
§1.3 REVIEW OF QUANTUM MECHANICS

In quantum mechanics the measurements of the physical properties of a sys-
tem (the observables) are represented by self-adjoint linear operators which will
be denoted by A. The eigenvalues {a} of A are the possible results of the mea-
surement of A in the various states of the system. Hence, each eigenvalue of A
characterizes a state of the system called the eigenstate. We assume that if A is
an observable then its eigenvalues completely characterize the states of the sys-
tem. That is the states of the system,which we denote by Ψ, are represented by
vectors in Hilbert space denoted |ψ >. The eigenvectors of A, labeled by their
associated eigenvalue and denoted by |a >, form a complete set in Hilbert space.
Thus, A|a >= a|a > and each |ψ >∈ H can be expanded as

|ψ >=
∑

a

< a|ψ > |a >=
∑

a

ψ(a)|a > (1.3.1)

with ψ(a) =< a|ψ > the wavefunction, which is the inner product of |ψ > with
|a >. The same comments apply to the case where we have a set of measurements
A1, A2, ......An that can be precisely made simultaneously (in any order). Then the
set of eigenvalues {a1, a2, ......an} of {A1, A2, .....An} completely characterizes the
possible states of the system. More specifically if several operators commute they
can be simultaneously diagonalized and hence, measured precisely; there exists
simultaneous eigenvectors |a1, a2, ....., an > for these A1, A2, ....., An operators.
Since these measurements contain the totality of physical information about the
system, the states |a1, a2, ....., an > form a basis for the Hilbert space of states of
the system.

For every system it is assumed that there exists a complete set of commuting
observables A1, A2, .....An whose eigenvectors |a1, a2, ....., an > form a basis of the
Hilbert space, that is, they are complete. Hence, any state may be written as a
unique superposition of these states

|ψ >=
∑

a1,...,an

ψ(a1, ...., an)|a1, ...., an > (1.3.2)

where the wavefunction ψ(a1, a2, ..., an) =< a1, a2, ..., an|ψ >. Since the states
belonging to different eigenvalues are orthogonal (suppose they are normalized to
unity)

< a1, ..., an|a′1, ..., a′n >= δa1a′
1
· · · δana′

n
. (1.3.3)
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The probability that a system in the state Ψ described by the vector |ψ > is
observed in the state Φ desribed by the vector |φ > is

| < φ|ψ > |2 (1.3.4)

and is called the transition probability. Since the state vector

|ψ̂ >= eiα|ψ >, α ∈ R, (1.3.5)

has the same probability to be observed in state Φ as the vector |ψ >

| < φ|ψ̂ > |2 = | < φ|ψ > |2, (1.3.6)

they are equivalent representatives of the state Ψ of the system. Thus, unit rays
in Hilbert space are in one-to-one correspondence with the states of the system
(the set of vectors differing by a phase is called a unit ray). Any choice of a vector
|ψ > from the unit ray is an equivalent representative of the state Ψ, there is no
measurable effect for different choices. We can choose this phase for convenience.

Symmetry transformations set up a one-to-one correspondence between the
states of a system Ψ ↔ Ψ′ such that all transition probabilities are preserved

| < φ′|ψ′ > |2 = | < φ|ψ > |2. (1.3.7)

For instance, from the Schrödinger or active view of relativistic transformations,
the Poincare’ group element g = (a,Λ) describes the difference between the posi-
tion, velocity, and spatial orientation of two identical systems. Then each physical
state Ψ corresponds to a transformed state Ψg. Ψg differs from Ψ by the location
of the system and its measuring apparati; that is, depending on g, the state Ψg is
prepared with the laboratory equipment translated, rotated, and boosted relative
to the initial position in which the state Ψ was prepared. Thus, g sets up a one-
to-one correspondence between the unit rays in Hilbert space. So the Poincare’
transformations can be viewed as leaving the Hilbert space of states invariant.
Each vector is mapped into another vector of the space.

Further, the transition probability to go from Φg → Ψg describes the exper-
iment for measuring the transition probability to go from Φ → Ψ but with the
laboratory equipment translated, rotated, and boosted according to g = (a,Λ).
This correspondence of states describes a Poincare’ symmetry transformation if
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the transition probability for Φ → Ψ is the same as the transition probability for
Φg → Ψg, that is

| < φ|ψ > |2 = | < φg|ψg > |2. (1.3.8)

The fact that symmetry transformations can be represented by a unique (up
to a phase) unitary or antiunitary operator on the state vectors has been proven
by Wigner . The theorem is stated here without proof.

Theorem 1. Wigner’s Theorem.

If the one-to-one symmetry transformation Ψ ↔ Ψ′ mapping unit rays into
unit rays in the Hilbert space H preserves transition probabilities

| < φ′|ψ′ > |2 = | < φ|ψ > |2, (1.3.9)

then there exists a unitary or antiunitary operator U, unique up to a phase, such
that

|ψ′ >= U |ψ > . (1.3.10)

(If U is unitary with |ψ′ >= U |ψ > then < φ′|ψ′ >=< φ|ψ >,if V is antiunitary
with |ψ′ >= U |ψ > then < φ′|ψ′ >= < φ|ψ > =< ψ|φ >. In both cases | <
φ′|ψ′ > |2 = | < φ|ψ > |2.) The expectation values for an observable A should
remain unchanged

< ψ|A|ψ > =
∑

a,b

< ψ|a >< a|A|b >< b|ψ >

=
∑

a

| < ψ|a > |2 < a|A|a >

=
∑

a

a | < ψ|a > |2

(1.3.11)

by the symmetry operation and that we are summing over all eigenvalues, we have

< ψ|A|ψ > =
∑

a

a | < ψ′|a > |2

=< ψ′|A′|ψ′ >=< ψ|U−1A′U |ψ >

(1.3.12)

so that A′ = UAU−1.
One of the most important symmetry operations on our system will be that

corresponding to relativistic invariance. As seen above that means that transition
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probabilities should be unchanged under the action of the Poincare’ group. Before
discusssing the representations of the Lorentz and Poincare’ groups let’s return to
Wigner’s theorem to show that we can always choose a unitary operator on our
Hilbert space of states to represent the action of a Poincare’ transformation. For
the relativistic transformation (a,Λ) each state Ψ of our system is transformed
into another state Ψ(a,Λ) of our system (active or Schrödinger interpretation).
The observables are described the same in each frame they are just translated
or rotated from their previous location. Hence, in each frame the measuring
apparatus yields the same set of possible states for the system, the totality of
eigenvalues is unchanged. That is, the Poincare’ transformation (a,Λ) generates
a one-to-one correspondence of unit rays in the Hilbert space of states. The
transition probability to go from state Ψ to Φ is the same as that measured to go
from Ψ(a,Λ) to Φ(a,Λ) if this correspondence is to be a symmetry transformation.
Consequently, we require that

| < φ(a,Λ)|ψ(a,Λ) > |2 = | < φ|ψ > |2 (1.3.13)

for any state vectors representing the states of our system. By Wigner’s theorem
the correspondence of states under our symmetry transformation is realized by a
unique unitary or antiunitary operator (up to a phase) taking one state vector
into another, that is, corresponding to (a,Λ) we have the operator U(a,Λ) such
that

|ψ >→ |ψ(a,Λ) >= U(a,Λ)|ψ > . (1.3.14)

Since the transformation of reference frame is a macroscopic process as well, we
further assume that the transition probabilities depend continuously on the trans-
formation parameters;

| < φ|ψ(a,Λ) > |2 = | < ψ|U(a,Λ)|ψ > |2 (1.3.15)

is a continuous function of (a,Λ). Hence, the matrix elements of U(a, Λ) are
continuous functions of the parameters. Since P↑

+ contains the identity we can
show that the operator U(a, Λ) representing its transformations is unitary. In
general, consider two successive Poincare’ transformations (a1,Λ1)(a2,Λ2)

|ψ(a1,Λ1)(a2,Λ2) >= U(a1,Λ1)U(a2,Λ2)|ψ >, (1.3.16)
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equivalently we must be able to reach the same frame directly by one Poincare’
transformation

(a,Λ) = (a1,Λ1)(a2,Λ2) = (a1 + Λ1a2,Λ1Λ2). (1.3.17)

Since it is a unit ray that represents a state in the Hilbert space, |ψ(a,Λ) > and
ω|ψ(a,Λ) > , where ω is a phase (i.e. |ω| = 1), are equivalent descriptions of the
same state. Thus, we have according to Wigner’s theorem

U(a,Λ)|ψ >= |ψ(a,Λ) >= ω(a1,Λ1; a2,Λ2)U(a1,Λ1)U(a2,Λ2)|ψ > (1.3.18)

where the phase ω(1, 2) depends on our choice of representations U(a,Λ). So we
find the multiplication law for representations is the same as the group up to a
phase, for (a,Λ) = (a1,Λ1)(a2,Λ2)

U(a,Λ) = ω(1, 2)U(a1,Λ1)U(a2,Λ2). (1.3.19)

Now every translation or restricted Lorentz transformation can be written as a
square; (a,Λ) = (a1,Λ1)(a1,Λ1) so that

U(a,Λ) = ω(1, 1)U(a1,Λ1)2. (1.3.20)

Since the square of a unitary or antiunitary operator is unitary

U2(c|ψ1 > +|ψ2 >) = cU2|ψ > +U2|ψ2 >

< U2φ|U2ψ >=< φ|ψ > (1.3.21)

every restricted Poincare’ transformation can be represented by a unitary opera-
tor. Note also that since P↑

+ contains the identity and is connected, similarly, by
the continuity assumption, each representation of an element of P↑

+ can be built
up from infinitesimal representations starting from the identity U(0,1) = 1.

Further, the unitary operator may be multiplied by a phase

U ′(a,Λ) = eiαU(a,Λ)

without changing the physical meaning of the transformation. Hence, the phase
ω in the multiplication law is replaced with

ω′(1, 2) = ei[α(1)+α(2)−α(a,Λ)]ω(1, 2). (1.3.22)

Now α(a,Λ) can always be chosen so that ω′ = ±1 for P↑
+. Further it can

be shown that if we represent ISL(2,C) transformations by unitary operators,
(a, S) → U(a, S), then since the parameter space is simply connected α can be
chosen so that ω′ = +1. To summarize we quote another theorem of Wigner:
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Theorem 2. The Quantum Mechanical Poincare’ Group.

Every continuous unitary representation up to a phase of P↑
+ can be brought,

by an appropriate choice of phase factor, into the form of a continuous repre-
sentation (a,S)→ U(a,S) of the inhomogeneous SL(2,C). The multiplication law
becoming

U(a, S) = U(a1, S1)U(a2, S2) (1.3.23)

for
(a, S) = (a1 + S1a2S

†
1, S1S2). (1.3.24)

Recall that the inhomogeneous SL(2,C) transformations are defined by

6 x′ = S 6 xS†+ 6 a (1.3.25)

where 6 a is a two-by-two Hermitian matrix corresponding to the space-time trans-
lation by the four vector aµ. It is understood that the SL(2,C) transformations
are performed before the translation. So

6 x2 = S2 6 xS†
2+ 6 a2 (1.3.26)

and
6 x1 = S1 6 x2S

†
1+ 6 a1

= S1S2 6 xS†
2S

†
1+ 6 a1 + S1 6 a2S

†
1

= S1S2 6 x(S1S2)†+ 6 a1 + S1 6 a2S
†
1

≡ S 6 xS†+ 6 a

. (1.3.27)

Hence, (a, S) = (a1, S1)(a2, S2) = (a1 + S1a2S
†
2, S1S2) gives the composition law

for ISL(2,C).
Finally, let’s just point out that if we have an operator, perhaps depending on

space-time, A(x), an observer in another frame describes the operator in the same
way, it is only translated or rotated as compared to the original frame. That is, an
observer S′ uses A(x′) to study states Ψ′ while an observer S uses A(x) to study
states Ψ. Since the theory is to be relativistically invariant the corresponding
matrix elements, the experimental observations, should transform covariantly like
a tensor or a spinor, hence,

< φ(a,S)|A(α)(x′)|ψ(a,s) >= D
(α)

(β)(S) < φ|A(β)(x)|ψ > (1.3.28)
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where x′µ = Λµ
ν(S)xν + aµ and |ψ(a,S) >= U(a, S)|ψ > so that

U−1(a, S)A(α)(x′)U(a, S) = D
(α)

(β)(S)A(β)(x) (1.3.29)

is the corresponding transformation law for operators; in particular our field op-
erators will transform thusly. Note that < φ(a,S)|A(α)(x′)|ψ(a,S) > is like the
classical field ϕ′(α)(x′) transforming as

ϕ′(α)(x′) = D
(α)

(β)(S)ϕ(β)(x). (1.3.30)

Thus quantum mechanical operators transform as

U(a, S)A(α)(x)U−1(a, S) = D
−1(α)

(β)(S)A(β)(x′). (1.3.31)

We are now ready to study the quantum mechanical representations of the
inhomogeneous SL(2,C). Since U(a,S) is unitary we can always write it as the
exponential map. In addition, we have that

U(a, S) = U(a,1)U(0, S)

where
U(a,1) ≡ eiaµPµ

U(0, S) ≡ e
−i
2 ωµν(S)Mµν

(1.3.32)

where the Hermitian (since U is unitary) operators are Pµ the space-time trans-
lation generators identified with the energy and momentum operators and Mµν

are the Lorentz transformation (rotation) generators identified with the angular
momentum operators. aµ is just the translation vector aµ = 1

2Tr[ 6 aσ̄
µ] while

ωµν(S) are just the angles of rotation in the xµ − xν plane parameterizing the
finite SL(2,C) transformation S, that is

S = e−
i
4 ωµν(S)σµν

, (1.3.33)

this is related to Λµν by equation (1.2.122) with

Λµν = Λµν(S) =
1
2
Tr

[
SσνS†σ̄µ

]
. (1.3.34)
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For infinitesimal transformations

x′µ = xµ + εµ + ωµ
νx

ν , (1.3.35)

with εµ and ωµν infinitesimal parameters, we can expand the unitary operators
to first order

U(a, S) = 1 + iεµPµ − i

2
ωµνMµν (1.3.36)

where now ωµν(S) = ωµν , the infinitesimal rotation angles. Recall that since

gµν = (gαµ + ωαµ)gαβ(gβν + ωβν)

= gνµ + ωνµ + ωµν

, (1.3.37)

we find ωµν = −ωνµ is antisymmetric and hence so is the generatorMµν = −Mµν.
To make more explicit the identification of Mµν with rotations consider the

transformation U = 1 − iω12M12 describing the change in the state vector. The
corresponding infinitesimal coordinate change is

x′0 = x0

x′1 = x1 − ω12x2

x′2 = x2 + w12x1

x′2 = x3. (1.3.38)

This is a rotation in the x1−x2 plane. Hence, −iMij is the generator of rotations
in the xi − xj plane for the state vectors and corresponds to the total angular
momentum operator

J i ≡ 1
2
εijkMjk = (M23,M31,M12). (1.3.39)

For an infinitesimal Lorentz boost along the x1 direction

x′0 = x0 − x1ω01

x′1 = x1 − x0ω01

x′2 = x2
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x′3 = x3, (1.3.40)

the state vector is transformed by

U = 1 − iω01M01. (1.3.41)

Hence, −iM0i generates Lorentz boosts along the ith axis for the state vectors.
We write Ki for the three-vector Ki ≡ M0i.

Since Pµ,Mµν are the genrators of the Poincare’ or SL(2,C) group they
obey commutation relations which characterize their group multiplication law (the
commutation relations for P↑

+ and SL(2,C) generators are the same)

U(a1, S1)U(a2, S2) = U(a1 + S1a2S
†
1, S1S2)

U(a, S)−1 = U(−S−1aS−1†, S−1). (1.3.42)

Using the above laws we find

U(a1, 1)U(a2, 1) = U(a1 + a2, 1) (1.3.43)

which implies [Pµ,Pν] = 0 . Further, we have

U(0, S−1)U(a, 1)U(0, S) = U(S−1aS−1†, 1) (1.3.44)

that is
U(0, S−1)eiaµPµ

U(0, S) = e(Λ
−1(S)a)µPµ

. (1.3.45)

For infinitesimal aµ this yields

U−1(0, S)aµPµU(0, S) = Λ−1ν
µ (S)aνPµ (1.3.46)

or
e

i
2 ωµν(S)Mµν

aλPλe
−i
2 ωµν(S)Mµν

= Λ−1ν
µ (S)aνPµ. (1.3.47)

For infinitesimal S we have

aλPλ + aλ
i

2
ωµν [Mµν,Pλ] = (δ ν

µ − ω ν
µ )aνPµ

= aλPλ − aλ

2
(ωµλ − ωλµ)Pµ

. (1.3.48)
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Thus we obtain the commutator

[Mµν ,Pλ] = i[gλνPµ − gλµPν]. (1.3.49)

Finally we obtain the angular momentum commutation relations by consid-
ering the infinitesimal S’ transformations

U(0, S−1)U(0, S′)U(0, S) = U(0, S−1S′S) (1.3.50)

or
e

i
2 ωµν(S)Mµν

e
−i
2 ω′

ρλMρλ

e
−i
2 ωαβ(S)Mαβ

= e
−i
2 ωµν(S−1S′S)Mµν

. (1.3.51)

Now the parameter describing the product of Lorentz transformations S−1S′S is
found by considering the action of the three successive transformations on xµ .
First we transform to

xµ
1 = Λµν(S)xν , (1.3.52)

then to
xα

2 = Λαβ(S′)Λβν(S)xν , (1.3.53)

and finally back by
xµ

3 = Λ−1µα(S)Λαβ(S′)Λβν(S)xν . (1.3.54)

For S’ infinitesimal we have

Λαβ(S′) = gαβ + ω′
αβ (1.3.55)

so
xµ

3 = Λ−1µα(S)gαβΛβν(S)xν + Λ−1µα(S)ω′
αβΛβν(S)xν

= (gµν + Λ−1µα(S)ω′
αβΛβν(S))xν

. (1.3.56)

Hence, we have that

ωµν(S−1S′S) = Λ−1
µα(S)ω′αβΛβν(S) (1.3.57)

and thus,
U(0, S−1)MµνU(0, S) = Λ−1αµ(S)Λνβ(S)Mαβ

= Λµα(S)Λνβ(S)Mαβ

. (1.3.58)
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Taking S to be infinitesimal also, we find

ωρλ
i

2
[Mρλ,Mµν ] = (ωµαgνβ + gµαωνβ)Mαβ

=
1
2
ωρλ[gρµgλαgνβ − gλµgραgνβ + gµαgρνgλβ

− gµαgλνgρβ]Mαβ

=
1
2
ωρλ[gρµMλν − gλµMρν + gρνMµλ − gλνMµρ].

(1.3.59)

We finally secure the angular momentum commutation relations

[Mµν,Mρλ] = i(gµλMνρ − gµρMνλ + gνρMµλ − gνλMµρ). (1.3.60)

As before with the space-time differential operators we define

J i ≡ 1
2
εijkMjk

Ki ≡ M0i (1.3.61)

and see that they obey the algebra

[Ji,Jj ] = +iεijkJk

[Ki,Kj ] = −iεijkJk

[Ji,Kj ] = +iεijkKk. (1.3.62)

Hence ~J are the angular momentum operators, ~K the boost operators and Pµ the
translation operators.

In particular let’s consider the action of the space-time translations further.
In the Heisenberg representation the states are independent of time while the
operators depend on time. Thus the time evolution of our operators is determined
by the action of P 0. Recall Poincare’ invariance implies equation (1.3.28)

< φ(a,S)|A(α)(x′)|ψ(a,S) >= D
(α)

(β)(S) < φ|A(β)(x)|ψ > (1.3.63)

or equation (1.3.31)

U(a, S)A(α)(x)U−1(a, S) = D
−1(α)

(β)(S)A(β)(x′). (1.3.64)
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For 6 x′ =6 x+ 6 a we find

eiaµPµ

A(α)(x)e−iaµPµ

= A(α)(x + a). (1.3.65)

For aµ infinitesimal we expand the exponentials and Taylor expand the operator

(1 + iaµPµ)A(α)(x)(1 − iaµPµ) = A(α)(x) + aµ∂µA
(α)(x), (1.3.66)

which implies
iaµ[Pµ, A(α)(x)] = aµ∂µA

(α)(x). (1.3.67)

Thus for the translation operator we find

[Pµ, A(α)(x)] = −i∂µA(α)(x) = −PµA(α)(x) (1.3.68)

with Pµ given by equation (1.2.52). In particular

[P0, A(α)(x)] = −i∂0A(α)(x). (1.3.69)

Calling P 0 = H ,the Hamiltonian operator, we find the Heisenberg equations of
motion for operators in the Heisenberg representation

[H,A(α)(x)] = −i ∂
∂t
A(α)(x). (1.3.70)

Thus, the quantum mechanical law of dynamics is contained in the representation
of the Poincare’ group.

We have been considering the Heisenberg representation in which the states
are independent of time while the field operators depend on time. Since we are
working with fields that depend on space as well, this approach can be cast into a
relativistically covariant form more readily than if we worked in the Schrödinger
representation in which the states depend on time and the field operators depend
on the spatial coordinates only. Even so, it is sometimes useful to work in the
Schrödinger as well as other representations. When the states depend on time,
|ψ(t) >S we have that (the subscipt S denotes the Schrödinger picture and the
subscript H denotes the Heisenberg picture)

|ψ(t − ε) >S= U(ε, 1)|ψ(t) >S= eiεP0
|ψ(t) >S= |ψ(t) >S +iεH|ψ(t) >S
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= |ψ(t) >S −ε ∂
∂t

|ψ(t) >S . (1.3.71)

This implies

+i
∂

∂t
|ψ(t) >S= H|ψ(t) >S , (1.3.72)

the Schrödinger equation. Now the operators are independent of time and we
denote that they are in the Schrödinger representation by a superscript S, so

AS = AS(~x) (1.3.73)

only depending on ~x with dAS

dt = 0. The time translation operator U(aµ =
(t0 − t, 0, 0, 0),1) relates the states at time t to the states at time t0, that is the
time evolution operator, denoted U(t, t0), solves the Schrödinger equation

U(t, t0) ≡ U(t0 − t, 1) (1.3.74)

and
|ψ(t) >S= U(t, t0)|ψ(t0) >S

= e−iH(t−t0)|ψ(t0) >S . (1.3.75)

The time translation operator U(t, t0) also allows us to relate the Heisenberg and
Schrödinger picture operators and states

|ψ(t0) >H= U†(t, t0)|ψ(t) >S . (1.3.76)

Conventionally t0 = 0 so |ψ(0) >S= |ψ >H and U(t, 0) ≡ U(t) so that

|ψ(t) >S= U(t)|ψ >H , (1.3.77)

and the Heisenberg picture state vectors are independent of time d
dt |ψ >H= 0.

Again matrix elements are invariant so we find

S < φ(t)|AS(~x)|ψ(t) >S

=H< φ|U†(t)AS (~x)U(t)|ψ >H

≡H< φ|AH(~x, t)|ψ >H . (1.3.78)
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Hence, the operators in each picture are related by

AH(~x, t) = U†(t)AS (~x, 0)U(t) (1.3.79)

and thus, the Schrödinger representation operators are equal to the Heisenberg
representation operators at t = 0. ¿From this we see that the Hamiltonian is the
same in both representations

HH = U†(t)HSU(t) (1.3.80)

but
[H,U(t)] = 0 (1.3.81)

so
HH = HS = H. (1.3.82)

Further the time evolution of the Heisenberg picture operators is governed by the
Heisenberg equations of motion

−i ∂
∂t
AH(t) = [H,AH(t)], (1.3.83)

obtained by differentiating equation (1.3.79). Also recall that the canonical com-
mutation relations (CCR) between generalized momentum, Pi, and coordinate,
Qi, operators in the Schrödinger representation are

[PS
i , Q

S
j ] = −ih̄δij . (1.3.84)

Operating on the left by U†(t) and on the right by U(t) we obtain

e+iHt[PS
i , Q

S
j ]e−iHt = [PH

i (t), QH
j (t)]

= −ih̄δij . (1.3.85)

The CCR become equal time commutation relations (ETCR) in the Heisenberg
representation

δ(t− t′)[PH
i (t), QH

j (t′)] = −ih̄δijδ(t− t′). (1.3.86)

Besides the Schrödinger and the Heisenberg representations the interaction
representation introduced by Dirac will be useful in developing a perturbation
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theory for the time evolution operator. In order to introduce this representation
the Hamiltonian is first split into a sum of a free or noninteracting term, H0, and
an interacting term, HI , H = H0 +HI , true in any representation. In particular
in the Schrödinger representation we have

H = HS
0 +HS

I . (1.3.87)

In the interaction picture the state vectors are to evolve in time as Schrödinger
picture states with HiP

I as the Hamiltonian while the operators are to evolve in
time as in the Heisenberg representation with HiP

0 as the Hamiltonian as if they
were free fields. Note that if the interaction were turned off there is no scattering
and the interaction representation becomes the Heisenberg representation with the
states and operators evolving as free quantities. In the interaction representation
then the state vectors have only the time dependence due to scattering. The
interaction representation state vectors will be obtained by removing the HiP

0

time dependence from the Schrödinger representation state vectors. Consider

|ψ(t) >iP≡ U†
0 (t, t0)|ψ(t) >S (1.3.88)

where
U0(t, t0) = e−iHS

0 (t−t0) (1.3.89)

and again conventionally t0 = 0 and

U0(t) ≡ U0(t, 0). (1.3.90)

Furthermore, we define the interaction picture operators so as to leave matrix
elements invariant

S < φ(t)|AS |ψ(t) >S=iP< φ(t)|AiP (t)|ψ(t) >iP (1.3.91)

which implies
AiP (t) = U†

0 (t)ASU0(t). (1.3.92)

Applying this to HS
0 we see that

HiP
0 = HS

0 ≡ H0. (1.3.93)
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While applying it to HS
I , we have

HiP
I (t) = e+iH0tHS

I e
−iH0t, (1.3.94)

generally [H0,H
S
I ] 6= 0 so HiP

I (t) 6= HS
I . Differentiating equation (1.3.92) we find

−i ∂
∂t
AiP (t) = [H0, A

iP (t)], (1.3.95)

the Heisenberg equation of motion with H0 as the Hamiltonian. Furthermore,

i
∂

∂t
|ψ(t) >iP = −H0|ψ(t) >iP +U†

0 (t)H|ψ(t) >S

= −H0|ψ(t) >iP +U†
0 (t)HU0(t)U

†
0 (t)|ψ(t) >S

= −H0|ψ(t) >iP +U†
0 (t)(H0 +HS

I )U0(t)|ψ(t) >iP . (1.3.96)

Now [H0, U0(t, t0)] = 0, so the free Hamiltonian terms cancel while we define the
interaction Hamiltonian in the interaction picture as in equation (1.3.94)

HiP
I (t) ≡ U†

0 (t)Hs
IU0(t) (1.3.97)

so we secure
i
∂

∂t
|ψ(t) >iP = HiP

I (t)|ψ(t) >iP . (1.3.98)

The states in the interaction picture evolve in time according to the Schrödinger
equation using the interaction Hamiltonian. Finally, note that the CCR of the
Schrödinger picture again become ETCR in the interaction picture

δ(t − t′)[P iP
i (t), QiP

j (t′)] = −ih̄δijδ(t − t′). (1.3.99)

When we try to solve the above Schrödinger equation for the interaction
picture time evolution operator U(t, t0) (here and in what follows we have dropped
the “iP” superscript from the time evolution operator, that is we define U(t, t0) ≡
U iP (t, t0) = U†

0 (t)US (t, t0)U0(t0) ) so that

|ψ(t) >iP = U(t, t0)|ψ(t0) >iP ) (1.3.100)

the time dependence ofHiP
I (t) prevents us from simply exponentiating this Hamil-

tonian to find a solution for U(t, t0). More directly we can obtain the equation
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of evolution for U(t, t0) by substituting the above into the Schrödinger equation
(1.3.98) as follows

i
∂

∂t
U(t, t0)|ψ(t0) >iP = HiP

I (t)U(t, t0)|ψ(t0) >iP (1.3.101)

implying

i
∂

∂t
U(t, t0) = HiP

I (t)U(t, t0). (1.3.102)

Since at t = t0 the states are the same, we have the initial condition

U(t0, t0) = 1. (1.3.103)

This differential equation and boundary condition can be written as an integral
equation

U(t, t0) = 1 − i

∫ t

t0

dt1H
iP
I (t1)U(t1, t0) (1.3.104)

from which we can check directly that

U(t0, t0) = 1

i
∂

∂t
U(t, t0) = HiP

I (t)U(t, t0). (1.3.105)

Note, from the definition of the evolution of the Schrödinger representation states,
we have that

|ψ(t) >S= e−iH(t−t0)|ψ(t0) >S . (1.3.106)

Converting the states to the interaction representation yields

U0(t)|ψ(t) >iP = e−iH(t−t0)U0(t0)|ψ(t0) >iP (1.3.107)

implying
U(t, t0) = U†

0 (t)e−iH(t−t0)U0(t0) (1.3.108)

that is
U(t, t0) = eiH0te−iH(t−t0)e−iH0t0 . (1.3.109)

Since H0 and HI do not commute this is an awkward expression which can only
be simplified iteratively as will now be done.
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This integral equation can be solved iteratively to yield

U(t, t0) = 1 − i

∫ t

t0

dt1H
iP
I (t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2H
iP
I (t1)HiP

I (t2) + · · ·

+(−i)n

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 · · ·
∫ tn−1

t0

dtnH
iP
I (t1)HiP

I (t2) · · ·HiP
I (tn) + · · · .

(1.3.110)
To see this consider HiP

I (t) to be replaced by a parameter λ times itself, λHiP
I (t),

and U to be a power series in λ

U(t) =
∞∑

n=0

Un(t)λn. (1.3.111)

The integral equation for U becomes

∞∑

n=0

λnUn(t) = 1 − i
∞∑

n=1

λn

∫ t

t0

dt1H
iP
I (t1)Un−1(t1). (1.3.112)

Equating like powers of λ, we find for n=0

U0(t) = 1 (1.3.113)

and for n > 0

Un(t) = −i
∫ t

t0

dt1H
iP
I (t1)Un−1(t1) (1.3.114)

yielding
U0(t) = 1

U1(t) = −i
∫ t

t0

dt1H
iP
I (t1)

U2(t) = (−i)2
∫ t

t0

dt1H
iP
I (t1)

∫ t1

t0

dt2H
iP
I (t2)

.

.

.
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Un(t) = (−i)n

∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnH
iP
I (t1) · · ·HiP

I (tn) (1.3.115)

and so on, securing the above iterative solution. Notice that in each term Un the
integration interval is such that the Hamiltonians are ordered by decreasing time;
the time of each Hamiltonian is later than the one to its right, t1 > t2 > t3 > ... >

tn. They are said to be time ordered.
We can introduce a time ordering operator T such that for arbitrary operators

A1(t1) · · ·An(tn) it orders the operators chronologically with later times to the left,
and earlier times to the right. Specifically we have first the trivial case

TA(t) = A(t). (1.3.116)

Then for products of two operators we have

TA1(t1)A2(t2) =
{
A1(t1)A2(t2), if t1 > t2;
A2(t2)A1(t1), if t2 > t1.

(1.3.117)

These are the 2! ways to order (t1, t2). With the help of the step function θ(t1−t2)

θ(t1 − t2) =
{

1, if t1 > t2;
0, if t2 > t1,

we write these cases as

TA1(t1)A2(t2) = θ(t1 − t2)A1(t1)A2(t2) + θ(t2 − t1)A2(t2)A1(t1). (1.3.118)

We can more compactly write the time ordered product as a sum over these two
permutations of the times

TA1(t1)A2(t2) =
∑

(1,2) P
→ (i1,i2)

θ(ti1 − ti2)Ai1 (ti1)Ai2 (ti2). (1.3.119)

Next for products of three operators we define

TA1(t1)A2(t2)A3(t3) =





A1(t1)A2(t2)A3(t3), if t1 > t2 > t3;
A1(t1)A3(t3)A2(t2), if t1 > t3 > t2;
A2(t2)A1(t1)A3(t3), if t2 > t1 > t3;
A2(t2)A3(t3)A1(t1), if t2 > t3 > t1;
A3(t3)A1(t1)A2(t2), if t3 > t1 > t2;
A3(t3)A2(t2)A1(t1), if t3 > t2 > t1.

(1.3.120)
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These are the 3! ways to order (t1, t2, t3), again we can use the step function to
write this as

TA1(t1)A2(t2)A3(t3)

= θ(t1 − t2)θ(t2 − t3)A1(t1)A2(t2)A3(t3)

+θ(t1 − t3)θ(t3 − t2)A1(t1)A3(t3)A2(t2) + · · · . (1.3.121)

We can more compactly write this by summing over the six permutations of the
times

TA1(t1)A2(t2)A3(t3)

=
∑

(1,2,3) P
→ (i1,i2,i3)

θ(ti1 − ti2)θ(ti2 − ti3)Ai1(ti1 )Ai2 (ti2)Ai3 (ti3). (1.3.122)

And in general we define the time ordering operator to yield

TA1(t1)....An(tn)

=
∑

(1,...,n) P
→ (i1,...in)

θ(ti1 − ti2)θ(ti2 − ti3) · · · θ(tin−1 − tin) Ai1 (ti1)......Ain(tin),

(1.3.123)
where the sum is over all n! ways to order t1, ....., tn. That is

∑
P is the sum over

all permutations P of the n integers (1, · · · , n) into the order (i1, · · · , in), each ij

being one of the n integers from 1 through n.
Hence, we can apply the time ordering operator to our product of Hamilto-

nians

THiP
I (t1) · · ·HiP

I (tn) =
∑

P

θ(ti1 − ti2) · · · θ(tin−1 − tin)HiP
I (ti1) · · ·HiP

I (tin)

= HiP
I (ta1) · · ·HiP

I (tan), for ta1 > ta2 > ta3 > · · · > tan . (1.3.124)

Thus, we can use the T operator to extend our region of integration on each
integral in Un, equation (1.3.115), from t0 < ti < t since it chronologically orders
the Hamiltonian factors

Un(t) = (−i)n

∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnH
iP
I (t1) · · ·HiP

I (tn)
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= (−i)n

∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnTH
iP
I (t1) · · ·HiP

I (tn)

=
(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn THiP
I (t1) · · ·HiP

I (tn). (1.3.125)

The 1
n!

arises from the fact that by integrating from t0 < ti < t we are just doing
the original integral n! times, just relabeling the dummy integration variables
each time we have one of the n! permutations of the times from the definition of
T. To make this perfectly clear let’s do the U2 case in detail

U2(t) =
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2TH
iP
I (t1)HiP

I (t2)

=
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2[θ(t1 − t2)HiP
I (t1)HiP

I (t2) + θ(t2 − t1)HiP
I (t2)HiP

I (t1)].

(1.3.126)
Now in the second term let t1 = u2 and t2 = u1 and interchange the order of
integration so that

U2(t) =
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2θ(t1 − t2)HiP
I (t1)HiP

I (t2)

+
(−i)2

2!

∫ t

t0

du1

∫ t

t0

du2θ(u1 − u2)HiP
I (u1)HiP

I (u2). (1.3.127)

Relabel u1 → t1 and u2 → t2 to obtain

U2(t) =
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2θ(t1 − t2)HiP
I (t1)HiP

I (t2)

+
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2θ(t1 − t2)HiP
I (t1)HiP

I (t2)

= (−i)2
∫ t

t0

dt1

∫ t

t0

dt2θ(t1 − t2)HiP
I (t1)HiP

I (t2). (1.3.128)

Since

θ(t1 − t2) =
{

1, if t1 > t2;
0, if t2 > t1,
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we obtain

U2(t) = (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2H
iP
I (t1)HiP

I (t2) (1.3.129)

as desired. Similar arguments apply to Un(t).
Hence, the time evolution operator in the interaction representation can be

written as

U(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnTH
iP
I (t1) · · ·HiP

I (tn). (1.3.130)

Formally, we write the sum as an exponential

U(t, t0) = Te
−i

∫
t

t0
dt′HiP

I (t′)
(1.3.131)

where again the exponential is understood to stand for the above series expansion
equation (1.3.130).

The utility of the interaction representation is realized when we consider
scattering experiments. Given any state |ψ(t0) >iP , we can now calculate to any
order in the interaction its time evolution

|ψ(t) >iP = U(t, t0)|ψ(t0) >iP . (1.3.132)

In scattering experiments the initial states are prepared in the remote past (as
t → −∞). For instance, two beams of particles of specified momenta and spins
can be prepared spatially separate (opposite ends of the lab) so that initially they
are not interacting. We imagine, according to the formal theory of scattering, that
the interaction Hamiltonian HiP

I (t) is adiabatically, that is very slowly compared
to the characteristic interaction times to avoid any energy absorption or emission
during the process, switched off in the remote past. A complete set of initial states
are then the eigenstates of the free Hamiltonian H0 since |ψ >iP is time indepen-
dent if HiP

I = 0 and the interaction picture states coincide with the Heisenberg
picture states for a system described by H0 . As time proceeds the interaction is
slowly turned on and eventually the particles collide. As time runs foward the col-
lision products start to separate and after a sufficiently long time the interaction
adiabatically turns off so that in the remote future (t→ +∞) the final states are
again eigenstates of the free Hamiltonian H0 . This slow switching on and off of
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the interaction without disturbing the results of the particle collisions is called the
adiabatic hypothesis. Initially the particles are well separated and noninteracting
(eigenstates of H0). They approach each other and interact, producing new parti-
cles , scattering and annihilating. The reaction products then separate again into
noninteracting final states (also eigenstates of H0). We shall denote these special
non-interacting initial and final states in the interaction representation, which are
described by the eigenstates of H0, by rounded brackets with no subscripts, |i ⊃
and |f ⊃, respectively. The transition probabilty amplitude for the system to go
from the initial state |i ⊃ at time t = −∞ to the final state |f ⊃ at time t = +∞
is given by the scalar product

Sfi =⊂ f |U(+∞,−∞)|i ⊃ . (1.3.133)

That is, U(t,−∞) takes the initial state |i ⊃= |i(−∞) >iP from time t = −∞ to
the time t

|i(t) ⊃= U(t,−∞)|i(−∞) >iP . (1.3.134)

Hence the probability amplitude for the initial state |i ⊃ to evolve from t = −∞
into the final state |f ⊃ at t = +∞ is just

Sfi = lim
t→+∞

⊂ f |i(t) ⊃=⊂ f |i(+∞) ⊃

=⊂ f |U(+∞,−∞)|i ⊃ . (1.3.135)

Sfi is called the scattering matrix element or simply the S-matrix element.

S ≡ U(+∞,−∞) (1.3.136)

is known as the scattering or S-operator. From the perturbation expansion for
the time evolution operator U(t, t0, ) we have that

S = Te
−i

∫ +∞

−∞
dtHiP

I (t)

= 1 +
∞∑

n=1

(−i)n

n!

∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtnTH

iP
I (t1) · · ·HiP

I (tn). (1.3.137)

Hence the S-matrix element is given by

Sfi =⊂ f |Te−i
∫ +∞

−∞
dtHiP

I (t)|i ⊃ . (1.3.138)
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Recall that the operators in the interaction picture have time dependence
determined by the free Hamiltonian H0 . Hence, we can calculate the transition
probability amplitude for the process i → f by using states and operators deter-
mined in terms of the free dynamical variables appearing in H0 . The price we pay
for using noninteracting or free quantities is the insertion of the term Te−i

∫
dtHiP

I

in the transition amplitude. Further, |Sfi|2 is a measurable quantity for any re-
action. However, it depends upon the details of the initial state preparation, for
example it depends on the flux of incoming particles, and on the target particle
density. A more intrinsic quantity derived from |Sfi|2 is the cross section for a
process σfi ∝ |Sfi|2. We will discuss and calculate cross sections in excruciating
detail later.

Next we must apply these perturbative schemes more directly to our quantum
field theoretic systems. As seen above, the Hamiltonian plays a central role in the
discussion of transition probabilities. For field theories, as we have seen in the
introduction, these Hamiltonians are for systems with infinte degrees of freedom.
Furthermore, they are relativistic systems and the Hamiltonian approach while
singling out the time coordinate often hides the Lorentz invariance of the ampli-
tudes. To maintain manifest Lorentz invariance at every step we will often work in
terms of the Lagrangian for the system. The formula for Sfi is invariant in either
formulation. For interaction Hamiltonians that are independent of momenta we
have that HiP

I = −LiP
I and ∫ +∞

−∞
dtLiP

I

is just the interaction action of the system which is manifestly Lorentz invariant
as seen by writing it in terms of the Lagrangian density LiP

I

LiP
I =

∫ +∞

−∞
d3xLiP

I

so ∫ +∞

−∞
dtLiP

I =
∫ +∞

−∞
d4xLiP

I .

The time ordering operator however singles out the time also and it is not clear
that it preserves the manifest Lorentz invariance. However, restricted Lorentz
transformations can only alter the chronological ordering if we consider operators
at space-like separated points. At space-like separations operators must commute,
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that is, they must be simultaneously measurable since no signal with v ≤ c can
be sent between them. That is, the measurement of one operator cannot interfere
with the measurement of the other since if the second measurement observed the
effect of the first measurement the fact that it was even performed must have
been transmitted at v ≥ c in order to arrive at the second space-like separated
point. This microcausality principle then guarantees that the time ordering for
space-like separations is immaterial, that is

[HiP
I (~x1, t1),HiP

I (~x2, t2)] = 0

for (x1 − x2)2 < 0. Hence, Sfi is in fact Lorentz invariant. (The argument
goes through for HiP

I momentum dependent also, the definition of T must change
by terms that involve Dirac delta functions in the time.) We are now ready to
systematically develop Lagrangian quantum field theory.
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