
§2.2 THE SPIN ZERO SCALAR FIELD

We now turn to applying our quantization procedure to various free fields. As
we will see all goes smoothly for spin zero fields but we will require some change
in the CCR when we apply the rules to spin 1/2 fields; we will need CAR. Further
modification will be required when we try to quantize spin 1 fields in a manifestly
Lorentz covariant manner due to gauge invariance.

First let’s consider the case of a free scalar, spin zero, mass m, Hermitian field.
As we have seen earlier it is described by the Lagrangian

L =
1
2
∂µΦ∂µΦ − 1

2
m2Φ2 (2.2.1)

with the Euler-Lagrange equation (∂2 + m2)Φ(x) = 0. The canonical quantization
rules state

Π =
∂L
∂Φ̇

= Φ̇ and Πµ =
∂L

∂∂µΦ
= ∂µΦ. (2.2.2)

So that the Hamiltonian density becomes

H = ΠΦ̇ − L = Φ̇Φ̇ − L

H =
1
2
Φ̇2 +

1
2

~∇Φ · ~∇Φ +
1
2
m2Φ2, (2.2.3)

The equal time commutation relations are

[Π(~x, t),Φ(~y, t)] =
[
Φ̇(~x, t),Φ(~y, t)

]
= −iδ3(~x − ~y)

[Φ(~x, t),Φ(~y, t)] = 0 =
[
Φ̇(~x, t), Φ̇(~y, t)

]
(2.2.4)

The Euler-Lagrange equations are then equivalent to the Heisenberg equations of
motion

[H,Φ(x)] = −iΦ̇(x)
[
H, Φ̇(x)

]
= −iΦ̈(x). (2.2.5)

We can construct the energy-momentum tensor and angular momentum tensor as
defined earlier according to our classical Noether’s theorem

Tµν ≡
(

∂νΦ
∂

∂∂µΦ

)
L − gµνL
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Tµν =
1
2

(∂µΦ∂νΦ + ∂νΦ∂µΦ) − gµνL, (2.2.6)

where we have written Tµν in symmetric form. We can check explicitly that Tµν is
conserved by using the Euler-Lagrange equations of Φ

∂µTµν =
1
2
∂2Φ∂νΦ +

1
2
∂µΦ∂µ∂νΦ

+
1
2
∂µ∂νΦ∂µΦ +

1
2
∂νΦ∂2Φ − ∂νL

= −m2

2
Φ∂νΦ − m2

2
∂νΦΦ +

1
2
∂ν(∂µΦ∂µΦ) − ∂νL

= ∂ν

(
1
2
∂µΦ∂µΦ − 1

2
m2Φ2

)
− ∂νL = 0

. (2.2.7)

Even though Tµν = T νµ there are still Belinfante improvement terms that one can
add

Gρµν = b (gµν∂ρ − gρν∂µ)Φ2. (2.2.8)

So
Gρµν = −Gµρν (2.2.9)

and
∂ρGρµν = b

(
gµν∂2 − ∂µ∂ν

)
Φ2 (2.2.10)

Now the improved energy momentum tensor is given by

Θµν
I = Tµν + ∂ρGρµν. (2.2.11)

Usually b is chosen so that Θλ
Iλ = m2Φ2 but this is useful only when one considers

conformal symmetries in addition to Poincare’ symmetries. The additional current
for scale transformations is defined by

Dµ = xνΘµν
I

∂µDµ = Θλ
Iλ. (2.2.12)

Now
Θλ

Iλ = Tλ
λ + 3b∂2Φ2

= ∂λΦ∂λΦ − 2∂λΦ∂λΦ + 2m2Φ2 + 3b∂2Φ2

= 2m2Φ2 − ∂λ

(
Φ∂λΦ

)
+ Φ∂2Φ + 3b∂2Φ2

= −1
2
∂2Φ2 + 3b∂2Φ2 + m2Φ2 + Φ

(
∂2 + m2

)
Φ − 1

2
∂λ[∂λΦ,Φ]

= (3b − 1
2
)∂2Φ2 + m2Φ2

. (2.2.13)
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Hence we choose
b =

1
6
. (2.2.14)

So we have
Θµν

I = Tµν +
1
6
(
gµν∂2 − ∂µ∂ν

)
Φ2

∂µΘµν
I = 0

Θµν
I = Θνµ

I

Θλ
Iλ = m2Φ2. (2.2.15)

The energy momentum operator is given by either Tµν or Θµν as

Pµ =
∫

d3xT 0µ

=
∫

d3x

[
1
2

(
Φ̇∂νΦ + ∂νΦΦ̇

)
− g0µL

]

Pµ =
∫

d3x

[
H,

1
2
(
Π∂iΦ + ∂iΦΠ

)]
. (2.2.16)

Now using the ETCR equations (2.2.4) we find

[
T 0ν(~y, t),Φ(~x, t)

]
=
[
1
2

(
Φ̇(~y, t)∂νΦ(~y, t) + ∂νΦ(~y, t)Φ̇(~y, t)

)

−g0ν 1
2
Φ̇(~y, t)

2
,Φ(~x, t)

]

= −iΦ̇(x)δ3(~x − ~y), ν = 0

= −i∂iΦ(x)δ3(~x − ~y), ν = 1, 2, 3.

that is
δ(x0 − y0)

[
T 0ν(y),Φ(x)

]
= −i∂νΦ(x)δ4(x − y). (2.2.17)

So
[Pµ,Φ(x)] = −i∂µΦ(x) (2.2.18)

as desired. Further the angular momentum tensor is

Mµνρ = xνTµρ − xρTµν
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∂µMµνρ = 0 (2.2.19)

since
Tµν = T νµ.

The angular momentum operator is then

Mµν =
∫

d3xM0µν

=
∫

d3x
(
xµT 0ν − xνT 0µ

) . (2.2.19′)

So we have using (2.2.17)

[Mµν ,Φ(x)] = −i (xµ∂ν − xν∂µ) Φ(x). (2.2.20)

Given these quantum field theoretic properties for the field operators we would
like to further interpret the physical system being described by them. To do this
let’s go over to momentum space and expand the field operator

Φ(x) =
∫

d4k

(2π)4
e−ikxΦ̃(k). (2.2.21)

Φ(x) obeys the Klein-Gordon equation (∂2 + m2)Φ(x) = 0 thus we should be ex-
panding Φ(x) in terms of solutions to the K.G. equation

(∂2 − m2)Φ(x) = 0 =
∫

d4k

(2π)4
e−ikx(−k2 + m2)Φ̃(k) (2.2.22)

this implies
Φ̃(k) = (2π)δ(k2 − m2)a(~k, k0) (2.2.23)

with a(~k, k0) an operator coefficient, and hence

Φ(x) =
∫

d4k

(2π)3
δ(k2 − m2)a(~k, k0)e−ikx. (2.2.24)

As before we use

δ(k2 − m2) =
1

2ωk

[
θ(k0)δ(k0 − ωk) + θ(−k0)δ(k0 + ωk)

]
(2.2.25)
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with

ωk = +
√

~k2 + m2 (2.2.26)

so that

Φ(x) =
∫

d3k

(2π)32ωk

[
a(~k,+ωk)e−iωkx0+i~k·~x + a(~k,−ωk)e+iωkx0+i~k·~x

]

=
∫

d3k

(2π)32ωk

[
a(~k,+ωk)e−ikx + a(−~k,−ωk)e+ikx

] , (2.2.27)

where the second equality was obtained by letting ~k → −~k in the second integral.
But the field is Hermitian, Φ(x) = Φ†(x), implying a†(~k,+ωk) = a(−~k,−ωk), thus
defining the operators

a(~k) ≡ a(~k,+ωk)

a†(~k) = a†(~k,+ωk) = a(−~k,−ωk) (2.2.28)

we have the hermitian form for the Fourier transform

Φ(x) =
∫

d3k

(2π)32ωk

[
a(~k)e−ikx + a†(~k)eikx

]
(2.2.29)

where it is understood that k2 = m2 here, that is k0 = ωk. We have expanded Φ(x)
in terms of the positive frequency u~k(x) = e−ikx and negative frequency solutions
v~k(x) = u∗

~k
(x) = eikx of the Klein-Gordon equation

(∂2 + m2)u~k(x) = 0

(∂2 + m2)v~k(x) = 0. (2.2.30)

These have the orthogonality property

(u~k, u~k′) = i

∫
d3xu∗

~k
(x)

↔
∂0 u~l(x)

=
∫

d3x(ωl + ωk)e−i(ωl−ωk)x0
ei(~l−~k)·~x

= (2π)32ωk

(2.2.31)

where
f

↔
∂µ g = f(∂µg) − (∂µf)g (2.2.32)
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and the completeness relation

∫
d3k

(2π)32ωk
u~k(x)u∗

~k
(y) =

∫
d3k

(2π)32ωk
e−ik(x−y) = i 4+ (x − y) (2.2.33)

which will be discussed in further detail later. Thus

Φ(x) = Φ+(x) + Φ−(x) (2.2.34)

where

Φ+(x) ≡
∫

d3k

(2π)32ωk
a(~k)e−ikx (2.2.35)

Φ−(x) ≡
∫

d3k

(2π)32ωk
a†(~k)eikx (2.2.36)

are the positive and negative frequency components respectively. Inverting the
Fourier transform we find

a(~k) = i

∫
d3xeikx

↔
∂0 Φ(x) (2.2.37)

a†(~k) = i

∫
d3xΦ(x)

↔
∂0 e−ikx. (2.2.38)

So writing out the time derivatives, we have

a(~k) = i

∫
d3xeikx

[
Φ̇(x) − iωkΦ(x)

]
(2.2.39)

a†(~k) = i

∫
d3xe−ikx

[
−iωkΦ(x) − Φ̇(x)

]
. (2.2.40)

Note, since k2 = m2 the above integrals are indeed independent of time

ȧ(~k) = i

∫
d3xeikx

[
iωkΦ̇ + ω2

kΦ + Φ̈ − iωkΦ̇
]

= i

∫
d3xeikx

[
~k2Φ + m2Φ + Φ̈

]

= i

∫
d3xeikx

[
−52 Φ + Φ̈ + m2Φ

]

= i

∫
d3xeikx

(
∂2 + m2

)
Φ = 0

. (2.2.41)
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We can evaluate the commutators for a(~k) and a†(~k) by using the equal time com-
mutation relations equation (2.2.4) for Φ(x) and Φ̇(x). We secure

[
a(~k), a†(~l )

]
= (2π)32ωkδ3(~k −~l )

[
a(~k), a(~l )

]
= 0 =

[
a†(~k), a†(~l )

]
. (2.2.42)

We obtain the “harmonic oscillator” creation operator a†(~k) and annihilation oper-
ator a(~k) commutation relations.

We can also apply the energy-momentum commutation relation

[Pµ,Φ(x)] = −i∂µΦ(x) (2.2.43)

to a(~k)and a†(~k) to find [
Pµ, a(~k)

]
= −kµa(~k)

[
Pµ, a†(~k)

]
= +kµa†(~k). (2.2.44)

Thus, if |p > is an eigenstate of energy and momentum

Pµ|p >= pµ|p >, (2.2.45)

then
Pµa(~k)|p > =

[
Pµ, a(~k)

]
|p > +a(~k)Pµ|p >

= (−kµ + pµ)a(~k)|p >
. (2.2.46)

Hence
Pµ
[
a(~k)|p >

]
= (pµ − kµ)

[
a(~k)|p >

]
(2.2.47)

and similarly
Pµ
[
a†(~k)|p >

]
= (pµ + kµ)

[
a†(~k)|p >

]
, (2.2.48)

thus a(~k)|p > is an eigenstate of Pµ with energy-momentum (p−k)µ and a†(~k)|p >

is an eigenstate of Pµ with energy-momentum (p + k)µ. Now we could keep acting
on |p > with annihilation operators, then

Pµa(~k1) · · · a(~kN )|p >=

(
p −

N∑

i=1

ki

)µ

a(~k1) · · · a(~kN )|p > . (2.2.49)
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Eventually P0 = H will go negative!! However,

H =
∫

d3x
1
2

[
Φ̇2 + ~5Φ · ~5Φ + m2Φ2

]
(2.2.50)

is a positive operator. This implies that there is a lowest energy state so that, for
some number N, we must have

a(~k)
[
a(~k1) · · · a(~kN )|p >

]
= 0. (2.2.51)

Denoting this lowest energy state, called the ground state or vacuum, by |0 > and
its energy by E0 and noting that its momentum is ~0, we have for equation (2.2.51)

a(~k)|0 >= 0 (2.2.52)

for all ~k. a†(~k)|0 > then has the energy and momentum of a single particle relative
to that of |0 >,

H
[
a†(~k)|0 >

]
= (E0 + ωk)

[
a†(~k)|0 >

]

~P
[
a†(~k)|0 >

]
= ~k

[
a†(~k)|0 >

]
(2.2.53)

with ω2
k = ~k2 + m2, the relativistic relation. Thus we interpret the state |~k >≡[

a†(~k)|0 >
]

as a single particle state with momentum ~k and mass m, hence energy
ωk. Continuing,

|~k1, ~k2 >= a†(k1)a†(k2)|0 > (2.2.54)

has energy
H|~k1, ~k2 >= (E0 + ωk1 + ωk2 )|~k1, ~k2 > (2.2.55)

and momentum
~P |~k1, ~k2 >= (~k1 + ~k2)|~k1, ~k2 > (2.2.56)

and represents states with two noninteracting particles each with momentum ~ki and
energy ωki . Continuing further, the N-particle states are given by

|~k1, · · · , ~kN >= a†(~k1) · · · a†(~kN )|0 > (2.2.57)

with

H|~k1, · · · , ~kN >=

(
E0 +

N∑

i=1

ωki

)
|~k1, · · · , ~kN > (2.2.58)
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~P |~k1, · · · , ~kN >=

(
N∑

i=1

~ki

)
|~k1, · · · , ~kN > . (2.2.59)

Thus, we can define the number density operator as

N (~k) =
1

(2π)32ωk
a†(~k)a(~k) (2.2.60)

with [
N (~k), a(~k′)

]
= −δ3(~k − ~k′)a(~k) (2.2.61)

[
N (~k), a†(~k′)

]
= +δ(~k − ~k′)a†(~k). (2.2.62)

So operating on the N-particle state gives

N (~k)|~k1, · · · , ~kN >=

[
δ3(~k − ~k1) + · · · + δ3(~k − ~kN)

]
|~k1, · · · , ~kN >, (2.2.63)

N (~k) equals the number of particles per unit volume in momentum space with
momentum ~k. Therefore,

N (~k)d3k (2.2.64)

is equal to the number of particles with momentum differentially close to ~k. Hence,
the total number operator is given by

N∞ =
∫

d3kN (~k) =
∫

d3k

(2π)32ωk
a†(~k)a(~k) (2.2.65)

and
N∞|~k1, · · · , ~kN >= N |~k1, · · · , ~kN > . (2.2.66)

So a†(~k) increases the number of particles by creating a particle with momentum
~k and energy ωk while a(~k) decreases the number of particles by annihilating a
particle with momentum ~k and energy ωk.

For further insight into the vacuum energy E0 let’s Fourier transform our ex-
pression for the energy momentum operator Pµ

P0 = H =
∫

d3x

[
1
2
Φ̇2 +

1
2

~5Φ · ~5Φ +
1
2
m2Φ2

]
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~P = −
∫

d3x
1
2

[
Φ̇~5Φ + ~5ΦΦ̇

]
. (2.2.67)

First the momentum operator

~P = −
∫

d3x

∫
d3k

(2π)32ωk

d3l

(2π)32ωl

1
2
[
−iωka(~k)e−ikx + iωka†(~k)e+ikx

]

×
[
i~la(~l )e−ilx − i~la†(~l )eilx

]
+ interchange

=
∫

d3k

(2π)32ωk

d3l

(2π)32ωl

∫
d3x

1
2
[
−ωk

~la(~k)a(~l )e−i(k+l )x

+ ωk
~la(~k)a†(~l )e−i(k−l )x + ωk

~la†(~k)a(~l )ei(k−l )x

− ωk
~la†(~k)a†(~l )ei(k+l )x

]
+ interchange

=
∫

d3k

(2π)32ωk

d3l

(2π)32ωl

1
2

[
(2π)3δ3(~k +~l )e−i2ωkx0

(+ωk
~k)a(~k)a(−~k)

+ (2π)3δ3(~k +~l )ei2ωkx0
(ωk

~k)a†(~k)a†(−~k)

+ (2π)3δ3(~k −~l )
[
ωk

~ka(~k)a†(+~k) + ωk
~ka†(~k)a(~k)

]]
+ interchange

. (2.2.68)

Thus we find

~P =
∫

d3k

(2π)32ωk

1
2
~k
[
a(~k)a†(~k) + a†(~k)a(~k)

]

+
∫

d3k

(2π)32ωk

1
4
~k
[
e−i2ωkx0

(
a(~k)a(−~k) + a(−~k)a(~k)

)

+ei2ωkx0
(
a†(~k)a†(−~k) + a†(−~k)a†(~k)

)]
. (2.2.69)

The integrand of the second integral on the right hand side is odd in ~k and hence
vanishes, yielding

~P =
∫

d3k

(2π)32ωk

1
2
~k
[
a†(~k)a(~k) + a(~k)a†(~k)

]
. (2.2.70)

Similarly, in this integral we can rearrange a(~k)a†(~k) since the commutator is even
in ~k

1
2

∫
d3k

(2π)32ωk

~ka(~k)a†(~k) =
1
2

∫
d3k

(2π)32ωk

~ka†(~k)a(~k)

+
1
2

∫
d3k

(2π)32ωk

~k
[
a(~k), a†(~k)

]
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=
1
2

∫
d3k

(2π)32ωk

~ka†(~k)a(~k) +
∫

d3k

(2π)32ωk

~k(2π)32ωkδ3(~k − ~k)

=
1
2

∫
d3k

(2π)32ωk

~ka†(~k)a(~k). (2.2.71)

Consequently, we find the usual expression for the number operator of particles with
momentum ~k times the momentum ~k

~P =
∫

d3k

(2π)32ωk

~ka†(~k)a(~k). (2.2.72)

Thus we find ~P|0 >= 0 since a(~k)|0 >= 0, as previously stated.
Next consider the Hamiltonian, after an integration by parts with vanishing

surface term,

H =
∫

d3x

[
1
2
Φ̇2 − 1

2
Φ(52Φ − m2Φ)

]
(2.2.73)

but Φ̈ −52Φ + m2Φ = 0, so

H =
∫

d3x

[
1
2
Φ̇2 − 1

2
ΦΦ̈
]

. (2.2.74)

Expanding the fields, we have

H =
1
2

∫
d3x

∫
d3k

(2π)32ωk

d3l

(2π)32ωk

[
−ωkωla(~k)a(~l )e−i(k+l )x

+ ωkωla(~k)a†(~l )e−i(k−l )x + ωkωla
†(~k)a(~l )ei(k−l )x − ωkωla

†(~k)a†(~l )ei(k+l )x

−
(
a(~k)e−ikx + a†(~k)eikx

)(
−ω2

l a(~l )e−ilx − ω2
l a†(~l )eilx

)]

=
1
2

∫
d3k

(2π)32ωk

d3l

(2π)32ωl
(2π)3

{
δ3(~k +~l )(−ω2

k)
(
e−i2ωkx0

a(~k)a(−~k)

+ei2ωkx0
a†(~k)a†(−~k)

)

+ ω2
kδ3(~k −~l )

(
a(~k)a†(~k) + a†(~k)a(~k)

)

+ ω2
k

[
δ3(~k +~l )

(
a(~k)a(−~k)e−2iωkx0

+ a†(~k)a†(−~k)e+i2ωkx0
)

+δ(~k −~l )
(
a(~k)a†(~k) + a†(~k)a(+~k)

)]}

=
∫

d3k

(2π)32ωk

1
2
ωk

[
a(~k)a†(~k) + a†(~k)a(~k)

]

=
∫

d3k

(2π)32ωk
ωka†(~k)a(~k) +

∫
d3k

(2π)32ωk

1
2
ωk(2π)32ωkδ3(0)

.

(2.2.75)
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That is we finally find

H =
∫

d3k

(2π)32ωk
ωka†(~k)a(~k) +

∫
d3k

1
2
ωkδ3(0). (2.2.76)

Thus when acting on the lowest energy state |0 > defined by a(~k)|0 >= 0, we have

H|0 >=
(∫

d3k
1
2
ωkδ3(0)

)
|0 >= E0|0 >, (2.2.77)

hence
E0 =

∫
d3k

1
2
ωkδ3(0) = ∞ = constant. (2.2.78)

One way to look at this is that the vacuum contains an infinite zero point energy
from the infinite number of harmonic oscillators in the Hamiltonian and that all
measurements are made relative to this vacuum state i.e. only differences in energy
are measured so that the infinite constant does not matter. Alternatively, the
Hamiltonian is defined only up to a constant, the zero of energy being arbitrary.
Thus, we can define another Hamiltonian as Ĥ ≡ H −E0 , the lowest energy state,
defined by a(~k)|0 >= 0, having zero energy Ĥ|0 >= 0.

Physically it is reasonable to define the no particle state, the vacuum, |0 > ,
which is the lowest energy state as having zero as its energy and momentum

a(~k)|0 >= 0 (2.2.79)

and
Ĥ|0 >= 0 (2.2.80)

~P |0 >= 0 (2.2.81)

so that the vacuum is space-time translation invariant U(a, 1)|0 >= |0 >. Math-
ematically what we are finding is that the formal manipulations of writing a La-
grangian and a Hamiltonian for quantum fields in analogy to classical fields or even
quantum mechanical systems with a finite number of degrees of freedom must be
modified. The problem arises from the products of field operators at the same
space-time point as in the Lagrangian or the Hamiltonian (this follows from the
equal time commutation relations

[Φ̇(~x, t),Φ(~y, t)] = −iδ3(~x − ~y) ∼ ∞
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for ~x → ~y). For noninteracting fields we can easily eliminate these difficulties by
defining the products of the fields more carefully. In the interacting case it is more
difficult but possible and comprises the subject of renormalization theory.

A well defined product of free fields is given by the normal ordering or Wick
ordering of the fields. For example, the normal product denoted N [Φ2(x)] or :
Φ2(x) : (or N [Φ(x)Φ(y)] for that matter) is defined so that all annihilation operators
in the product are to the right of all the creation operators, hence,

N [Φ2(x)] = Φ+(x)Φ+(x) + Φ−(x)Φ−(x) + 2Φ−(x)Φ+(x) (2.2.81)

so that the vacuum expectation value of a normal product vanishes

< 0|N [Φ2(x)]|0 >= 0. (2.2.82)

On the other hand

Φ2(x) = Φ+(x)Φ+(x) + Φ−(x)Φ−(x) + Φ−(x)Φ+(x) + Φ+(x)Φ−(x). (2.2.83)

Thus, we can relate the two products

N [Φ2(x)] = Φ2(x) + [Φ−(x),Φ+(x)]. (2.2.84)

In terms of the Fourier transform creation and annihilation operators we have

N [a(~k)a†(~k)] = a†(~k)a(~k) = N [a†(~k)a(~k)]. (2.2.85)

So for the product at zero momentum we have
∫

d3xN [Φ2(x)] =
∫

d3x
(
Φ2(x) + [Φ−(x),Φ+(x)]

)
. (2.2.86)

But
∫

d3x[Φ−(x),Φ+(x)] =
∫

d3x

∫
d3k

(2π)32ωk

d3l

(2π)32ωl
ei(k−l )x[a†(~k), a(~l )]

=
∫

d3k

(2π)32ωk

d3l

(2π)32ωl
(2π)3δ3(~k −~l )[a†(~k), a(~l )]

= −
∫

d3k

(2π)32ωk
(2π)3δ3(0)

(2.2.87)
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which is just the type of singularity we are finding in the Hamiltonian and this
normal ordering can be used to eliminate the singularity in H! Thus, the well defined
product of field operators making up the Hamiltonian is

Ĥ = N [H]. (2.2.88)

Similarly, the Lagrangian should be defined with normal ordering

L̂ = N [L] (2.2.89)

as well as all other composite operators

T̂µν = N [Tµν ] (2.2.90)

M̂µνρ = N [Mµνρ]. (2.2.91)

The field equations in the free field case stay the same since this normal ordering
of H just corresponds, as we have seen, to the addition of an infinite constant to
the naive Hamiltonian. So (

∂2 + m2
)
Φ(x) = 0 (2.2.92)

still holds. Fourier transforming we now obtain directly that

Ĥ =
∫

d3k

(2π)32ωk
ωka†(~k)a(~k) (2.2.93)

~̂P = ~P =
∫

d3k

(2π)32ωk

~ka†(~k)a(~k) (2.2.94)

and Ĥ|0 >= 0 and ~̂P |0 >= 0. All conservation equations stay intact and P̂µ =
N [Pµ] still generates the space-time translations.

Following our quantization rules for free fields we must Wick or normal order
all products of field operators to make them well defined in the limit of coincident
points. (Of course we could have started in momentum space as in the introduction
then this would have been the natural order to appear!) The general definition
of N [Φ(x1) · · ·Φ(xN )] is to rearrange all creation operators to the left and all an-
nihilation operators to the right (the order among creation operators is irrelevant
since they commute and similarly for the annihilation operators). To summarize
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the free scalar field case then, we define the dynamics through the normal product
of a formal Lagrangian

L = L(Φr , ∂µΦr), (2.2.95)

with the normal ordered Lagrangian given by

L̂ = N [L]. (2.2.96)

The Euler-Lagrange equations are the same in the free field case

∂L̂
∂Φr

− ∂µ
∂L̂

∂∂µΦr
=

∂L
∂Φr

− ∂µ
∂L

∂∂µΦr
= 0 (2.2.97)

and so is the momentum
Πr ≡ ∂L

∂Φ̇r

. (2.2.98)

The canonical commutation relations are

[Πr(~x, t),Φs(~y, t)] = −iδrsδ
3(~x − ~y)

[Πr(~x, t),Πs(~y, t)] = 0 = [Φr(~x, t),Φs(~y, t)]. (2.2.99)

The Hamiltonian density becomes the normal product of the classical formal Hamil-
tonian

Ĥ = N [H] = N [ΠrΦ̇r] − L̂

H = ΠrΦ̇r −L (2.2.100)

and
Ĥ =

∫
d3xN [H]. (2.2.101)

The quantum action principle and quantum Noether’s theorem have the same
form except N-products appear on all operator products (note that operator order-
ing does not matter in a normal product since the N operator normal orders all
products)

T̂µν = N [Tµν ]

Tµν =
∂L

∂∂µΦ
∂νΦ − gµνL. (2.2.102)
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One can prove that ∂µT̂µν = 0 since Tµν and T̂µν differ by a constant (the only
change is −E0 from H) and since the operators are normal ordered T̂µν = T̂ νµ.
Further the energy-momentum operator is given by

P̂µ =
∫

d3xT̂ 0µ (2.2.103)

with
[P̂µ,Φ(x)] = −i∂µΦ(x). (2.2.104)

Similarly, the angular momentum tensor is defined by

M̂µνρ = xν T̂µρ − xρT̂µν (2.2.105)

with
∂µM̂µνρ = 0 (2.2.106)

and the angular momentum operator is

M̂µν =
∫

d3xM̂0µν (2.2.107)

with
[M̂µν ,Φ(x)] = −i(xµ∂ν − xν∂µ)Φ(x). (2.2.108)

The particle states of the system are given by the vacuum state |0 > defined as the

no particle state a(~k)|0 >= 0 with Ĥ |0 >= 0 = ~̂P|0 > . The N-particle state is
given by |~k1, · · · , ~kN >= a†(~k1) · · · a†(~kN )|0 > . The inner product is given in terms
of the one particle subspace and < 0|0 >= 1 so that

< ~k|~k′ >= (2π)32ωkδ3(~k − ~k′). (2.2.109)

Finally, we can see that the spin of the particle is zero by considering the action
of the angular momentum operator (the generator of rotations in coordinate space)
on the one particle state |~k >. Recall from the review of relativity and quantum
mechanics that [

M̂µν ,Φ(x)
]

= −i(xµ∂ν − xν∂µ)Φ(x)

≡ −MµνΦ(x). (2.2.110)
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The angular momentum operator is given by

Ji ≡
1
2
εijkM̂jk (2.2.111)

and is represented on the fields as space-time differential operators

J i ≡ 1
2
εijkMjk = i(~x × ~5)i. (2.2.112)

The operators obey the angular momentum algebra

[Ji,Jj ] = iεijkJk (2.2.113)

and ~J generates spatial rotations on the states and field as represented by the
unitary operator

Ur(~θ) = e−i~θ· ~J . (2.2.114)

Fourier transforming the field we find

[M̂ij ,Φ(x)] = −i(xi∂j − xj∂i)
∫

d3k

(2π)32ωk

[
e−ikxa(~k) + e+ikxa†(~k)

]

=
∫

d3k

(2π)32ωk
(−i)[e−ikx(kj∂i

k − ki∂j
k)a(~k)

+eikx(kj∂i
k − ki∂j

k)a†(~k)]. (2.2.115)

So for the creation operator this yields

[M̂ij , a†(~k)] = +i(ki∂j
k − kj∂i

k)a†(~k). (2.2.116)

Hence, for rotations
[Ji, a

†(~k)] = iεijlk
j∂l

ka†(~k) (2.2.117)

or in vector notation
[ ~J , a†(~k)] = −i~k × ~5ka†(~k). (2.2.118)

For a particle at rest, i.e. in the particle’s rest frame, ~k = 0. So

[ ~J , a†(0)] = 0 (2.2.119)
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and since ~J |0 >= 0
~J |~k = 0 >= 0. (2.2.120)

The angular momentum as measured in the rest frame is zero and hence the spin
is zero, therefore, in general the totat angular momentum

~J |~k >= −i~k × ~5k|~k > (2.2.121)

is just the orbital angular momentum ~L = ~r × ~p, the spin is equal to zero. Thus,
the free hermitian, scalar field Φ(x) describes a system of non-interacting, mass m,
spinless particles.

Let’s return to the equal time quantization conditions and show that our quan-
tization procedure, although it singles out time, is Lorentz invariant due to the
scalar nature of the field and the invariance of the field equations. (Although we
have chosen an equal time surface on which to specify these initial conditions, the
quantization conditions can be specified in terms of general space-like surfaces and
hence be made to appear explicitly covariant.) The fact that the field is a scalar
under restricted Poincare’ transformations implies

[Pµ,Φ(x)] = −i∂µΦ(x)

[Mµν ,Φ(x)] = −i(xµ∂ν − xν∂µ)Φ(x). (2.2.122)

Thus, finite transformations are given by the action of the unitary operator

U(a,Λ) = eiPµaµ

e−
i
2 ωµν (Λ)Mµν

(2.2.123)

and according to (2.2.122) implies

e
−i
2 ωµνMµν

Φ(x)e
i
2 ωµνMµν

= Φ(Λx)

eiPµaµ

Φ(y)e−iPµaµ

= Φ(y + a) (2.2.124)

that is
U†(a,Λ)Φ(Λx + a)U(a,Λ) = Φ(x). (2.2.125)

As we have seen the field equation leads to the momentum decomposition

Φ(x) =
∫

d3k

(2π)32ωk

[
a(~k)e−ikx + a†(~k)e+ikx

]
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= Φ+(x) + Φ−(x) (2.2.126)

which can be used to calculate the all-time commutator of Φ(x) and Φ(y)

[Φ(x),Φ(y)] =
[
Φ+(x),Φ−(y)

]
+
[
Φ−(x),Φ+(y)

]
(2.2.127)

since [a(~k), a(~l)] = 0 or [Φ+(x),Φ+(y)] = 0 = [Φ−(x),Φ−(y)]. Now

[Φ+(x),Φ−(y)] =
∫

d3k

(2π)32ωk

d3l

(2π)32ωl
e−ikxe+ily[a(~k), a†(~l )], (2.2.128)

but the creation and annihilation operator commutation relation

[a(~k), a†(~k)] = (2π)32ωkδ3(~k −~l ) (2.2.129)

may be used to obtain

[Φ+(x),Φ−(y)] =
∫

d3x

(2π)32ωk
e−ik(x−y) ≡ i4+(x − y). (2.2.130)

This function appears often and so we have given it a special symbol

i4+(x − y) ≡
∫

d3k

(2π)32ωk
e−ik(x−y). (2.2.131)

Using δ(k2 − m2) = 1
2ωk

[δ(k0 − ωk) + δ(k0 + ωk)] we have

i4+(x − y) =
∫

d4k

(2π)4
2πδ(k2 − m2)θ(k0)e−ik(x−y). (2.2.132)

Note that under restricted Poincare’ transformations this is invariant since k0 does
not change sign under such transformations and all other terms are manifestly
invariant. We also need

[Φ−(x),Φ+(y)] = −i4+(y − x) = −
∫

d3k

(2π)32ωk
e+ik(x−y)

= −
∫

d4k

(2π)4
(2π)δ(k2 − m2)θ(−k0)e−ik(x−y)

≡ +i4−(x − y). (2.2.133)
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As seen from above the function 4− is given by

4−(x − y) = −4+(y − x) (2.2.134)

and is also P↑
+ invariant. The all time field commutator is given by the sum of 4+

and 4− and is just a c-number

[Φ(x),Φ(y)] = i4+(x − y) + i4−(x − y)

= i(4+(x − y) + 4−(x − y))

≡ i4(x − y)

. (2.2.135)

Thus, 4(x − y) is restricted Poincare’ (P↑
+) invariant. This also follows directly

from Φ(x) being a scalar field and 4(x − y) being a c-number

U(a,Λ) [Φ(x),Φ(y)] U†(a,Λ) = [Φ(Λx + a),Φ(Λy + a)] = i4(Λ(x − y))

= U(a,Λ)i4(x − y)U†(a,Λ)

= i4(x − y)

.

(2.2.136)
So adding and subtracting aµ, we have

4(x − y) = 4([Λx + a] − [Λy + a]), (2.2.137)

hence 4(x − y) is P↑
+ invariant. We can now represent 4(x − y) in several ways

which will be useful later on, for instance

4(x − y) = −i

∫
d3k

(2π)32ωk

[
e−ik(x−y) − e+ik(x−y)

]

= −2
∫

d3k

(2π)32ωk
sin k(x − y)

= −2
∫

d3k

(2π)32ωk
e+i~k·(~x−~y) sinωk(x0 − y0)

. (2.2.138)

Alternately we can express 4 as an energy-momentum integral

i4(x − y) =
∫

d4k

(2π)4
2πδ(k2 − m2)e−ik(x−y)

[
θ(k0) − θ(−k0)

]
. (2.2.139)
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It satisfies the initial conditions

4(~x, 0) = 4(~0, 0) = 0 (2.2.145)

since
[Φ(~x, t),Φ(0, t)] = 0. (2.2.146)

Further
∂

∂x0
4(~x, t) = − 1

(2π)3

∫
d3k

ωk
ωke+i~k·~x cosωkt, (2.2.147)

so at time t = 0, multiplying by i, we find

∂

∂t
i4(~x, t)|t=0 =

−i

(2π)3

∫
d3ke+i~k·~x = −iδ3(~x). (2.2.148)

This is just the initial condition

i4̇(~x, 0) =
[
Φ̇(~x, t),Φ(~0, t)

]
= −iδ3(~x), (2.2.149)

and of course 4̈(~x, t)|t=0 = 0 since
[
Φ̇(~x, t), Φ̇(0, t)

]
= 0. Furthermore, we note

that since
4(x − y) = 4(Λ(x − y)), (2.2.150)

and, for any space-like separation (x − y)2 < 0, we can always find a Lorentz
transformation such that x′0 = y′0, we have

4(x − y) = 4(~x ′ − ~y ′, 0). (2.2.151)

¿From equation (2.2.146) 4(~x, 0) = 0, thus

4(x − y) = 0 for (x − y)2 < 0 (2.2.152)

and consequently
[Φ(x),Φ(y)] = 0 for (x − y)2 < 0. (2.2.153)

This space-like commutivity property is known as the principle of microcausality.
For observables depending on Φ(x), two observations performed at space-like separa-
tions cannot interfere with each other. This is a statement of relativistic invariance
since the theory of special relativity forbids signals with v > c from being sent
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where k0 = ωk is understood in the final integral.
In addition to these covariant commutators we can also evaluate the vacuum

expectation values of the fields and time ordered products of the fields. These play a
fundamental role in quantum field theory since they are related to matrix elements
of observables as we will see. First the vacuum expectation value of Φ(x)Φ(y),

< 0|Φ(x)Φ(y)|0 >, (2.2.161)

is simply related to 4+

< 0|Φ(x)Φ(y)|0 >=< 0|(Φ+(x) + Φ−(x))(Φ+(y) + Φ−(y))|0 >

=< 0|Φ+(x)Φ−(y)|0 > (2.2.162)

since Φ+|0 >= 0 and < 0|Φ− = 0. Then since Φ+(x)|0 >= 0 we can replace Φ+Φ−

with the commutator

< 0|Φ(x)Φ(y)|0 >=< 0|[Φ+(x),Φ−(y)]|0 > . (2.2.163)

Thus
< 0|Φ(x)Φ(y)|0 >= [Φ+(x),Φ−(y)]

= i4+(x − y) (2.2.164)

since < 0|0 >= 1 and the commutator is a c-number. This VEV of two fields is
called the two point Wightman function, and is denoted W (2)(x, y). In general the
n-point Wightman function is

W (n)(x1, · · · , xn) ≡< 0|Φ(x1) · · ·Φ(xn)|0 > . (2.2.165)

We can evaluate this product by using the creation and annihiltion properties of Φ.
Hence, using < 0|Φ−(x1) = 0 and Φ+(x1)|0 >= 0 and the fact that the commutator
is a c-number, we have

< 0|Φ(x1)Φ(x2) · · ·Φ(xn)|0 >

=< 0|Φ+(x1)Φ(x2) · · ·Φ(xn)|0 >=< 0|
[
Φ+(x1),Φ(x2) · · ·Φ(xn)

]
|0 >

=< 0|
[
Φ+(x1),Φ(x2)

]
Φ(x3) · · ·Φ(xn)|0 >
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+ < 0|Φ(x2)
[
Φ+(x1),Φ(x3)

]
Φ(x4) · · ·Φ(xn)|0 > + · · ·

+ < 0|Φ(x2) · · ·Φ(xi−1)
[
Φ+(x1),Φ(xi)

]
Φ(xi+1) · · ·Φ(xn)|0 > + · · ·

=
n∑

i=2

[
Φ+(x1),Φ−(xi)

]
< 0|Φ(x2) · · ·Φ(xi−1)Φ(xi+1) · · ·Φ(xn)|0 > . (2.2.166)

Thus, we have reduced W (n)(x1, · · · , xn) to 4+ times W (n−2)(xi1 , · · · , xin−2 ). Pro-
ceeding until no fields are left we find

W (n)(x1, · · · , xn) =
{∑

P W (2)(xi1 , xj1 ) · · ·W (2)(xi n
2
, xj n

2
) , n even

0 , n odd
(2.2.167)

where
∑

P is a sum over all permutations P of (1, · · · , n) into n
2 pairs (i1, j1) · · ·

(in
2
, jn

2
) with i1 < j1, · · · , in

2
< jn

2
and i1 < i2 < · · · < in

2
. For example, the 4-point

Wightman function is

W (4)(x1, x2, x3, x4) =
[
Φ+(x1),Φ−(x2)

]
< 0|Φ(x3)Φ(x4)|0 >

+
[
Φ+(x1),Φ−(x3)

]
< 0|Φ(x3)Φ(x4)|0 >

+
[
Φ+(x1),Φ−(x4)

]
< 0|Φ(x2)Φ(x3)|0 >

= W (2)(x1, x2)W (2)(x3, x4)

+ W (2)(x1, x3)W (2)(x2, x4)

+ W (2)(x1, x4)W (2)(x2, x3).

(2.2.168)

These product formulae for the Wightman functions are just special cases of
the general reduction of a product of free fields in terms of Wick or Normal products
of the free fields. The reduction formula is known as Wick’s Theorem and is given
by (here we have generalized to possibly different free fields denoted by subscript i,
Φi)
Wick’s Theorem:

Φ1(x1)Φ2(x2) · · ·Φn(xn) = N [Φ1(x1) · · ·Φn(xn)]

+
∑

1 pairing
1≤i<j≤n

< 0|Φi(xi)Φj (xj )|0 > N

[
Φ1(x1) · · ·Φn(xn)

Φi(xi)Φj (xj )

]

+
∑

2 pairings
i1<i2,i1<j1,i2<j2

< 0|Φi1(xi1 )Φj1 (xj1 )|0 >< 0|Φi2(xi2 )Φj2 (xj2 )|0 >
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The proof is as in the pure field product case, the only difference being we now no
longer have pairings between fields in the same normal product since their “internal
order” is already normal (thus we have “no self-pairings”). We only have pairings
between fields in different normal products.

Besides Wightman functions we can also evaluate the time ordered functions
for free fields, that is, the vacuum expectation value of the time ordered products
of the fields, which, as we recall, will be relevant when we consider the perturbative
expansion of the S-matrix. Recall the definition of the time ordering operator for
one and two operators

TΦ(x) = Φ(x)

TΦ(x1)Φ(x2) = θ(x0
1 − x0

2)Φ(x1)Φ(x2) + θ(x0
2 − x0

1)Φ(x2)Φ(x1), (2.2.193)

and in general
TΦ(x1) · · ·Φ(xn)

=
∑

(1,···,n)→(i1,···,in)

θ(x0
i1 − x0

i2)θ(x
0
i2 − x0

i3) · · · θ(x
0
i(n−1)

− x0
in

)Φ(xi1 ) · · ·Φ(xin ).

(2.2.194)
The vacuum expectation values of the time ordered product of operators are called
the time ordered functions, the Green functions, the τ -functions, or the n-point
functions and are denoted

G(n)(x1, · · · , xn) ≡< 0|TΦ(x1) · · ·Φ(xn)|0 > . (2.2.195)

Since G(n) is expressible in terms of Wightman functions we see that G(2n+1) = 0.
Also as with the Wightman functions, we will express the n-point function for free
fields in terms of products of the free field 2-point functions. Hence we start by
evaluating the 2-point function, also known as the Feynman propagator

< 0|TΦ(x1)Φ(x2)|0 > = θ(x0
1 − x0

2) < 0|Φ(x1)Φ(x2)|0 >

+ θ(x0
2 − x0

1) < 0|Φ(x2)Φ(x1)|0 >

= θ(x0
1 − x0

2)i4+(x1 − x2) + θ(x0
2 − x0

1)i4+(x2 − x1)

= i
[
θ(x0

1 − x0
2)4+(x1 − x2) − θ(x0

2 − x0
1)4−(x1 − x2)

]

≡ ∆F (x1 − x2).
(2.2.196)
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each chronological ordering. Thus we obtain the Wick Theorem expansion for the
time ordered product of free fields.

Similar to the product of normal products, we can derive a Wick expansion for
the chronological product of normal products

T (N [Φ1(x) · · ·Φa(x)] N [Φa+1(y) · · ·Φa+b(y)] · · ·

· · ·N [Φa+b+···+1(z) · · ·Φn(z)]) . (2.2.217)

Wick’s Theorem has just the same form as for the time ordered products of the
fields themselves except now there are no contractions between fields from the same
normal product allowed on the right hand side of the Wick expansion. Our theorem
for Green functions follows directly from Wick’s Theorem by taking the VEV of
equation (2.2.215). The VEV of all normal products on the right hand side vanish
and hence we are left with

< 0|TΦ(x1) · · ·Φ(xn)|0 >

=
{ 0 , n odd∑

P < 0|TΦ(xi1 )Φ(xj1 )|0 > · · · < 0|TΦ(xi n
2
)Φ(xj n

2
)|0 > , n even (2.2.218)

where
∑

P is a sum over all permutations P of (1, · · · , n) into n
2 pairs (i1, j1) · · ·

(in
2
, jn

2
) with i1 < j1, · · · , in

2
< jn

2
and i1 < i2 < · · · < in

2
.

Finally let’s see why these time ordered functions are called Green functions.
They are the Green functions of the Klein-Gordon equation, that is,

(
∂2

x + m2
)

< 0|TΦ(x)Φ(y)|0 >= (∂2
x + m2)∆F (x − y)

=
∫

d4k

(2π)4
(−k2 + m2)e−ik(x−y) i

k2 −m2 + iε

=
∫

d4k

(2π)4
(−i)e−ik(x−y) = −iδ4(x − y). (2.2.219)

This also follows directly from the definition of the time ordered operators and the
equal time commutation relations. Consider the time derivative of

TΦ(x)Φ(y) = θ(x0 − y0)Φ(x)Φ(y) + θ(y0 − x0)Φ(y)Φ(x),

∂x
0 TΦ(x)Φ(y) = θ(x0 − y0)Φ̇(x)Φ(y) + θ(y0 − x0)Φ(y)Φ̇(x)

+
[
∂x
0 θ(x0 − y0)

]
Φ(x)Φ(y) +

[
∂x
0 θ(y0 − x0)

]
Φ(y)Φ(x).

(2.2.220)
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For infinitesimal rotations, that is, infinitesimal α, U = 1 + iαQ and thus,

(1 − iαQ)
(

Φ1

Φ2

)
(1 + iαQ) =

(
1 α
−α 1

)(
Φ1

Φ2

)
=
(

Φ1 + αΦ2

Φ2 − αΦ1

)
. (2.2.231)

This implies
−iα [Q,Φ1] = αΦ2

−iα [Q,Φ2] = −αΦ1 (2.2.232)

or alternatively,
[Q,Φ1] = iΦ2 ≡ −iδΦ1

[Q,Φ2] = −iΦ1 ≡ −iδΦ2. (2.2.233)

We may express these relations in the notation discussed in section 2.1 on Noether’s
Theorem

[Q,Φr ] ≡ −iDrsΦs (2.2.234)

where r = s = 1, 2 and

Drs =
(

0 −1
+1 0

)
. (2.2.235)

Now we check if the Lagrangian is invariant under such rotations. It is sufficient to
consider infinitesimal rotations. So

δL = δL = −i [Q,L] (2.2.236)

and performing the variations of the Lagrangian we find (note, we have no operator
ordering problems since [δΦ1,Φ1] = 0 = [δΦ2,Φ2])

δL =
∂L
∂Φr

δΦr +
∂L

∂∂µΦr
∂µδΦr

= ∂µΦ1 (∂µδΦ1) + ∂µΦ2 (∂µδΦ2) −m2
1Φ1δΦ1 − m2

2Φ2δΦ2

= ∂µΦ1 (−∂µΦ2) + ∂µΦ2 (∂µΦ1) + m2
1Φ1Φ2 − m2

2Φ2Φ1

=
(
m2

1 − m2
2

)
Φ1Φ2.

(2.2.237)

If the masses of the particles are equal, m1 = m2 ≡ m, then δL = 0 and internal
rotational symmetry is a good symmetry of the system. By Noether’s theorem we
have a conserved current

Jµ ≡ ∂L
∂∂µΦ1

δΦ1 +
∂L

∂∂µΦ2
δΦ2

= ∂µΦ1 (−Φ2) + ∂µΦ2 (Φ1)

= Φ1

↔
∂µ Φ2.

(2.2.238)
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(Again note that Ĵµ = N [Jµ] = Jµ since Φ1 and Φ2 commute.) Let’s check
explicitly that this current is conserved

∂µJµ = −
(
∂2Φ1

)
Φ2 + Φ1∂

2Φ2 (2.2.239)

where the cross terms cancel. However, each field obeys the Klein-Gordon equation

∂L
∂Φr

− ∂µ
∂L

∂∂µΦr
= 0 = −

(
∂2 + m2

r

)
Φr (2.2.240)

where r=1,2. Thus,
∂µJµ = m2

1Φ1Φ2 − m2
2Φ1Φ2

=
(
m2

1 − m2
2

)
Φ1Φ2

(2.2.241)

and
δL = ∂µJµ (2.2.242)

as Noether’s Theorem required. Hence for equal masses, m1 = m2 = m, we have
an invariant Lagrangian and a conserved current

δL = 0

∂µJµ = 0. (2.2.243)

The charge Q is given by Noether’s Theorem accordingly

Q =
∫

d3xJ0

=
∫

d3x [Φ1Π2 − Φ2Π1]
(2.2.244)

which is independent of time, that is, Q̇ = 0. So we check using the ETCR that
this is indeed Q

[Q,Φ1] =
∫

d3y [−Φ2Π1,Φ1]

= i

∫
d3yδ3(x − y)Φ2

= iΦ2

[Q,Φ2] =
∫

d3y [Φ1Π2,Φ2]

= −iΦ1.

(2.2.245)
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The group multiplication law that U(α) obeys is

U(α1)U(α2) = eiα1Qeiα2Q

= ei(α1+α2)Q

= U(α1 + α2).

(2.2.246)

This is just the product law for the Abelian group O(2) or more generally called
U(1), the Abelian group of phase transformations. To make this explicit consider
defining the non-hermitian (that is, complex) fields Φ and Φ† in terms of the two
real fields in the following manner

Φ ≡ 1√
2

(Φ1 − iΦ2)

Φ† ≡ 1√
2

(Φ1 + iΦ2) .

(2.2.247)

Under these O(2) or U(1) rotations we find

[Q,Φ] =
1√
2

([Q,Φ1] − i [Q,Φ2])

=
1√
2

(iΦ2 − i (−i)Φ1)

=
−1√

2
(Φ1 − iΦ2)

[Q,Φ] = −Φ, (2.2.248)

and similarly [
Q,Φ†] = +Φ†. (2.2.249)

So calculating the multiple commutators trivially, we have for finite phase transfor-
mations

U†(α)ΦU(α) = e−iαQΦeiαQ = eiαΦ (2.2.250)

and
U†(α)Φ†U(α) = e−iαΦ†. (2.2.251)

The O(2) rotation transformation of the real fields is just the U(1) phase symmetry
transformation for the complex fields. Futhermore, all the quantities we have can
be rewritten in terms of Φ and Φ† since

Φ1 =
1√
2

(
Φ + Φ†) (2.2.252)
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and
Φ2 =

i√
2

(
Φ − Φ†) . (2.2.253)

Hence,
L̂ = N [L]

L = ∂µΦ†∂µΦ −m2Φ†Φ (2.2.254)

where the factors of 1
2 disappear and as expected Φ → e+iαΦ ; Φ† → e−iαΦ† is a

symmetry of this Langrangian.
The Euler-Lagrange equations and commutation relations can now be formu-

lated in terms of Φ and Φ†. We obtain the results directly by treating Φ and Φ† as
independent fields

∂L
∂Φ† − ∂µ

∂L
∂∂µΦ† = 0 = −

(
∂2 + m2

)
Φ

∂L
∂Φ

− ∂µ
∂L

∂∂µΦ
= 0 = −

(
∂2 + m2

)
Φ†. (2.2.255)

The canonical momenta for the complex fields are Π and Π†. So

Π ≡ ∂L
∂Φ̇

= Φ̇†

Π† ≡ ∂L
∂Φ̇†

= Φ̇. (2.2.256)

and the equal time commutation relations become
[
Φ̇†(~x, t),Φ(~y, t)

]
= −iδ3(~x − ~y) (2.2.257)

or conjugating [
Φ̇(~x, t),Φ†(~y, t)

]
= −iδ3(~x − ~y) (2.2.258)

while
[Φ(~x, t),Φ(~y, t)] = 0
[
Φ(~x, t),Φ†(~y, t)

]
= 0

[
Φ̇(~x, t), Φ̇(~y, t)

]
= 0
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[
Φ̇(~x, t), Φ̇†(~y, t)

]
= 0. (2.2.259)

In addition, we have the current and associated charge in terms of the complex
fields

Jµ = iN

[
Φ†

↔
∂µ Φ

]

Q = i

∫
d3xN

[
Φ†Π† − ΠΦ

]
. (2.2.260)

To further physically interpret this complex scalar field let’s Fourier transform
to momentum space. As previously derived we have the momentum decomposition
for the two Hermitian fields

Φ1(x) =
∫

d3k

(2π)32ωk

[
a1(~k)e−ikx + a†

1(~k)e+ikx
]

(2.2.261)

and

Φ2(x) =
∫

d3k

(2π)32ωk

[
a2(~k)e−ikx + a†

2(~k)e+ikx
]
. (2.2.262)

The operator a†
r(~k) creates particles of type r with momentum ~k, mass m, spin zero

and energy ωk. Since [H,Q] = 0, the Q eigenvalues will also label the states. As a
consequence of the fact that Φ and Φ† diagonalize the “rotation matrix”, the states
created by them will have a definite charge, that is

Φ =
1√
2

(Φ1 − iΦ2)

=
∫

d3k

(2π)32ωk

[
1√
2

(
a1(~k) − ia2(~k)

)
e−ikx +

1√
2

(
a†
1(~k) − ia†

2(~k)
)

e+ikx

]

(2.2.263)
where the complex creation and annihilation operators are given by

a(~k) ≡ 1√
2

[
a1(~k) − ia2(~k)

]

b†(~k) ≡ 1√
2

[
a†
1(~k) − ia†

2(~k)
]
. (2.2.264)

Note that a†(~k) and b†(~k) are independent, that is,

a†(~k) =
1√
2

[
a†
1(~k) + ia†

2(~k)
]
6= b†(~k). (2.2.265)
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So we have the momentum decomposition of the complex fields

Φ(x) =
∫

d3k

(2π)32ωk

[
a(~k)e−ikx + b†(~k)e+ikx

]
(2.2.266)

and

Φ†(x) =
∫

d3k

(2π)32ωk

[
b(~k)e−ikx + a†(~k)e+ikx

]
. (2.2.267)

Hence, by inverting our Fourier transform we have

a(~k) = i

∫
d3x[eikx

↔
∂0 Φ(x)]

a†(~k) = i

∫
d3x[Φ†(x)

↔
∂0 e−ikx]

b(~k) = i

∫
d3x[eikx

↔
∂0 Φ†(x)]

b†(~k) = i

∫
d3x[Φ(x)

↔
∂0 e−ikx]. (2.2.268)

The CCR for a and b follow as usual from the Φ and Π ETCR
[
a(~k), a†(~l )

]
= (2π)32ωkδ3(~x −~l )

[
b(~k), b†(~l )

]
= (2π)32ωkδ3(~x −~l ) (2.2.269)

all other commutators vanish. As before

Ĥ =
∫

d3k

(2π)32ωk
ωk

[
a†(~k)a(~k) + b†(~k)b(~k)

]

~P =
∫

d3k

(2π)32ωk

~k
[
a†(~k)a(~k) + b†(~k)b(~k)

]
(2.2.270)

and

Q =
∫

d3k

(2π)32ωk

[
a†(~k)a(~k) − b†(~k)b(~k)

]
. (2.2.271)

Thus, we again have two types of particles “a” and “b” type. In addition note that
[
Q, a(~k)

]
= −a(~k)
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[
Q, a†(~k)

]
= +a†(~k)

[
Q, b(~k)

]
= +b(~k)

[
Q, b†(~k)

]
= −b†(~k). (2.2.272)

Since [Pµ, Q] = 0 we label the one particle states with ~k, m2, and the eigenvalues
of Q which are ±1 on this subspace. So the Hilbert space of states is built up from
the vacuum state, |0 >, which is defined as the no particle state, a(~k)|0 >= 0 and
b(~k)|0 >= 0. As a result, Ĥ |0 >= ~P|0 >= Q|0 >= 0. The one particle states are
constructed by

|~k,+ >≡ a†(~k)|0 >

|~k,− >≡ b†(~k)|0 > . (2.2.273)

So using the charge commutation relations
[
Q, a(~k)

]
= −a(~k), etc., we find

Q|~k,+ > = Qa†(~k)|0 >=
[
Q, a†(~k)

]
|0 >

= +a†(~k)|0 >= +|k,+ >
(2.2.274)

and similarly Q|~k,− >= −|~k,− >. Thus, “a” particles have a U(1) charge of +1
unit and “b” particles have a unit of negative charge, −1. This could be electric
charge or hypercharge.

As we have done previously we can introduce a positively charged particle
number operator

N+ ≡
∫

d3k

(2π)32ωk
a†(~k)a(~k) (2.2.275)

and a negatively charged particle number operator

N− ≡
∫

d3k

(2π)32ωk
b†(~k)b(~k). (2.2.276)

The total number operator is given by N∞ = N+ + N− while the charge operator
is Q = N+ − N−. Thus, the many particle state is

|n+, n− > ≡ |(~k1,+); (~k2,+); · · · ; (~kn+ ,+); (~l1,−); (~l2,−); · · · ; (~ln− ,−) >

= a†(~k1) · · · a†(~kn+)b†(~l1) · · · b†(~ln−)|0 >
(2.2.277)
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and as usual

Ĥ|n+, n− >=




n+∑

i=1

ωki +
n−∑

j=1

ωlj


 |n+, n− >

~P|n+, n− >=




n+∑

i=1

~ki +
n−∑

j=1

~lj


 |n+, n− >

Q|n+, n− >= (n+ − n−) |n+, n− >

N∞|n+, n− >= (n+ + n−) |n+, n− > . (2.2.278)

The particles are identical except for their charge. This pairing of oppositely charged
particles has a deep reason associated with CPT invariance and the “a” and “b”
particles are called particle and antiparticle (which is which is convention).

Finally, the CCR imply the (all time) covariant commutation relations

[Φ(x),Φ(y)] = 0 (2.2.279)

and [
Φ(x),Φ†(y)

]
= i∆(x − y). (2.2.280)

Furthermore,
< 0|Φ(x)Φ†(y)|0 >= i∆+(x − y) (2.2.281)

and
< 0|TΦ(x)Φ†(y)|0 >= i∆F (x − y) (2.2.282)

while
< 0|TΦ(x)Φ(y)|0 >=< 0|TΦ†(x)Φ†(y)|0 >= 0. (2.2.283)

Wick’s theorem has an analogous form to that previously obtained. We are now
ready to consider particles with spin 1

2 .
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