
§1.2 REVIEW OF SPECIAL RELATIVITY

Einstein’s theory of special relativity requires every physical law to be the
same in all inertial systems (the form of the law is covariant) and that the speed
of light in vacuum is a universal constant independent of the motion of the source.
Thus if two frames S and S’ are moving at constant velocity relative to each other
the relativistic intervals in each frame are equal and given by:

ds2 = c2dt2 −
3∑

i=1

(dxi)2

ds′2 = c2dt′2 −
3∑

i=1

(dx′i)2

ds2 = ds′2 (1.2.1)

The most general linear transformations which leave this interval invariant are
the Lorentz transformations. These can be most simply expressed by introducing
four vector notation. Let the space-time coordinates in the frame S be given
by xµ = (x0, x1, x2, x3) = (ct, x, y, z) and in S’, x′µ = (ct′, x′, y′, z′). Then the
general linear transformation between S and S’ is x′µ = Λµ

νx
ν where Λµ

ν is a
four-by-four matrix. The invariance of the space-time interval, ds2 = ds′2, implies
that ds′2 = dx′µgµνdx

′ν = dxαgαβdx
β = ds2 where

gµν ≡




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




µν

(1.2.2)

is the metric tensor. However, dx′µ = Λµ
αdx

α so the equality of the intervals
implies a restriction on Λµ

ν,

dxαΛµ
αgµνΛν

βdx
β = dxαgαβdx

β.

Thus, Λµ
ν must satisfy

gαβ = Λµ
αgµνΛν

β, (1.2.3)

or in matrix notation
g = ΛTgΛ. (1.2.4)
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If Λ1 and Λ2 satisfy (1.2.3) then so do Λ1Λ2 and Λ−1
1 . For example, if

Λµ
α(Λ−1)α

γ = δµ
γ then

(Λ−1)α
γgαβ(Λ−1)β

δ = Λµ
α(Λ−1)α

γgµνΛν
β(Λ−1)β

δ

= δµ
γgµνδ

ν
δ

= gγδ.

Thus, relabeling the dummy indices,

gµν = (Λ−1)α
µgαβ(Λ−1)β

ν . (1.2.5)

Hence, the Lorentz transformations form a group, the Lorentz group, denoted L
(or sometimes SO(1,3)).

In addition to linear transformations, the homogeneity of space-time implies
that uniform translations of the frame should not effect experiments. As we see
then the transformation of the coordinates

x′µ = Λµ
νx

ν + aµ, (1.2.6)

with aµ a constant 4-vector, also leaves the interval invariant, ds2 = ds′2. Note,
above it is understood that the translation aµ follows the rotation Λµ

ν . The
general inhomogeneous transformation is called a Poincare’ transformation. Two
such transformations (Λ1, a1) and (Λ2, a2) obey the composition law

xµ
2 = Λµ

2 νx
ν
1 + aµ

2

= Λµ
2 νΛν

1 ρx
ρ + Λµ

2 νa1 ν + aν
2

≡ Λµ
νx

ν + aµ (1.2.7)

with
Λµ

ν ≡ Λµ
2 αΛα

1 ν

aµ ≡ Λµ
2 νa

ν
1 + aµ

2 . (1.2.8)

Hence, these transformations also form a group, the Poincare’ group denoted by
P.
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The Lorentz group (and hence, the Poincare’ group) contains reflections of
the space-time coordinates as well as boosts, rotations, and translations.
1) Space Inversion: Let Λµ

ν = Pµ
ν

x′µ = Pµ
νx

ν (1.2.9)

with

Pµ
ν ≡




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




µν

(1.2.10)

thus,
x′0 = +x0

x′i = −xi. (1.2.11)

2) Time Reversal: Let Λµ
ν = Tµ

ν

x′µ = Tµ
νx

ν (1.2.12)

with

Tµ
ν ≡




−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1




µν

(1.2.13)

thus,
x′0 = −x0

x′i = +xi. (1.2.14)

3) Space-Time Inversion: Let Λµ
ν = Iµ

ν

Iµ
ν ≡ Pµ

αT
α
ν =




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




µν

= −δµ
ν (1.2.15)

thus,
x′µ = −xµ. (1.2.16)
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The Lorentz group and, hence, the Poincare’ group have four disconnected
components. That is not every frame may be related by a sequence of Lorentz
transformations differing infinitesimally from each other. More precisely, Lorentz
transformations depend on 6 parameters, each transformation can be identified
by its particular values for these parameters. One cannot go from one transfor-
mation to every other by a continuous change in these parameters. That is the
parameter space is disconnected. To see this use the fact that equation (1.2.3)
can be written in matrix notation (1.2.4) with Λ a matrix with elements Λµ

ν

where µ labels the rows and ν labels the columns. Then with g = ΛTgΛ, the
det g = detΛT det g detΛ, which implies detΛ = ±1. Furthermore, taking the
α = 0, β = 0 component of equation (1.2.3) we find

1 = (Λ0
0)

2 −
3∑

i=1

(Λi
0)

2

which implies (Λ0
0)

2 ≥ 1. Hence we have the two possibilities Λ0
0 ≥ 1 or Λ0

0 ≤ −1.
Since detΛ and the sign of Λ0

0 are continuous functions of the matrix elements,
Λµ

ν , they must be constant on each component. Hence, we have the four connected
components of L denoted by
1) L↑

+ in which detΛ = +1,Λ0
0 ≥ +1 and the transformations of which are called

the restricted or proper orthochronous Lorentz transformations. This is the only
component which contains Λµ

ν = δµ
ν the identity and hence is a subgroup of

L. The direction of time is unchanged and spatial reflections are absent in this
component.
2) L↑

− in which detΛ = −1,Λ0
0 ≥ +1. These transformations can be written as

the product of space inversion and L↑
+, that is L↑

− = PL↑
+.

3) L↓
+ in which det Λ = +1,Λ0

0 ≤ −1. These transformations must include both
time inversion (Λ0

0 ≤ −1) and space inversion (det Λ = +1). They can be written
as total coordinate inversions times L↑

+, that is L↓
+ = PTL↑

+.
4) L↓

− in which detΛ = −1,Λ0
0 ≤ −1. The direction of time is changed by this

component which can be written as time reversal times L↑
+, that is L↓

− = TL↑
+.

Symbolically the Lorentz group can be written as the sum of four components:

L = L↑
+ + PL↑

+ + PTL↑
+ + TL↑

+. (1.2.17)

A similar decomposition holds for the Poincare’ group P:

P = P↑
+ + P↑

− + P↓
+ + P↓

−
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= P↑
+ + PP↑

+ + PTP↑
+ + TP↑

+, (1.2.18)

where the component P↑
+ is called the restricted or proper orthochronous Poin-

care’ group. It is the only component which is a subgroup of P since it contains
the identity (Λ, a) = (1, 0). We will be interested in the restricted Lorentz and
Poincare’ transformations since we can build up any general transformation from
them as indicated above.

Any orthochronous, proper or improper, Lorentz transformation can be writ-
ten uniquely as a boost followed by a spatial rotation Λ = RΛB. Boosts of velocity
~V = V ~v, ~v ·~v = 1 (in what follows we choose units such that c=1) can be written
as

x′0 = x0 coshβ + ~v · ~x sinhβ

~x′ = ~x + ~v(~x · ~v)(cosh β − 1) + x0~v sinhβ, (1.2.19)

with V = tanhβ. In 4-vector notation this can be written as x′µ = Λµ
B νx

ν with
the pure boost Lorentz transformation matrix given by

Λµ
B ν =




chβ v1shβ v2shβ v3shβ
v1shβ [1 + v1v1(chβ − 1)] v1v2(chβ − 1) v1v3(chβ − 1)
v2shβ v2v1(chβ − 1) [1 + v2v2(chβ − 1)] v2v3(chβ − 1)
v3shβ v3v1(chβ − 1) v3v2(chβ − 1) [1 + v3v3(chβ − 1)]


 .

(1.2.20)

Further, recall that any spatial rotation, x′i = Rijx
j , can be represented as a

rotation through an angle α about some axis with direction ~u where ~u ·~u = 1. For
instance, in spherical coordinates ~u is given by (sin θ cosϕ, sin θ sinϕ, cos θ). For
a spatial rotation

x′0 = x0

~x′ = ~x cosα+ ~u(~u · ~x)(1 − cosα) + ~x × ~u sinα, (1.2.21)

where 0 ≤ |α| ≤ π. Hence x′ µ = Rµ
νx

ν can be written in 4-vector matrix notation
as

Rµ
ν =
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1 0 0 0
0 [cα+ u1u1(1 − cα)] [u1u2(1 − cα) − u3sα] [u1u3(1 − cα) + u2sα]
0 [u2u1(1 − cα) + u3sα] [cα+ u2u2(1 − cα)] [u2u3(1 − cα) − u1sα]
0 [u3u1(1 − cα) − u2sα] [u3u2(1 − cα) + u1sα] [cα+ u3u3(1 − cα)]


 .

(1.2.22)

Thus, we see that the Lorentz group is a six parameter group with three compo-
nents of velocity for boosts and three angles to specify spatial rotations. Since
there are four directions for space-time translations, the Poincare’ group is a ten
parameter group.

Since the laws of physics are covariant in form, physical quantities and the
equations they obey are most easily described and managed by tensors and tenso-
rial equations. Tensors are defined to have specific Lorentz transformation prop-
erties which, as with tensorial equations, are maintained in every inertial frame.
We can define contravariant and covariant tensor fields according to their specific
Lorentz transformation properties

T ′ µ1···µn(x′) = Λµ1
ν1

· · ·Λµn
νn

T ν1···νn(x) (1.2.23)

for a contravariant rank n tensor field and

T ′
µ1···µn

(x′) = (Λ−1)ν1
µ1

· · · (Λ−1)νn
µn

Tν1···νn(x)

(= Tν1···νn(x)(Λ−1)ν1
µ1

· · · (Λ−1)νn
µn

). (1.2.24)

for a covariant rank n tensor field and

T ′ µ1···µm
ν1···νn

(x′) = Λµ1
α1

· · ·Λµm
αm
Tα1···αm

β1···βn
(x)(Λ−1)β1

ν1
· · · (Λ−1)βn

νn

(1.2.25)

for a mixed (m,n) tensor of rank (m+n), where as before

Λµ
ν(Λ−1)ν

ρ = δµ
ρ. (1.2.26)

Note that
V

′µW
′

µ = Λµ
ν(Λ−1)ρ

µV
νWρ

= δρ
νV

νWρ = V µWµ
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is a Lorentz invariant. We can define the contravariant metric tensor gµν as the
inverse of the covariant metric tensor gµν

gµνgνρ = δµ
ρ. (1.2.27)

Note that g = ΛTgΛ implies that (equation (1.2.5))

g′µν = (Λ−1)α
µ(Λ−1)β

νgαβ = gµν (1.2.28)

and similarly g′µν = gµν ; the contravariant metric tensor is invariant.
Then for every contravariant vector there is an associated covariant vector,

and vice versa, obtained by lowering or raising an index with gµν or gµν . That
is if V µ is a contravariant vector, V

′µ = Λµ
νV

ν , then Vµ ≡ gµνV
ν is a covariant

vector since
V

′

µ = gµνV
′ν = gµνΛν

ρV
ρ

but, equation (1.2.28), gµνΛν
ρ = (Λ−1)β

µgβρ so that V
′

µ = (Λ−1)β
µgβρV

ρ. Hence,
V

′

µ = (Λ−1)β
µVβ, is the transformation law for covariant vectors. Using this

notation to define Λµν = gµαΛα
ν etc. we find δα

β = ΛµαΛµβ, that is

(Λ−1)µν = (ΛT )µν = Λνµ. (1.2.29)

We can also relate the contravariant, covariant and mixed tensors by raising and
lowering indices with the metric tensors.

Since Λ ∈ L↑
+ is continuously connected to the identity we can build up any

finite Lorentz transformation by making many consecutive small Lorentz trans-
formations. Each coordinate system differing from the previous, as well as the
following, by an infinitesimal amount. The properties of Λ can be inferred from
the properties of infinitesimal Lorentz transformations. From our experience with
spatial rotations we know that every Λ can be written as the exponential of the 6
transformation parameters (the “angles” of rotation), denoted by ωαβ(Λ), times
the six (4x4) matrices that generate the infintesimal Lorentz transformations,
denoted by (Dαβ)µν . That Lorentz transformations leave the metric invariant
implies that the parameters for infinitesimal Lorentz transformations, ωαβ with
the infinitesimal Lorentz transformation written as Λαβ = gαβ +ωαβ and the ωαβ

are infinitesimal, are anti-symmetric

gαβ = Λµαg
µνΛνβ = (gµα + ωµα)gµν(gνβ + ωνβ)
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= gαβ + ωβα + ωαβ

which implies that ωαβ + ωβα = 0, that is ωαβ (and of course ωαβ) is antisym-
metric. Further we know that the Lorentz group multiplication law implies that
the Dαβ matrices must obey specific commutation relations. Alternatively, the
Lorentz algebra completely characterizes the Lorentz group multiplication law.
It is sufficient to find the matrices that obey the desired commutation relations
in order to construct the finite Lorentz transformations by exponentiation with
appropriate parameters. In fact instead of characterizing tensors by their finite
Lorentz transformation properties we can equivalently specify their transforma-
tion properties under infinitesimal transformations. That is we will define the
tensor by specifying its general Dαβ matrix. This matrix obeys the Lorentz alge-
bra so that when appropriately exponentiated we will recover the finite Lorentz
transformation definition of the tensor.

To begin let’s go back to just 4x4 matrices and study what is called the
fundamental or vector representation of the Lorentz group. It is given by the
infinitesimal coordinate transformations, Λµ

ν = δµ
ν + ωµ

ν

x′µ = Λµ
νx

ν = xµ + ωµ
νx

ν

≡ xµ +
ωβ

α

2
(
Dα

β

)µ

ν
xν . (1.2.30)

Thus (
Dα

β

)µ

ν
= δµ

βδ
α
ν − gµαgνβ

or raising β and lowering µ

(
Dαβ

)
µν

= δβ
µδ

α
ν − δα

µδ
β
ν . (1.2.31)

We see that since ωαβ is anti-symmetric so is Dαβ = −Dβα. From this vector
representation we can obtain the commutation relations for the Dµν which then
all further representations of the Lorentz group must obey

[Dµν ,Dρσ ]αβ = (Dµν ) γ
α (Dρσ)γβ − (Dρσ) γ

α (Dµν )γβ

= (δν
αg

µγ − δµ
αg

νγ)
(
δσ

γδ
ρ
β − δρ

γδ
σ
β

)
− (DρσDµν )αβ

= gµσ
(
δν

αδ
ρ
β − δρ

αδ
ν
β

)
− gµρ

(
δν

αδ
σ
β − δσ

αδ
ν
β

)
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−gνσ
(
δµ

αδ
ρ
β − δρ

αδ
µ
β

)
+ gνρ

(
δµ

αδ
σ
β − δσ

αδ
µ
β

)

= (gµσDρν − gµρDσν − gνσDρµ + gνρDσµ)αβ . (1.2.32)

Thus, surpressing the matrix element indices, the defining commutation relations
for the Lorentz group are

[Dµν ,Dρσ] = gµρDνσ + gνσDµρ − gµσDνρ − gνρDµσ . (1.2.33)

For a general tensor field we can find its Lorentz representation matrix in a
similar way. Consider the rank n tensor transformation law, equation (1.2.23), for
infinitesimal Λµν

T ′µ1···µn (x′) = (gµ1ν1 + ωµ1ν1) · · · (gµnνn + ωµnνn)Tν1···νn(x)

= Tµ1···µn(x) +
n∑

i=1

gµ1ν1 · · ·ωµiνi · · · gµnνnTν1···νi···νn(x)

= Tµ1···µn(x) +
ωαβ

2

n∑

i=1

gµ1ν1 · · · [gαµigβνi − gανigβµi] · · · gµnνnTν1···νn(x).

(1.2.34)
Thus using the notation (µ) = µ1 · · · µn we have

T ′(µ)(x′) − T (µ)(x) ≡ ωβα

2
(Dαβ)(µ)(ν)T(ν)(x) (1.2.35)

where

(Dαβ)(µ)(ν) ≡
n∑

i=1

gµ1ν1 · · · [gανigβµi − gαµigβνi ] · · · gµnνn . (1.2.36)

As in the vector case, the (Dαβ)(µ)(ν) obey the Lorentz group commutation rela-
tions equation (1.2.33).

In general, the difference δT (x),

δT (x) ≡ T ′(x′) − T (x), (1.2.37)

is called the total variation of T. The rank n tensor is then defined so that

δT (µ)(x) ≡ ωβα

2
(Dαβ)(µ)(ν)T(ν)(x) (1.2.38)
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with (Dαβ)(µ)(ν) given in equation (1.2.36). When the Dαβ matrices are exponen-
tiated with the finite parameter matrices ωβα(Λ) for finite Lorentz transformations
Λ the commutation relations (1.2.33) guarantee the correct tensor transformation
law (1.2.23).

Notice the total variation of T evaluates the change in the tensor field at the
same space-time point, xµ in S and x′µ in S’. It is physically more meaningful
to compare tensors not at the same space-time point but at the same numerical
value, say xµ, of their argument. This intrinsic variation of T, denoted by δ̄T , is
related to the total variation of T, δT , by a Taylor expansion. Thus the intrinsic
variation of T is defined by

δ̄T (x) ≡ T ′(x) − T (x)

= [T ′(x′) − T (x)] − [T ′(x′) − T ′(x)]

= δT (x) − [T ′(x′) − T ′(x)]. (1.2.39)

Again, δ̄T (x) is the change in T(x) for the same value of the argument not the same
point in space-time. Since these variations are infinitesimal, we need only keep first
order in changes. Writing the space-time point transformation as x′µ = xµ + δxµ

so that the Taylor expansion of T’(x’) about x is T ′(x′) = T ′(x) + δxµ∂µT (x) we
conclude that

δ̄T (x) = δT (x) − δxµ∂µT (x). (1.2.40)

For a Lorentz transformation we can write δxµ as the defining 4x4 vector repre-
sentation matrix Dαβ

x′µ = xµ +
ωβα

2
[gµβgνα − gµαgνβ]xν .

However this variation is just the first Taylor expansion term of the function xµ,
hence it is equivalent, and later more useful when considering variations of more
general tensor fields, to write the x-variation as a differential Taylor operator so
that

x′µ = xµ − ωαβ

2
(xα∂β − xβ∂α)xµ. (1.2.41)

Thus the intrinsic variation of a rank n tensor T (µ), equation (1.2.40), can be
written as

δ̄T (µ) =
ωβα

2

[
(Dαβ)(µ)(ν) − g(µ)(ν)(xα∂β − xβ∂α)

]
T(ν). (1.2.43)
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We find the differential operator (xµ∂ν − xν∂µ) obeys the algebra, cf. equation
(1.2.33), associated with the Lorentz group also. Thus we define the differential
matrix (angular momentum) operator Mµν for rank n tensors as

(Mµν )(α)(β)T(β) ≡ −i
[
(xµ∂ν − xν∂µ)g(α)(β) − (Dµν )(α)(β)

]
T(β). (1.2.43)

We check explicitly that the angular momentum commutation relations are satis-
fied

[Mµν ,Mρσ] = +i[gµρMνσ + gνσMµρ − gµσMνρ − gνρMµρ]. (1.2.44)

The intrinsic variation can then be used to define rank n tensors

δ̄T (µ)(x) ≡ −iωβα

2
(Mαβ)(µ)(ν)T(ν)(x) (1.2.45)

where Mαβ is the total angular momentum carried by the field while Dαβ is
related to its intrinsic angular momentum or spin. Thus we can characterize the
Lorentz group tensors by their spin, the Dαβ matrices, and their orbital angular
momentum as represented by the action of the space-time differential operator
(xµ∂ν − xν∂µ) on their argument. Hence we can represent the Lorentz group by
finite matrices Dαβ obeying the algebra (1.2.33) and by space-time differential
operators acting on tensor fields T (α)(x).

Similarly we can consider infinitesimal space-time translations

x′µ = xµ + δxµ = xµ + εµ. (1.2.46)

Then for translationally invariant fields T ′(x′) = T (x), which is all that is defined,
we have

δ̄T = −δxµ∂µT = −εµ∂µT

≡ +iεµPµT (1.2.47)

that is the momentum operator Pµ given by

Pµ ≡ +i∂µ (1.2.48)

represents the generator of space-time translations. Thus for any representation
of the Lorentz group Mµν we can calculate the commutator of Pµ with it to find

[Mµν , P ρ] = −i[Pµgνρ − P νgµρ]. (1.2.49)
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Along with [Pµ, P ν ] = 0, these three sets of commutation relations define the
action of the Poincare’ group on tensor fields T (µ)(x). As usual the field after a
finite Poincare’ transformation is obtained by exponentiation of the translation
generator. For finite translations x′µ = xµ + aµ, we have

T ′(x) = lim
n→∞

(
1 + (

+iaµ

n
)Pµ

)n

T (x)

= e+iaµPµT (x)

= e−aµ∂µT (x) = T (x − a) (1.2.50)

(which is just the definition of a translationally invariant field).
To summarize then, the Poincare’ group is defined by the algebra its gen-

erators Pµ, the energy-momentum operator which is the generator of space-time
translations, and Mµν , the angular momentum operator, which is the generator
of Lorentz transformations and space rotations, obey

[Pµ, P ν ] = 0

[Mµν , P ρ] = −i(Pµgνρ − P νgµρ)

[Mµν ,Mρσ ] = +i(gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ). (1.2.51)

For the tensor representations of the Lorentz group this algebra is realized by the
intrinsic variation of the fields as

PµT
(α)(x) = +i∂µT

(α)(x)

(Mµν )(α)(β)T(β)(x) = −i
[
(xµ∂ν − xν∂µ)g(α)(β) − (Dµν )(α)(β)

]
T(β)(x) (1.2.52)

where (α) = α1 · · ·αn for a rank n tensor,

g(α)(β) = gα1β1 · · · gαnβn (1.2.53)

and

(Dµν )(α)(β) =
n∑

i=1

gα1β1 · · · [gµβigναi − gνβigµαi ] · · · gαnβn (1.2.54)
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is the matrix for the finite dimensional rank n tensor representation of the Lorentz
group where the Dµν obey the algebra

[Dµν ,Dρσ] = gµρDνσ − gµσDνρ + gνσDµρ − gνρDµσ . (1.2.55)

The transformations induced in T (α) when finite Poincare’ transformations
are made x′µ = Λµ

νx
ν + aµ are obtained by exponentiating the operators

T ′α1···αn(x) = Λα1
β1

· · ·Λαn

βn
T β1···βn(Λ−1(x − a))

=
(
e+iaµPµe+

i
2 ωµν(Λ)Mµν

)(α)(β)

T(β)(x) (1.2.56)

where ωµν(Λ) is defined so that

e+
1
2 ωµν (Λ)(xµ∂ν−xν∂µ)xρ = (Λ−1)ρ

σx
σ . (1.2.57)

The tensor representations are not the only realizations of the algebra pos-
sible; there are also the spinor representations. That is there are other objects
besides tensors that have the same transformation law in all inertial frames; the
Lorentz group multiplication law is valid for these quantities. We will find that
spinorial equations will be covariant and hence will be useful for describing phys-
ical laws. Spin one half particles such as electrons will be described by spinor
quantum fields. To introduce spinor transformation laws consider the operators
Mµν more closely. The Mij are associated with spatial rotations in the xi − xj

plane. For instance, for ω12 6= 0 only, we have

x′0 = x0

x′1 = x1 + ω12x2 = x1 − ω12x2

x′2 = x2 + ω21x1 = x2 + ω12x1

x′3 = x3, (1.2.58)

a rotation of the coordinate system about the z-axis through an infinitesimal angle
ω12. Hence the operator

J i ≡ 1
2
εijkMjk = (M23,M31,M12) (1.2.59)
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corresponds to the total angular momentum operator, that is, the generator of
spatial rotations for our functions of space-time. Similarly then the M0i are
associated with boosts that is pure Lorentz transformations in the xi direction.
For example, for infinitesimal ω01 6= 0 only we have

x′0 = x0 − ω01x1 =
1√

1 − v2

c2

(ct− v

c
x1) ≈ ct− v

c
x1

x′1 = x1 − ω01x0 =
1√

1 − v2

c2

(x1 − vt) ≈ x1 − v

c
ct

x′2 = x2

x′3 = x3. (1.2.60)

Hence, Ki ≡ M0i = (M01,M02,M03) are the generators of Lorentz transforma-
tions for our functions of space-time.

The algebra for Mµν , equation (1.2.51), implies that ~J and ~K obey the alge-
bra

[Ji, Jj ] = +iεijkJk

[Ki,Kj ] = −iεijkJk

[Ji,Kj ] = +iεijkKk. (1.2.61)

Complex (non-hermitian) generators can be defined from these real (hermitian)
generators

~N ≡ 1
2
( ~J + i ~K)

~N† ≡ 1
2
( ~J − i ~K). (1.2.62)

Then the commutation relations become disentangled

[Ni,Nj ] = +iεijkNk

[N†
i ,N

†
j ] = +iεijkN

†
k

[Ni,N
†
j ] = 0. (1.2.63)
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Hence, each set of ~N and ~N† obey the SU(2) spatial rotation algebra of ordinary
angular momentum separately. Eigenvalues of ~N · ~N and ~N† · ~N† label the rep-
resentation. These eigenvalues have values m(m+1) for ~N · ~N and n(n+1) for
~N† · ~N†, where m,n = 0, 1

2 , 1,
3
2 , 2, · · ·. So the pair (m,n) will label the represen-

tation of the Lorentz group about which we speak. The functions within each
representation are distinguished by the eigenvalue of one of the components of
each of the operators ~N and ~N†. For instance, for the third component the eigen-
values of N3 have the range −m,−m+1, · · · ,+m−1,+m and those of ~N†

3 have the
range −n,−n + 1, · · · ,+n − 1,+n, the (m, n) representation has (2m+1)(2n+1)
components. For example the (0,0) representation consists of only one function,
T(x), and is totally invariant, δT = 0. The vector representation consists of four
functions, Tµ, where δTµ = ωµνTν . We can show that this corresponds to the
( 1
2 ,

1
2 ) representation. The (1,0) representation can be shown to be that of the

self-dual, antisymmetric tensor, Fµν = F̃µν with F̃µν = 1
2
εµνρσFρσ. (By the con-

ventions used in these notes we define the totally antisymmetric permutation or
Levi-Civita tensor, denoted εµνρσ, so that ε0123 ≡ +1.) Since ~J = ~N + ~N†, we
see that (m+n) will denote the total spin of the representation. We can show
that all integer values of (m+n) i.e. (m + n) = 0, 1, 2, 3, · · · can be described by
our tensor representations. However, we can also have representations for which
(m + n) = (2k+1)

2 for any integer k = 0, 1, 2, · · ·. These all can be built up from
products of the basic spinor representations (as we built up the tensor representa-
tions from the fundamental vector representation); the ( 1

2 , 0) representation called
left-handed spinors and the (0, 1

2 ) representation called right-handed spinors. In
this way we will have obtained all possible (finite dimensional) representations of
the Lorentz group.

In order to obtain the transformation law for spinors we will consider the
set of 2x2 complex matrices with determinant =1. These form the group called
SL(2,C). We will represent the Lorentz group by the action of these matrices on
two component complex spinors. Equivalently we could build the spinor transfor-
mation law from the spin 1

2 angular momentum representation matrices familiar
from quantum mechanics, the Pauli matrices. Once we know the action of ~N and
~N† on the spinors we can reconstruct that of Mµν . However, it is more useful and
to the point to proceed by considering directly SL(2,C). To obtain the relation
of the Lorentz group to SL(2,C) we must first recall that there exists a one to
one correspondence between 2x2 Hermitian matrices and space-time points. The
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Pauli matrices

(σ0)αα̇ ≡
(

1 0
0 1

)

αα̇

(σ1)αα̇ ≡
(

0 1
1 0

)

αα̇

(σ2)αα̇ ≡
(

0 −i
+i 0

)

αα̇

(σ3)αα̇ ≡
(

1 0
0 −1

)

αα̇

, (1.2.64)

where α = 1, 2 labels the two rows and α̇ = 1, 2 labels the two columns, form a
basis for 2x2 Hermitian matrices. Let Xαα̇ be a Hermitian matrix, that is,

X† = X

(X∗)α̇α = (X)αα̇. (1.2.65)

It has the general form

Xαα̇ =
(

(x0 + x3) (x1 − ix2)
(x1 + ix2) (x0 − x3)

)

αα̇

= xµ(σµ)αα̇ ≡6 xαα̇ (1.2.66)

for xµ real with 6 x called “x slash”. Thus corresponding to any 4 vector xµ

we associate a 2x2 Hermitian matrix Xαα̇ by equation (1.2.66). Using the trace
relation for the product of two Pauli matrices

(σµ)αα̇(iσ2)α̇β̇(σν T )β̇β(iσ2)βα = −2gµν, (1.2.67)

or more succinctly written

Tr[σµ(iσ2)σν T (iσ2)] = −2gµν, (1.2.68)

we have for every Hermitian matrix Xαα̇ an associated four vector xµ

xµ = −1
2
Tr[X(iσ2)σµ T (iσ2)]. (1.2.69)
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This correspondence is one to one (we will useX =6 x in what follows to underscore
this correspondence).

Simplifying the notation, since we would like to keep our dotted and undotted
indices separate that is when we sum over indices we would like them to be of
the same type in order to avoid extra confusion, we introduce an antisymmetric
tensor εαβ, that is, εαβ = −εβα with ε12 = +1 and with lowered indices

εαβ = −εαβ = −εβα, (1.2.70)

that is ε12 = −ε12 = −1. Note that the matrix is the same when we use dotted
indices, that is,

εαβ = (iσ2)αβ =
(

0 1
−1 0

)

αβ

εα̇β̇ = (iσ2)α̇β̇ =
(

0 1
−1 0

)

α̇β̇

. (1.2.71)

Also note that
εαβεβγ = δα

γ

εα̇β̇εβ̇γ̇ = δα̇
γ̇ . (1.2.72)

Then we can define the Pauli matrices with upper indices

(σ̄µ)α̇α ≡ εαβεα̇β̇(σµ)ββ̇

= −(iσ2)α̇β̇(σµ T )β̇β(iσ2)βα. (1.2.73)

We can write the trace condition as

(σµ)αα̇(σ̄ν)α̇α = +2gµν (1.2.74)

and equation (1.2.69) has the simple form

xµ = +
1
2
( 6 x)αα̇(σ̄µ)α̇α = +

1
2
Tr[ 6 xσ̄µ]. (1.2.75)

The σ̄µ matrices are given by

(σ̄0)α̇α ≡
(

1 0
0 1

)

α̇α

= +(σ0)α̇α
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(σ̄1)α̇α ≡
(

0 −1
−1 0

)

α̇α

= −(σ1)α̇α

(σ̄2)α̇α ≡
(

0 +i
−i 0

)

α̇α

= −(σ2)α̇α

(σ̄3)α̇α ≡
(
−1 0
0 +1

)

α̇α

= −(σ3)α̇α. (1.2.76)

We can readily derive the completeness properties of the Pauli matrices

(σµ)αα̇(σ̄ν)α̇α = +2gµν (1.2.77)

(σµ)αα̇(σ̄µ)β̇β = +2δ β
α δβ̇

α̇. (1.2.78)

Further products of two yield

(σµ)αα̇(σ̄ν )α̇β + (σν)αα̇(σ̄µ)α̇β = 2gµνδ β
α

(σ̄µ)α̇α(σν )αβ̇ + (σ̄ν)α̇α(σµ)αβ̇ = 2gµνδα̇
β̇
. (1.2.79)

If S is an element of SL(2,C) (that is 2x2 complex matrices with determinant
equal to one) with matrix elements S β

α , where α labels the rows and β labels the
columns, and 6 x is a Hermitian matrix, then we can define the transformed matrix
6 x′ as

( 6 x′)αα̇ = S β
α ( 6 x)ββ̇S

∗β̇
α̇ (1.2.80)

with S∗ the complex conjugate of S, again with α̇ labelling the rows and β̇ labelling
the columns, or taking the transpose we have (S†)β̇

α̇ = (S∗) β̇
α̇ , with β̇ labelling

the rows and α̇ labeling the columns of S†. Since detS = S 1
1 S

2
2 −S 2

1 S
1

2 = 1 we
have

det 6 x′ = det 6 x. (1.2.81)

Calculating the determinant we find

det 6 x = (x0 + x3)(x0 − x3)− (x1 − ix2)(x1 + ix2) = (x0)2 − (x1)2 − (x2)2 − (x3)2

= xµx
µ

= det 6 x′ = x′µx
′µ; (1.2.82)
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the determinant is the Minkowski interval and is invariant. Thus, the transforma-
tion

6 x′ = S 6 xS† (1.2.83)

corresponds to a Lorentz transformation, Λµν, of the coordinates. In order to
determine it in terms of the SL(2,C) matrix S consider

x′µ =
1
2
( 6 x′)αα̇(σ̄µ)α̇α

=
1
2
S β

α ( 6 x)ββ̇S
∗β̇
α̇ (σ̄µ)α̇α =

1
2
S β

α S∗β̇
α̇ (σν)ββ̇(σ̄µ)α̇αxν

≡ Λµνxν (1.2.84)

where we identify

Λµν ≡ 1
2
Tr[SσνS†σ̄µ] (1.2.85)

that is,

Λµν(σµ)αα̇ =
1
2
S γ

β S∗γ̇

β̇
(σν)γγ̇(σ̄µ)β̇β(σµ)αα̇ = S γ

β S∗γ̇

β̇
(σν)γγ̇δ

β
α δ β̇

α̇

= S γ
α S∗γ̇

α̇ (σν)γγ̇ ,

or more simply written
Λµνσµ = SσνS†. (1.2.86)

So for every element ±S of SL(2,C) there is an element Λ of the Lorentz group,
the mapping of SL(2,C) into L↑

− is 2 to 1 since ±S → Λ.
We can use the SL(2,C) matrices to define the spinor representations of the

Lorentz group. The spinor transformation laws are given by

ψ′
α(x′) ≡ S β

α ψβ(x)

ψ′α(x′) ≡ ψβ(x)(S−1) α
β (1.2.87)

where S β
α (S−1) γ

β = δ γ
α and ψα and ψα are two different two component complex

spinors transforming (as we will see) as the ( 1
2 , 0) representation of the Lorentz

group, the ψ are called Weyl spinors. Similarly, we can use S† and (S†)−1 to
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define two more different Weyl spinors, the complex conjugates of ψ, denoted ψ̄,
which transform as (0, 1

2 ) representations of the Lorentz group

ψ̄′
α̇(x′) ≡ ψ̄β̇(x)(S†)β̇

α̇

ψ̄′α̇(x′) ≡ (S†−1)α̇
β̇
ψ̄β̇(x) (1.2.88)

where, for the adjoint matrices (S†)α̇
β̇
, α̇ labels the rows and β̇ labels the columns.

As with tensors, higher rank spinors transform just like products of the basic rank
1 spinors, for example,

ψ′
α1···αn

(x′) = S β1
α1

· · ·S βn
αn

ψβ1···βn(x)

ψ′
α1···αnα̇1···α̇m

(x′) = S β1
α1

· · ·S βm
α1

ψβ1···βnβ̇1···β̇m
(x)(S†)β̇1

α̇1
· · · (S†)β̇m

α̇m
.

(1.2.89)
Since S is special, i.e. det S = 1, we have

(S−1) β
α =

(
S 2

2 −S 2
1

−S 1
2 S 1

1

)

αβ

= εαγεβδS
γ

δ (1.2.90)

or in matrix notation
S−1 = −εST ε. (1.2.91)

Further ε is an anti-symmetric invariant second rank spinor, that is

ε′αβ = S γ
α S δ

β εγδ

or again in matrix form
ε′ = SεST = SS−1ε = ε.

Since the indices can be confusing, let’s write this out explicitly

ε′12 = S 1
1 S

2
2 ε12 + S 2

1 S
1

2 ε21 = −detS = −1 = ε12.

So indeed ε′αβ = εαβ, ε is an invariant second rank spinor. Hence, we can use ε to
lower and raise indices of the spinors analogous to the invariant metric tensor gµν

which lowers and raises vector indices

ψα = εαβψβ
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ψα = εαβψ
β

ψ̄α̇ = εα̇β̇ψ̄β̇

ψ̄α̇ = εα̇β̇ψ̄
β̇. (1.2.92)

As a consequence of (1.2.92) the transformation law for ψα, for instance, follows
from that of ψα

ψ′α(x′) = εαβψ′
β(x′) = εαβS γ

β ψγ(x)

= εαβS γ
β εγδψ

δ(x) = −εδγS
γ

β εβαψ
δ(x) = ψδ(x)(S−1) α

δ . (1.2.93)

Thus, we can contract similar spinor indices to make Lorentz scalars

ψ′α(x′)ψ′
α(x′) = (S−1) α

β S γ
α ψβ(x)ψγ (x)

= δ γ
β ψβ(x)ψγ (x) = ψα(x)ψα(x) (1.2.94)

and similarly for ψ̄α̇ψ̄
α̇. Also using the properties of the Pauli matrices we can

make a four vector object whose vector index then contracts with another four
vector index in order to make a scalar, for example

ψ′α(x′)(σµ)αα̇∂
′
µψ̄

′α̇(x′) = (S−1) α
β (S†−1)α̇

β̇
(Λ−1)ν

µψ
β(x)(σµ)αα̇∂ν ψ̄

β̇(x).

But

(S−1) α
β (σµ)αα̇(S†−1)α̇

β̇
Λµν = (S−1) α

β (σµ)αα̇(S†−1)α̇
β̇

(
1
2
Tr[SσνS†σ̄µ]

)

=
1
2
(S−1) α

β (S†−1)α̇
β̇
(SσνS†)δδ̇(σµ)αα̇(σ̄µ)δ̇δ

= (S−1) α
β (S†−1)α̇

β̇
(SσνS†)δδ̇δ

δ
α δ

δ̇
α̇ = (S−1) α

β (S†−1)α̇
β̇
(SσνS†)αα̇

= (σν)ββ̇, (1.2.95)

hence
ψ′α(x′)(σµ)αα̇∂

′
µψ̄

′α̇(x′) = ψα(x)(σµ)αα̇∂µψ̄
α̇(x). (1.2.96)

As stated, ψ 6 ∂ψ̄ is a Lorentz invariant.
Finally, let’s consider infinitesimal Lorentz transformations

x′µ = xµ + ωµνxν (1.2.97)
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where now, for infinitesimal transformations, S differs from the identity by an
infinitesimal matrix Σ

S β
α = δ β

α + Σ β
α

S∗β̇
α̇ = δ β̇

α̇ + Σ∗β̇
α̇ . (1.2.98)

Since ε is invariant we have that

εαβ = S γ
α S δ

β εγδ = (δ γ
α + Σ γ

α )(δ δ
β + Σ δ

β )εγδ

=
[
δ γ
α δ δ

β + Σ γ
α δ

δ
β + Σ δ

β δ
γ

α

]
εγδ = εαβ + εγβΣ γ

α + εαγΣ γ
β (1.2.99)

which implies that Σ is symmetric. With lowered indices we have

Σβα − Σαβ = 0. (1.2.100)

Now given ωµν we desire Σαβ; using Λµν = 1
2Tr[Sσ

νS†σ̄µ] we find

gµν + ωµν =
1
2

(
δ β
α + Σ β

α

)
(σν)ββ̇

(
δ β̇
α̇ + Σ∗β̇

α̇

)
(σ̄µ)α̇α

=
1
2
(σν)αα̇(σ̄µ)α̇α +

1
2
Σ β

α (σν )βα̇(σ̄µ)α̇α +
1
2
(σν)αβ̇Σ∗β̇

α̇ (σ̄µ)α̇α

= gµν +
1
2
Σ β

α (σν)βα̇(σ̄µ)α̇α +
1
2
Σ∗β̇

α̇ (σ̄µ)α̇α(σν )αβ̇. (1.2.101)

Thus, we must find a solution for

ωµν =
1
2
Σ β

α (σν )βα̇(σ̄µ)α̇α +
1
2
Σ∗β̇

α̇ (σ̄µ)α̇α(σν)αβ̇

=
1
2
Tr

[
Σσν σ̄µ + Σ†σ̄µσν

]
. (1.2.102)

Multiplying by σµ and σ̄ν we have

(σµ)γγ̇(σ̄ν )δ̇δωµν =
1
2

[
(σµ)γγ̇(σ̄ν)δ̇δ − (σν )γγ̇(σ̄µ)δ̇δ

]
ωµν

= 2Σ δ
γ δ

δ̇
γ̇ + 2Σ∗δ̇

γ̇ δ
δ

γ . (1.2.103)

Using Σ α
α = 0 = Σ∗α̇

α̇ , we find

Σ δ
γ =

1
8

[
(σµ)γγ̇(σ̄ν)γ̇δ − (σν )γγ̇(σ̄ν )γ̇δ

]
ωµν (1.2.104)
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and similarly

Σ∗δ̇
γ̇ =

1
8

[
(σ̄ν )δ̇γ(σµ)γγ̇ − (σ̄µ)δ̇γ(σν )γγ̇

]
ωµν. (1.2.105)

The above commutators of the Pauli matrices arise frequently and so we define
the matrices

(σµν) β
α ≡ i

2
[
(σµ)αα̇(σ̄ν )α̇β − (σν)αα̇(σ̄µ)α̇β

]
=
i

2
(σµσ̄ν − σν σ̄µ) β

α

(σ̄µν )α̇
β̇
≡ i

2

[
(σ̄µ)α̇α(σν)αβ̇ − (σ̄ν )α̇α(σµ)αβ̇

]
=
i

2
(σ̄µσν − σ̄νσµ)α̇

β̇
. (1.2.106)

Thus we secure
Σ β

α =
−i
4
ωµν(σµν ) β

α

(Σ†)β̇
α̇ =

+i
4
ωµν(σ̄µν )β̇

α̇. (1.2.107)

¿From our definitions of (σµ)αα̇ we see that

(σµ)αα̇(σ̄ν)α̇β = gµνδ β
α − i(σµν) β

α

(σ̄µ)α̇α(σν)αβ̇ = gµνδα̇
β̇
− i(σ̄µν )α̇

β̇
. (1.2.108)

The infinitesimal spinor transformations can now be obtained

ψ′
α(x′) = S β

α ψβ(x) = ψα(x) − i

4
ωµν(σµν ) β

α ψβ(x)

≡ ψα(x) − 1
2
ωµν(Dµν ) β

α ψβ(x) (1.2.109)

and
ψ̄′

α̇(x′) = ψ̄β̇(x)(S†)β̇
α̇ = ψ̄α̇(x) +

i

4
ωµν ψ̄β̇(x)(σ̄µν )β̇

α̇

≡ ψ̄α̇(x) − 1
2
ωµν(D̄µν )β̇

α̇. (1.2.110)

Hence, the spinor representations are given by

(Dµν ) β
α ≡ +i

2
(σµν ) β

α

(D̄µν )β̇
α̇ ≡ −i

2
(σ̄µν )β̇

α̇. (1.2.111)
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We must check that these matrices indeed obey the Lorentz algebra as did the
tensor representation matrices. After some tedious Pauli matrix algebra we find

[σµν , σρσ] β
α =

−1
4

[(σµσ̄ν − σν σ̄µ), (σρσ̄σ − σσσ̄ρ)] β
α

= −2i (gµρσνσ − gµσσνρ + gνσσµρ − gνρσµσ) β
α . (1.2.112)

Thus the spinor representation obeys the Lorentz algebra

[Dµν ,Dρσ ] β
α = (gµρDνσ − gµσDνρ + gνσDµρ − gνρDµσ) β

α , (1.1.113)

and ψα is the ( 1
2 , 0) spinor representation of the Lorentz group. Similarly the

commutation relation for σ̄µν can be worked out and we find that the complex
conjugate dotted spinors ψ̄α̇ are the (0, 1

2 ) representation of the Lorentz group
with the D̄µν obeying the Lorentz algebra.

As with tensors, we find the intrinsic variations of the spinor fields are given
by

δ̄ψα = ψ′
α(x) − ψα(x) = δψα − δxµ∂µψα

δ̄ψ̄α̇ = ψ̄′
α̇(x) − ψ̄α̇(x) = δψ̄α̇ − δxµ∂µψ̄α̇. (1.2.114)

For Poincare’ transformations

x′µ = xµ + ωµνxν + εµ

we find that

δ̄ψα =
1
2
ωµν

[
(xµ∂ν − xν∂µ)δ β

α − (Dµν ) β
α

]
− εµ∂µψα(x)

≡ − i

2
ωµν(Mµν ) β

α ψβ(x) + iεµPµψα(x) (1.2.115)

and
δ̄ψ̄α̇ =

1
2
ωµν

[
(xµ∂ν − xν∂µ)δβ̇

α̇ − (D̄µν )β̇
α̇

]
ψβ̇(x) − εµ∂µψ̄α̇(x)

≡ − i

2
ωµν(Mµν )β̇

α̇ψ̄β̇(x) + iεµPµψ̄α̇(x). (1.2.116)

As with tensors, the Pµ and Mµν obey the defining commutation relations of the
Poincare’ group, equation (1.2.51). Note that in the rest frame for ψ(x), assuming
it describes a massive particle with rest frame four momentum pµ = (m, 0, 0, 0),

J i ≡ 1
2
εijkM

jk =
i

2
εijkD

jk = −1
4
εijkσ

jk
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= +
1
2
σi, (1.2.117)

hence the third component of the intrinsic angular momentum J3 has eigenvalues
±1

2
and the particle has spin 1

2
. Similarly finding ~K we have that ~N · ~N = 1

2
( 1
2
+1)

and ~N† · ~N† = 0, so ψα is the ( 1
2 , 0) representation of the Lorentz group. Similarly

we find that ψ̄α̇ is the (0, 1
2) representation of the Lorentz group.

For finite Poincare’ transformations

x′µ = Λµνxν + aµ (1.2.118)

we again exponentiate the generators to obtain

ψ′
α(x) = S β

α ψβ(Λ−1(x − a))

=
[
e+iaµPµe−

i
2 ωµν(Λ)Mµν

] β

α
ψβ(x) (1.2.119)

and

ψ̄′
α̇(x) = ψ̄β̇(Λ−1(x − a))(S†)β̇

α̇

=
[
e+iaµPµe−

i
2 ωµν (Λ)Mµν

]β̇

α̇
ψ̄β̇(x) (1.2.120)

with

Λµν =
1
2
Tr[SσνS†σ̄µ] (1.2.121)

and ωµν(Λ) given by equation (1.2.57)

e
1
2 ωµν(Λ)(xµ∂ν−xν∂µ)xρ = (Λ−1)ρ

σx
σ. (1.2.122)

Thus we have found all representations of the Poincare’ group.
Finally, let’s relate our two-component Weyl spinors to the usual Dirac four-

component spinors. We can realize the Clifford algebra defining the 4x4 Dirac
matrices γµa

b by using the Pauli matrices, this representation being referred to as
the Weyl basis (or representation) or the chiral basis (or representation). Defining
the Dirac matrices as

γµ ≡
(

0 σµ

σ̄µ 0

)
, (1.2.123)
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that is,

γ0a
b =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




ab

γ1a
b =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




ab

γ2a
b =




0 0 0 −i
0 0 +i 0
0 +i 0 0
−i 0 0 0




ab

γ3a
b =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0




ab

. (1.2.124)

Thus, the γµ obey the defining Dirac anti-commutation relations

γµγν + γνγµ = 2gµν1. (1.2.125)

Also, we can define an additional matrix γ5

γ5 ≡ +iγ0γ1γ2γ3

=
(
−σ0 0
0 +σ̄0

)
=




−1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 +1


 . (1.2.126)

In this basis the 4 component complex Dirac spinor, denoted ψa
D, is given in terms

of two Weyl spinors ψα and χ̄α̇

ψa
D ≡

(
ψα

χ̄α̇

)
=



ψ1

ψ2

χ̄1

χ̄2




a

. (1.2.127)

Under a Lorentz transformation the Dirac spinor transforms as

ψ′a
D(x′) = La

bψ
b
D(x) (1.2.128)
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The Majorana condition (1.2.134) implies that

Cψ̄T
M = iγ2γ0γ0ψ∗

M

=
(

0 iσ2

iσ̄2 0

)(
ψ̄
χ

)

=
(
χα

ψ̄α̇

)
≡ ψM =

(
ψα

χ̄α̇

)
, (1.2.137)

or ψ = χ, ψ̄ = χ̄. Hence we find that a 4 component Majorana spinor is made up
of a 2 component Weyl spinor and its complex conjugate

ψM =
(
ψα

ψ̄α̇

)
. (1.2.138)

Needless to say the Weyl representation for the Dirac γ matrices is not the
only way we could have reralized the Dirac algebra

γµγν + γνγµ = 2gµν1. (1.2.139)

After all, this remains invariant under unitary transformations U, U† = U−1

γ̂µ ≡ U†γµU,

and so (1.2.139) becomes

γ̂µγ̂ν + γ̂ν γ̂µ = 2gµν1. (1.2.140)

Further we can use these unitary transformations to define linear combinations of
the Weyl spinor components to form a four-component complex spinor

ψ̂D ≡ U†ψD. (1.2.141)

Under a Poincare’ transformation we have

ψ̂′
D(x′) = U†ψ′

D(x′) = U†LψD(x) = U†LUU†ψD(x)

= U†LUψD(x) = L̂ψ̂D(x) (1.2.142)
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where L̂ ≡ U†LU . As before we have for the hatted transformations

Λµν γ̂µ = ΛµνU†γµU = U†LγνL−1U = U†LUU†γνUU†L−1U

= L̂γ̂νL̂−1. (1.2.143)

Thus, all relations go through as before with all quantities replaced by their hatted
values.

There are several common choices for the four- component Dirac quantities.
We have first defined the Weyl (or chiral) representation, in brief review in obvious
notation

γµ
Weyl ≡

(
0 σµ

σ̄µ 0

)
. (1.2.144)

That is

γ0
Weyl =

(
0 1
1 0

)

γi
Weyl =

(
o σi

σ̄i 0

)
=

(
0 σi

−σi 0

)
. (1.2.145)

The Weyl basis Dirac spinor, now denoted ψWeyl, is given as

ψWeyl ≡
(
ψα

χ̄α̇

)
=



ψ1

ψ2

χ̄1

χ̄2


 . (1.2.146)

Under Poincare’ transformations

ψ′
Weyl(x

′) = LψWeyl(x) (1.2.147)

with

L =
(
S 0
0 S†−1

)
. (1.2.148)

Left handed and right handed chiral spinors are defined by

ψWeyl L ≡ 1
2
(1 − γ5 Weyl)ψWeyl(x) =

(
ψα

0

)

ψWeyl R ≡ 1
2
(1 + γ5 Weyl)ψWeyl(x) =

(
0
χ̄α̇

)
(1.2.149)
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with

γ5 Weyl =
(
−1 0
0 +1

)
.

Another common representation is that of Dirac

γµ
Dirac ≡ U†γµ

WeylU (1.2.150)

with

U ≡ 1√
2

(
1 −1
1 1

)

U† =
1√
2

(
1 1
−1 1

)
. (1.2.151)

Hence

γµ
Dirac =

1
2

(
(σ + σ̄)µ (σ − σ̄)µ

(σ̄ − σ)µ −(σ + σ̄)µ

)
(1.2.152)

that is

γ0
Dirac =

(
1 0
0 −1

)

γi
Dirac =

(
0 σi

σ̄i 0

)
=

(
0 σi

−σi 0

)
. (1.2.153

Writing out all the components in order to be explicit, we have

γ0
Dirac =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




γ1
Dirac =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




γ2
Dirac =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0




γ3
Dirac =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 . (1.2.154)
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The γ5 matrix becomes

γ5 Dirac ≡ U†γ5 WeylU =
(

0 1
1 0

)
. (1.2.155)

Note the γ matrices in all representations obey γ0† = γ0, γi† = −γi, γ†5 = γ5. The
Dirac four component spinors (or bi-spinors as they are sometimes called) in the
Dirac representation are

ψDirac ≡ U†ψWeyl =
1√
2

(
1 1
−1 1

)(
ψ
χ̄

)

=
1√
2

(
(ψ + χ̄)

(−ψ + χ̄)

)
. (1.2.156)

Hence, the chiral spinors are given by

ψDirac L =
1
2
(1 − γ5 Dirac)ψDirac = U†ψWeyl L =

1√
2

(
ψ
−ψ

)

ψDirac R =
1
2
(1 + γ5 Dirac)ψDirac = U†ψWeyl R =

1√
2

(
χ̄
χ̄

)
. (1.2.157)

Another common representation is the Majorana representation in which all
the γ matrices have pure imaginary matrix elements. In this basis we have

γµ
Majorana ≡ U†γµ

DiracU (1.2.158)

with the unitary transformation matrix also being hermitian and given as

U ≡ 1√
2

(
1 σ2

σ2 −1

)
= U†. (1.2.159)
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