(λ)(~p), d†s(~k)

]
=0.

(3.1.142)

The state vectors in the interaction picture evolve in time according to the inter-
action Hamiltonian or equivalently by the time evolution operator U(t, t0). According
to the adiabatic hypothesis for initial and final times (t → ±∞) the interaction Hamil-
tonian vanishes HIP

I (t) t→±∞
−→ 0. Hence the interaction picture states are described by

eigenstates of PIP µ
o and ~J IP

o and QIP
o as well as the number operators NIP

o . Recall
that in general the single particle states in the theory are the eigenstates of the energy-
momentum four vector Pµ and the helicity ~J ·~k

|~k|
or spin projection J3 in the rest frame

of massive particles and whatever other charges might be present like the electric charge
Q. In the interaction picture

P
IP µ = P

IP µ
0 + P

IP µ
I

M
IP µν = M

IP µν
0 + M

IP µν
I

QIP = QIP
0 + QIP

I

(3.1.143)

where OIP
0 operators are made fromLIP

0 as if HIP
I were zero and OIP

I are the additional
terms due to HIP

I 6= 0. Note that in QED we have that

P
IP 0 = HIP = HIP

0 + HIP
I (3.1.144)
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in general, and that since there is no derivative coupling

~PIP = ~PIP
0 or~PIP

I = 0; (3.1.145)

the momentum has the same form in the free as the interacting theory. Similarly (with
the −e factor not taken to zero, it is just the unit of charge)

QIP = QIP
0 (3.1.146)

and
Mij IP

= Mij
0

IP
. (3.1.147)

The point is that although we can construct HIP in terms of the fields of the theory
we do not know how to construct the eigenstates of HIP directly from the (free IP)
fields at arbitrary time. However as we see above in the interaction picture according
to the adiabatic hypothesis HIP

I (t) t→±∞
−→ 0 then PIP µ = P

IP µ
0 ,Mij IP = Mij

0

IP
, and

QIP = QIP
0 are expressed in terms of the free IP fields and have the free non-interacting

form. The eigenstates of these operators we know how to form from the creation
operators acting on the vacuum. Of course once we have the eigenstates they remain
eigenstates. Since they are a basis of the state space we can expand any state in terms
of them. They evolve in time according to U(t,±∞), formerly then we can find the
eigenstate at any time.

However we are only explicitly interested in constructing the initial and final states.
The S-matrix elements (U(+∞,−∞)) will then be evaluated perturbatively; that is the
time evolution of these eigenstates will be evaluated perturbatively. So the totality of
initial and final states is determined for HIP

I (t → ±∞) = 0. Thus the free Lagrangian
LIP

0 describes the fields used for the Hilbert space construction. LIP
0 is just the free

field theory we have been studying in detail the last few chapters:

LIP
0 = −1

4
F

IP

µνF
IP µν − 1

2α

(
∂λA

IP λ
)2

+ Ψ
IP

( i

2

↔
/∂ − m

)
ΨIP . (3.1.148)

The general space V of states is found from the action of a†, b†, and d† on the
vacuum. Thus the lowest energy state is found to be |0 > so that it is defined to be
the state such that

a(λ)(~k)|0 > = 0 all λ,~k

bs(~k)|0 > = 0 all s,~k

ds(~k)|0 > = 0 all s,~k

(3.1.149)
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(Of course we must first normal order the Lagrangian, Tµν , Mµνρ, Jµ to define the
vacuum thusly. Since in the interaction picture the fields are just as free fields we can
normal order L, L0, LI , Tµν , Tµν

0 , Tµν
I , etc.. So everywhere we replace products of

fields with normal products – this will change things as far as the interaction goes and
field equations, etc.. More on this later.)

The one particle states are

|~k, (λ) > = a(λ)
†(~k)|0 > for “photon” states

|~k,
(−1)s+1

2
,− > = bs

†(~k)|0 > for electron states

|~k,
(−1)s

2
,+ > = ds

†(~k)|0 > for positron states

(3.1.150)

(Note the charge of the electron states is −e, positron states +e, we have multiplied
the previous Q by −e.) As before these are eigenstates of energy and momentum

P
IP µ|~k, . . . >= kµ|~k, . . . > (3.1.151)

of charge

Q|~k, (λ) > = 0 photon has no electric charge

Q|~k,±1
2
,− > = −e|~k,±1

2
,− > electron has − e charge

Q|~k,±1
2
,+ > = +e|~k,±1

2
,+ > positron has + e charge.

(3.1.152)

The photon has helicity ±1, 0, 0 hence

~J · ~k
|~k|

|~k, (λ) > =
{

0 for λ = 0, 3
±|~k, (λ) > for λ = ±. (3.1.153)

Also, the electron and positron have spin ±1
2 on the third axis at rest

J3|~0,±1
2
,− > = ±1

2
|~0,±1

2
,− >

J3|~0,±1
2
,+ > = ±1

2
|~0,±1

2
,+ >.

(3.1.154)
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The photon N(λ), electron Ne− and positron Ne+ number operators defined as

N(λ) =
∫

d3k

(2π)32ωk
(−gλλ)a†(λ)(~k) a(λ)(~k) (6 Σλ)

Ne− =
∫

d3k

(2π)32ωk

2∑

s=1

b†s(~k) bs(~k)

Ne+ =
∫

d3k

(2π)32ωk

2∑

s=1

d†s(~k) ds(~k)

(3.1.155)

yield the number of respective particles in each state :

N(λ)|0 >= Ne− |0 >= Ne+|0 >= 0

N(λ)|~k, (ρ) > = δλρ|~k, (ρ) >

Ne+ |~k,±1
2
,+ > = |~k,±1

2
,+ >

Ne− |~k,±1
2
,− > = |~k,±1

2
,− >

N(λ)|~k,±1
2
,± > = 0 = Ne± |~k, (λ) >

Ne+ |~k,±1
2
,− > = 0 = Ne− |~k,±1

2
,+ >.

(3.1.156)

The multiparticle states are made from repeated application of the creation operators,
the l-photon, m-electron, n-positron state is

|(~k1, λ1), . . . (~kl, λl); (~l1,
(−1)s1+1

2
,−), . . . ; (~p1,

(−1)r1

2
,+), . . . >

= a†(λ1)
(~k1) · · · b†s1

(~l1) · · · d†r1
(~p1) · · · |0 > .

(3.1.157)

The inner product of states in V is defined as usual through the commutator and
with < 0

∣∣∣0 >= 1,

< ~k,
(−1)r+1

2
,−|~k′, (−1)r′+1

2
,− > = (2π)32ωkδrr′δ

3(~k − ~k′)

< ~k,
(−1)r

2
,+|~k′, (−1)r′

2
,+ > = (2π)32ωkδrr′δ

3(~k − ~k′)
(3.1.158)
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but
< ~k, λ|~k ′, λ′

〉
= −gλλ′(2π)32ωkδ3(~k − ~k′), (3.1.159)

all others vanishing.

As usual the full space V is an indefinite metric space – it contains unphysical
photons, the scalar (λ = 0) and longitudinal (λ = 3) modes. The physical subspace of
states is defined by means of the Gupta- Bleuer subsidiary condition. The condition is

∂λAλ+
(x)|Φ >= 0 (3.1.160)

if |Φ > is a physical state. Transforming to the interaction picture yields

0 = eiHS
0 te−iHt∂λAλ+

(t, ~x)eiHte−iHS
0 te+iHS

0 te−iHt|Φ >

= ∂λA
IP λ

+
(t, ~x)|Φ(t) >IP .

(3.1.161)

Since ∂λA
IP λ always obeys the free wave equation ∂2∂λA

IP λ = 0, this condition reduces
to [

a(0)(~k) − a(3)(~k)
]
|Φ(t) >IP = 0 (3.1.162)

and for initial and final states t −→ ±∞, |Φ(t) >IP −→ |Φ ⊃ . Thus the physical
subspace of states involves only states which obey

a(0)(~k)|Φ ⊃= a(3)(~k)|Φ ⊃ . (3.1.163)

The most general such vector is of the form

|Φ ⊃= |Φtr ⊃ |Φ̂ ⊃ (3.1.164)

where |Φtr ⊃ consists of e± and transverse λ = 1, 2 photons only. While

|Φ̂ ⊃=
[
1 +

∞∑

n=1

∫
d3k1 · · · d3kn

(2π)32ωk1 · · · (2π)32ωkn

C(~k1 . . . ~kn)G†(~k1) · · · G†(~kn)
]
|0 >

(3.1.165)
and

G†(~k) ≡ a†(0)(~k) − a†(3)(~k). (3.1.166)

As we saw we could always choose the gauge Λ with ∂2Λ = 0 such that |Φ̂ >= |0 >,
that is

|Φ ⊃= |Φtr ⊃ . (3.1.167)

286



Hence we can now construct the complete set of initial and final physical states
forming a Hilbert space

Hphys = |0 > ⊕{|~k, λ = 1 or 2 >, |~k,±1
2
,± >} ⊕ · · · . (3.1.168)

For example, suppose we have an initial state of one electron with momentum ~p, spin
+1

2
and one photon of momentum ~k, linearly polarized in the λ = 2 direction

|i ⊃ = |(~p,+
1
2
,−); (~k, 2) >= |~p,+

1
2
,−

〉
|~k, 2 >

= b†1(~p)a†(2)(~k)|0 > .
(3.1.169)

Or an initial state of a positron of momentum ~p, spin +1
2 and an electron of momentum

~q, spin −1
2

|i ⊃ = |(~q,−1
2
,−); (~p,+

1
2
,+) >= |~q,−1

2
,− > |~p,+

1
2
,+ >

= b†2(~q)d†2(~p)|0 > .

(3.1.170)

Similarly suppose we have a final state with a electron of momentum ~p, spin + 1
2

and
one photon of momentum ~k, linearly polarized in the λ = 2 direction

|f ⊃ = |(~p,+
1
2
,−); (~k, 2) >

= b†1(~p)a†(2)(~k)|0 >
(3.1.171)

the same state as the first initial state example. Again the final state Hilbert space
is the same as the initial state Hilbert space which makes sense physically since the
initial states of the experiment are the final states of the experiment before it.

We are now ready to calculate transition probability amplitudes, that is S-matrix
elements. The S-operator is given by

S = Te
−i

∫
d4xHIP

I . (3.1.172)

First recall that S is restricted Lorentz invariant

U−1(a,Λ)SU(a,Λ) = S (3.1.173)
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i.e. [
S,U(a,Λ)

]
= 0. (3.1.174)

This follows from the fact that
∫

d4xHIP
I is invariant and then the only question is

whether the time ordering can be changed by a Lorentz transformation. This can
happen only for space-like separated points in THIP

I (x1) · · · HIP
I (xn), however by the

microcausality property of our fields
[
HIP

I (x1),HIP
I (x2)

]
= 0 for (x1 − x2)

2
< 0. (3.1.175)

Thus the order does not matter and S is invariant.
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