
CHAPTER 1.
SPECIAL RELATIVITY AND QUANTUM MECHANICS

§1.1 PARTICLES AND FIELDS

The two great structures of theoretical physics, the theory of special
relativity and quantum mechanics, have been combined in the framework of
relativistic quantum field theory to provide a language for the description
of the most fundamental interactions of the elemental constituents of mat-
ter. From our present vantage point we see that the justification for such a
formalism is that it is extremely successful in explaining all known elemen-
tary particle experiments up to the present experimentally accessible energies
of approximately 500 GeV; that is down to distances comparable to the de
Broglie-Einstein wavelength for such energies λ = hc/E =2.5 × 10−16 cm =
0.0025 fermi. These energies are achieved at high energy laboratories such as
Fermilab, CERN, SLAC and DESY. It is quite remarkable that quantum me-
chanics, a theory formulated in order to explain atomic phenomena involving
energies around 10 eV, that is to describe experiments dealing with atomic
distances comparable to the Bohr radius aBohr = h̄2/me2 = 0.5× 10−8 cm ,
can, when combined with special relativity, provide a correct description of
nature at distance scales a billion times shorter!

The origins of quantum field theory (QFT) , naturally, lie in those of
quantum mechanics. Max Planck in explaining the blackbody radiation spec-
trum and Albert Einstein in analysing the photoelectric effect both concluded
that electromagnetic radiation although classically appearing as a wave ac-
tually consisted of a superposition of many particles called photons. Pho-
tons obey the special relativistic relation between energy and momentum for
massless particles; namely E2 = ~p 2c2 with the de Broglie relation for the
momentum ~p = h̄~k with ~k the wave vector of the photon. Hence the energy
of a collection of N monochromatic photons is simply E = Nh̄ω, where the
photon’s angular frequency ω = |~k|c. In addition the electomagnetic wave
has two independent directions of polarization orthogonal to the direction
of propagation of the wave. Hence we infer from this another property of
the individual photons, that is, there are two states of polarization possible
for a photon. So we find that the elemental constituents of electromagnetic
radiation are particles called photons each being completely characterized by
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its momentum ~p = h̄~k and its direction of polarization, which is orthogonal
to the momentum. Calling the polarization vectors ~ε1(~k) and ~ε2(~k), we have
that ~εr · ~εs = δrs and ~εr(~k) · ~k = 0 for r=1,2 . In addition we can choose ~ε1

and ~ε2 such that (~ε1(~k),~ε2(~k), ~k

|~k|
) form a right handed Cartesian coordinate

system basis.
With the development of quantum mechanics in the 1920’s came the

means to mathematically describe the state of a system containing photons.
Suppose we consider space to be free of charges so that the photons are non-
interacting (or alternatively, consider these photons to be in a charge free
volume with periodic boundary conditions so that their wave-vectors are in-
teger multiples of 2π over the volume’s linear dimension in each direction).
Then the states of this system can be described as having zero photons,
one single photon, two photons, and so on. According to the postulates of
quantum mechanics these states of the system are represented by vectors in
Hilbert space. Each state and hence each vector is completely characterized
by the values of all the simultaneously observable properties of the system.
As we have seen each photon is completely characterized by its momentum
h̄~k (once its momentum is specified its energy is known from the special rel-
ativistic energy formula E = +

√
~p 2c2 ) and its polarization ~εr(~k). Thus we

can denote the single photon states of the system by the Dirac ket-vector
|~k, r > . That is |~k, 1 > is the state vector of the system when it contains
a single photon of momentum h̄~k and polarization ~ε1(~k). Likewise |~k, 2 >

is the state vector of the system when it contains a single photon of mo-
mentum h̄~k and polarization ~ε2(~k). The multi- photon states of the system
can be built up as direct products of the one photon states. That is a state,
|(~k1, r1), (~k2, r2), ..., (~kN , rN ) > with N photons with momentum~k1, ~k2, ..., ~kN

and polarization ~εr1 (~k1),~εr2 (~k2), ...,~εrN (~kN ), respectively, is given by

|(~k1, r1), ..., (~kN , rN ) >= |~k1, r1 > |~k2, r2 > ...|~kN , rN > . (1.1.1)

In particular the no photon state, called the vacuum, is denoted |0 >, with
obvious interpretation.

Since each photon carries momentum h̄~k, the momentum of the N photon
state
|(~k1, r1), ..., (~kN , rN ) > is just the sum of the individual photon’s momentum
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the transversality of the photon). Its intrinsic angular momentum when
projected along the direction of motion is ±h̄. That is

~J · ~k/|~k||k,± >= ±h̄|~k,± > (1.1.4)

where |~k,± > denote the right handed and left handed circularly polarized
states. To elucidate this point further consider rotations of the plane polar-
ization vectors about the ~k axis. First since ~εr(~k) is a vector we find that
under infinitesimal rotations through angle δθ

~ε ′
1 = ~ε1 + δθ~ε2

~ε ′
2 = ~ε2 − δθ~ε1. (1.1.5)

Hence the variation of ~εr is

δ~ε1 = ~ε ′
1 − ~ε1 = δθ~ε2

δ~ε2 = ~ε ′
2 − ~ε2 = −δθ~ε1. (1.1.6)

In the S′ coordinate system we have a photon of polarization ~ε ′
1 , for instance,

described by the state vector |~k, 1′ >. In the S frame this photon’s state
vector |~k, 1′ > is just a superposition of the two photon polarization states
in the unrotated frame

|~k, 1′ >= |~k, 1 > +δθ|~k, 2 > . (1.1.7)

In quantum mechanics, rotations, as well as other symmetry transfor-
mations, are carried out by unitary operators. For rotations about the ~k axis
this operator is

U(δθ) = e
− i

h̄ δθ ~J · ~k

|~k| (1.1.8)

where ~J is the angular momentum operator with components that obey the
angular momentum commutation relations

[Ji, Jj ] = ih̄εijkJk. (1.1.9)

Rotations are said to be generated by the angular momentum operator. The
rotation operator then transforms the photon state in the initial frame into
the photon state in the rotated frame

|~k, 1′ >= U(δθ)|~k, 1 > . (1.1.10)
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For infinitesimal rotations we can expand the exponential to first order only
to find

|~k, 1′ >=

(
1 − i

h̄
δθ ~J ·

~k

|k|

)
|~k, 1 >

= |~k, 1 > −
(

i

h̄
δθ ~J ·

~k

|~k|

)
|~k, 1 >, (1.1.11)

comparing this with equation (1.1.7) for the rotated photon state we have
that

|~k, 1′ >= |~k, 1 > −

(
i

h̄
δθ ~J ·

~k

|~k|

)
|~k, 1 >

= |~k, 1 > +δθ|~k, 2 > (1.1.12)

so (
~J ·

~k

|~k|

)
|~k, 1 >= +ih̄|~k, 2 > . (1.1.13)

Similarly we find (
~J ·

~k

|~k|

)
|~k, 2 >= −ih̄|~k, 1 > . (1.1.14)

The right handed and left handed circularly polarized photon states are
just the eigenstates of the projected angular momentum and are superposi-
tions of the plane polarization states. That is we define right handed and left
handed polarization vectors (+ for right,− for left)

~ε±(~k) ≡ ∓ 1√
2
(~ε1(~k) ± i~ε2(~k)), (1.1.15)

whose variation under rotations is found to be

δ~ε± = ∓iδθ~ε±. (1.1.16)

Thus the corresponding right handed and left handed circularly polarized
photon states are defined by

|~k,± >≡ ± 1√
2
(|~k, 1 > ±i|~k, 2 >) (1.1.17)
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and we find that (
~J ·

~k

|~k|

)
|~k,± >= ±h̄|~k,± > . (1.1.18)

The projection of the angular momentum along the direction of motion is
called the helicity of the particle. The photon has helicity ±1. We can use
linearly polarized photon states |~k, r > or circularly polarized photon states
|~k,± > or any superposition. For each value of ~k either pair form a basis for
one photon states in Hilbert space.

As we have seen the N photon states are written as direct products of the
one photon states and hence the total Hilbert space of states of our system
is a sum over the N photon subspaces. The inner product of state vectors
as well as the resolution of the identity in the whole space follows from the
corresponding one photon state properties. Since the one photon states with
different momentum and polarization are orthogonal we have that

< ~k′, r′|~k, r >= µ(~k)−1δrr′δ3(~k − ~k′) (1.1.19)

where µ(~k) is the arbitrary normalization factor to be specified. Since the
one particle subspace is spanned by |~k, r > we have the resolution of the
identity on this subspace

1 =
2∑

r=1

∫
d3kµ(~k)|~k, r >< ~k, r| (1.1.20)

where µ(~k) is the same normalization factor appearing in the inner product.
We can check this by letting it operate on the state |~k, r >

|~k, r >=
2∑

s=1

∫
d3lµ(~l)(< ~l, s|~k, r >)|~l, s >

=
2∑

s=1

∫
d3lµ(~l)

[
µ(~l)−1δrsδ

3(~k −~l)
]
|~l, s >

= |~k, r > . (1.1.21)
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Typically 1

µ(~k)
is taken to be factors such as 1, (

√
(2ωk)), 2ωk times various

powers of 2π. In these notes we will choose the Lorentz invariant convention
that

µ(~k) =
1

((2π)32ωk)
(1.1.22)

with ωk = |~k|c or more generally for massive particles ωk =
√

~k2 + m2 (recall
c=1). Hence for us the inner product is

< ~k′, r′|~k, r >= (2π)32ωkδrr′ δ3(~k − ~k′) (1.1.23)

and the one photon subspace identity is resolved to be

1 =
2∑

r=1

∫
d3k

(2π)32ωk
|~k, r >< ~k, r| . (1.1.24)

This choice of normalization is invariant under restricted Lorentz transfor-
mations as can be seen by re-writing the momentum integral in a manifestly
invariant form. Consider

d4kδ(k2 − m2)θ(ko) (1.1.25)

where θ(k0) is the step function. This expression is invariant since d4k as
well as k2 = kλkλ are; since restricted Lorentz transformations preserve the
sign of k0, it also is manifestly invariant. Writing the Dirac delta function as
the sum of positive and negative energy delta functions

δ(k2 − m2) = δ((k0 − ωk)(k0 + ωk))

=
1

2ωk
δ(k0 − ωk) +

1
2ωk

δ(k0 + ωk), (1.1.26)

with ωk ≡
√

k2 + m2, the restricted Lorentz invariance is proved and we have

d3k

2ωk
= d4kδ(k2 − m2)θ(k0). (1.1.27)

We can discuss more conveniently the multi- photon states by introduc-
ing operators that create and annihilate photons. When acting on a state
vector the creation operator for a photon of momentum h̄~k and polarization
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~εr(~k), denoted, a†
r(~k), adds the photon to the state. Similarly the annihila-

tion (or destruction) operator for a photon of momentum h̄~k and polarization
~εr(~k), denoted ar(~k), removes that particular photon from the state when act-
ing on it. ar(~k) and a†

r(~k) are Hermitian conjugates of each other. Thus if
we start with the no photon state, the vacuum state, and try to remove a
photon from it we cannot and the operation gives zero

ar(~k)|0 >≡ 0. (1.1.28)

On the other hand if we add a single photon to the vacuum state we obtain
the one photon state

a†
r(~k) ≡ |~k, r > . (1.1.29)

Starting with the one photon state we can destroy the one photon to return
to the vacuum state

ar(~k)|~k′, r′ >= α|0 > (1.1.30)

with α a constant of proportionality. So we find that

[ar(~k), a†
r′ (~k′)]|0 >= α|0 >6= 0. (1.1.31)

Assuming that the commutator is a c-number we can find α from the state
normalization

< ~k′, r′|~k, r >=< 0|ar′ (~k′)a†
r(~k)|0 >

or
1

µ(~k)
δrr′δ3(~k − ~k′) =< 0|[ar′ (~k′), a†

r(~k)]|0 > (1.1.32)

since
ar′(~k′)|0 >= 0.

Thus with < 0|0 >≡ 1 and [a, a†] a c-number we have

[ar′ (~k′), a†
r(~k)] =

1

µ(~k)
δrr′δ3(~k − ~k′). (1.1.33)

With our conventions 1

µ(~k)
= (2π)32ωk this yields

[ar′ (~k′), a†
r(~k)] = (2π)32ωkδrr′δ3(~k − ~k′). (1.1.34)
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Further we can represent the two photon state by the action of a†
r(~k) twice

|(~k1, r1), (~k2, r2) >= a†
r1

(~k1)a†
r2

(~k2)|0 > . (1.1.35)

Since photons obey Bose-Einstein statistics we have that the two photon
state is symmetric under the interchange of particles

|(~k1, r1), (~k2, r2) >= |(~k2, r2), (~k1, r1) > . (1.1.36)

This implies that
[a†

r′ (~k′), a†
r(~k)] = 0 (1.1.37)

taking the adjoint gives
[ar′ (~k′), ar(~k)] = 0. (1.1.38)

Finally the general N photon state is given by a†
r(~k) acting N times on the

vacuum

|(~k1, r1), ..., (~kN , rN ) >= a†
r1

(~k1)...a†
rN

(~kN )|0 > . (1.1.39)

The structure of our Hilbert space of states is seen to be summarized by the
creation and annihilation operator algebra

[ar′ (~k′), a†
r(~k)] = (2π)32ωkδrr′δ3(~k − ~k′) (1.1.40)

[ar′(~k′), ar(~k)] = 0 = [a†
r′ (~k′), a†

r(~k)]. (1.1.41)

(Due to our continuum normalization we must be careful about states with
n photons of momentum ~k and polarization εr(~k), |n(~k, r) >. These can be
constructed by going over to discrete momentum notation by dividing up ~k

space into cells of volume ∆Ωk. Then
∫

d3k =
∑

k

∆Ωk

δ3(~k − ~k′) =
1

∆Ωk
δkk′ . (1.1.42)

If we define
a~k,r ≡ (

√
∆Ωk) ar(~k) (1.1.43)
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then
[a~k′,r′ , a

†
~k,r

] =
√

(∆Ωk′∆Ωk)(2π)32ωkδrr′
1

∆Ωk
δkk′

= (2π)32ωkδrr′δkk′ . (1.1.44)

The n identical photon state is

|n(~k, r) >=
1√
n!

(a†
~k,r

)n|0 > . ) (1.1.45)

Further all of the observables, like H and ~P , can be constructed in terms
of the creation and annihilation operators. To do this note that

a†
r(~k)ar(~k)|(~k1, r1), ..., (~kN , rN ) >

=

(
N∑

i=1

(2π)32ωkδrriδ
3(~k − ~ki)

)
|(~k1, r1), ..., (~kN , rN ) > . (1.1.46)

Suppose we integrate ~k over some volume, Ωk, in ~k space and sum over
polarizations r=1,2

2∑

r=1

∫

Ωk

d3k

(2π)32ωk
a†

r(~k)ar(~k)|(~k1, r1), · · · , (~kN , rN ) >

=

(
N∑

i=1

δ(~ki ⊂ Ωk)

)
|(~k1, r1), · · · , (~kN , rN ) > (1.1.47)

where

δ(~k ⊂ Ωk) =
{

1 if k ⊂ Ωk

0 if k 6⊂ Ωk
. (1.1.48)

If ~ki ⊂ Ωk we have a contribution to the sum, we are just counting the
number of photons with momentum contained in the volume Ωk. Hence the
operator

NΩk ≡
2∑

r=1

∫

Ωk

d3k

(2π)32ωk
a†

r(~k)ar(~k) (1.1.49)

is the photon counting or number operator for volume Ωk. If we integrate ~k

over all space then we find the total photon number operator N∞

N∞ =
2∑

r=1

∫
d3k

(2π)32ωk
a†

r(~k)ar(~k) (1.1.50)
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such that

N∞|(~k1, r1), · · · , (~kN , rN ) >= N |(~k1, r1), · · · , (~kN , rN ) > . (1.1.51)

The number operator allows us to express the Hamiltonian and the momen-
tum operators as sums over momentum of the number operator for photons
of momentum ~k and either polarization times the photon’s energy, h̄ωk, or
its momentum, h̄~k

H =
2∑

r=1

∫
d3k

(2π)32ωk
h̄ωka†

r(~k)ar(~k) (1.1.52)

~P =
2∑

r=1

∫
d3k

(2π)32ωk
h̄~ka†

r(~k)ar(~k). (1.1.53)

Using (1.1.40, 1.1.41) directly we can verify that indeed these give the energy
and momentum of the N photon state

H|(~k1, r1), · · · , (~kN , rN ) >= (
N∑

i=1

h̄ωki )|(~k1, r1), · · · , (~kN , rN ) > (1.1.54)

~P |(~k1, r1), · · · , (~kN , rN ) >= (
N∑

i=1

h̄~ki)|(~k1, r1), · · · , (~kN , rN ) > (1.1.55)

in agreement with equations (1.1.2) and (1.1.3).
Since the creation and annihilation operators correspond to a single pho-

ton energy, their time evolution in the Heisenberg representation is simply
oscillatory

ar(~k, t) ≡ e−iωktar(~k). (1.1.56)

We can use the Hamiltonian operator above and the canonical commutation
relations to verify that the Heisenberg equations of motion are satisfied for
ar(~k, t)

[H,ar(~k, t)] = −ih̄
∂

∂t
ar(~k, t). (1.1.57)

That is

[H,ar(~k, t)] =
2∑

s=1

∫
d3l

(2π)32ωl
h̄ωle

−iωkt[a†
s(~l)as(~l), ar(~k)]
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=
2∑

s=1

∫
d3l

(2π)32ωl
h̄ωle

−iωkt(−1)(2π)32ωlδrsδ
3(~k −~l)as(~l)

= −h̄ωkar(~k, t)

= −ih̄
∂

∂t
ar(~k, t). (1.1.58)

Rather than work in momentum space we can Fourier transform our
creation and annihilation operators to work in a coordinate representation.
Since a†

r(~k) creates a photon with momentum ~k and polarization ~εr(~k), that
is a plane wave, its wave function is ~εr(~k)e−i~k·~x, while ar(~k) annihilates a
photon with momentum ~k and polarization ~εr(~k), also a plane wave, so its
wave function is ~εr(~k)e+i~k·~x. Hence, summing over these plane waves, we
define the Heisenberg representation quantum field operator in space-time

~A(~x, t) ≡ ~A(+)(~x, t) + ~A(−)(~x, t) (1.1.59)

with

~A(+)(~x, t) ≡
2∑

r=1

∫
d3k

(2π)32ωk
~εr(~k)ar(~k)e+i~k·~x−iωkt (1.1.60)

~A(−)(~x, t) ≡
2∑

r=1

∫
d3k

(2π)32ωk
~εr(~k)a†

r(~k)e−i~k·~x+iωkt. (1.1.61)

Writing kx ≡ koxo − ~k · ~x = ωkt − ~k · ~x we have simply

~A(x) =
2∑

r=1

∫
d3k

(2π)32ωk
~εr(~k)[ar(~k)e−ikx + a†

r(~k)e+ikx]. (1.1.62)

~A(+) is the positive frequency part of ~A and it annihilates photons with wave
function

~ur(x) = ~εr(~k)e−ikx (1.1.63)

and ~A(−) is the negative frequency part of ~A and it creates photons with
wave function

~vr(x) = ~u∗
r(x) = ~ε ∗

r (~k)e+ikx = ~εr(~k)e+ikx. (1.1.64)
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The fact that ar(~k), a†
r(~k) are quantum operators implies the same for

~A(x). The quantization rules, that is the commutation relations for ar(~k)
and a†

r(~k), imply commutation relations for the space-time fields also. Recall
that the momentum space commutation rules look just like those of quantum
mechanics for generalized coordinates and momenta. That is define

(2π)32ωkQr(~k) ≡ (
√

(h̄/2))[ar(~k) + a†
r(~k)] (1.1.65)

Pr(~k) ≡ −i(
√

(h̄/2))[ar(~k) − a†
r(~k)]. (1.1.66)

Then the commutation relations (1.1.40, 1.1.41) imply that

[Pr(~k), Qs(~l )] = −ih̄δrsδ
3(~k −~l ) (1.1.67)

[Qr(~k), Qs(~l )] = 0 = [Pr(~k), Ps(~l )]. (1.1.68)

(In the discrete representation

Qr(~k) =
1√

∆Ωk

Q~k,r (1.1.69)

Pr(~k) =
1√

∆Ωk

P~k,r (1.1.70)

so that
[P~k,r, Q~l,s] = −ih̄δrsδkl. ) (1.1.71)

Note that the Hamiltonian becomes in term of Qr and Pr

H =
2∑

r=1

∫
d3k

(2π)3
[
1
4
P 2

r (~k) + (2π)6ω2
kQ2

r(~k)] − H0 (1.1.72)

with the constant

H0 =
∑

r=1

∫
d3k(

1
2
h̄ωk)δrrδ

3(~k − ~k)

which is just that of an infinite collection of harmonic oscillators. The space-
time quantum field can now be written as

~A(x) =
2∑

r=1

∫
d3k

√
2
h̄
~εr(~k)

[
Qr(~k) cos kx +

1
(2π)32ωk

Pr(~k) sin kx

]
.

(1.1.73)
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Treating ~A(x) as a generalized coordinate in our space-time representation,
then we define its canonically conjugate momentum field as the “velocity”
field

~Π(x) ≡ − ~̇A(x)

=
2∑

r=1

∫
d3k

√
2h̄ ~εr(~k)ωk

[
Qr(~k) sin kx − 1

(2π)32ωk
Pr(~k) cos kx

]
. (1.1.74)

The commutation relations for these Heisenberg fields at equal time become

[Πi(~x, t), Aj (~y, t)] = +i

∫
d3k

(2π)3

[
2∑

r=1

εi
r(~k)εj

r(~k)

]
cos
[
~k · (~x − ~y)

]

= +i

∫
d3k

(2π)3

(
δij − kikj

~k2

)
ei~k·(~x−~y)

= +iδij
tr(~x − ~y) (1.1.75)

where the transverse Dirac delta function is defined by

δij
tr(~x − ~y) ≡

∫
d3k

(2π)3

(
δij − kikj

~k2

)
ei~k·(~x−~y)

=
(

δij − ∂i
x∂j

x

∇2
x

)
δ3(~x − ~y)

so that
∂iδ

ij
tr(~x) = 0, (1.1.76)

that is δij
tr is divergenceless as is ~A and ~Π. These are the form of the quanti-

zation rules in coordinate space.
Since the relativistic energy-momentum relation holds for photons, ω2

k −
~k2 = k2 = 0, the wave functions obey the relativistic dispersion relation so
that

∂2~ur(x) = −k2~ur(x) = 0. (1.1.77)

The Heisenberg equations of motion describing the time evolution of the
momentum space operators are converted into a partial differential equation,
the wave equation, describing the time evolution of the space-time quantum
field operators

∂2 ~A(x) = 0. (1.1.78)
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In addition to this, recall that the polarization vectors are perpendicular to
the momentum of the photon so the wave function is transverse,

~∇ · ~ur(x) = −i~k · ~ur(x) = 0. (1.1.79)

Consequently the space-time field is constrained to be divergenceless

~∇ · ~A(x) = 0. (1.1.80)

(Thus the necessity of the transverse δ−function in the quantization rules.)
These equations just have the form of the Maxwell equations in free space
in the Coulomb gauge. In fact introducing electric and magnetic (quantum)
fields ~E and ~B, respectively, as

~E = −1
c

∂ ~A

∂t
~B = ~∇× ~A (1.1.81)

we find that
~∇ · ~E = 0 (1.1.82)

~∇ · ~B = 0 (1.1.83)

~∇× ~E = −1
c

∂ ~B

∂t
(1.1.84)

~∇× ~B = ~∇× ~∇× ~A = ~∇(~∇ · ~A) −∇2 ~A

= −∇2 ~A +
∂2 ~A

∂(ct)2
− ∂

∂(ct)

(
∂ ~A

∂(ct)

)

= ∂2 ~A +
1
c

∂ ~E

∂t

=
1
c

∂ ~E

∂t
. (1.1.85)

These are just the Maxwell equations in vacuum. Further we can calculate
the Hamiltonian and momentum operators in terms of these fields to find
expressions similar to the classical energy and Poynting vector ones

H =
1
2

∫
d3x( ~E · ~E + ~B · ~B) − H0 (1.1.86)
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~P =
1
2

∫
d3x ~E × ~B (1.1.87)

where H0 is given in equation(1.1.72)

H0 =
2∑

r=1

∫
d3k

(2π)32ωk

1
2
ωk[(2π)32ωkδrrδ

3(~k − ~k)]

=
2∑

r=1

∑

k

1
2
ωk. (1.1.88)

Ho is just the infinite zero point energy of our infinite collection of quantum
harmonic oscillators. Since we defined the vacuum as having zero energy we
subtract off this zero point constant energy from the Maxwell form of the
Hamiltonian.

The dynamics of the quantum vector potential can be made to look more
Lorentz covariant by introducing the 4-vector potential Aµ(x), µ = 0, 1, 2, 3

Aµ(x) = (φ(x), ~A(x)) (1.1.89)

where φ(x) is the quantum scalar potential, which will be zero in the Coulomb
gauge. We also define with the anti-symmetric covariant field strength tensor

Fµν ≡ ∂µAν − ∂νAµ. (1.1.90)

With the definitions of the electric and magnetic fields now given as

~E = −~∇φ − 1
c

∂ ~A

∂t
(1.1.91)

~B = ~∇× ~A (1.1.92)

the field strength tensor becomes

Fµν =




0 +Ex +Ey +Ez

−Ex 0 +Bz −By

−Ey −Bz 0 +Bx

−Ez +By −Bx 0


 . (1.1.93)
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Our dynamical equations for the vector potential can now be derived from
an action principle with Lagrangian density

L = −1
4
FµνFµν (1.1.94)

and action
Γo =

∫
d4xL (1.1.95)

along with the Coulomb gauge subsidiary condition

~∇ · ~A = 0. (1.1.96)

Thus the action can be written as

Γ0 =
1
2

∫
d4xAµ(∂2gµν − ∂µ∂ν)Aν (1.1.97)

where it is assumed that Aµ(x) → 0 as x → ∞ so that total space-time
divergences can be thrown away. The variation of the action with respect to
Aµ yields the Euler-Lagrange equations of motion for the field

∂L
∂Aµ

− ∂λ ∂L
∂(∂λAµ)

= 0 (1.1.98)

which are
∂λFλµ = ∂2Aµ − ∂µ∂λAλ = 0. (1.1.99)

Now the µ = 0 component of this is the equation of motion for the scalar
potential φ

∂2φ− 1
c

∂

∂t
(∂λAλ) = 0. (1.1.100)

However we must impose the Coulomb gauge condition on this equation
which implies

∂λAλ =
1
c

∂φ

∂t
− ~∇ · ~A =

1
c

∂φ

∂t
(1.1.101)

hence (1.1.100) reduces to Poisson’s equation ∇2φ = 0 with the above bound-
ary condition that φ(x) → 0 as x → ∞. This yields the solution φ(x) ≡ 0.
Further ∂λAλ = 0 so that the spatial components of (1.1.99) become the
desired wave equation, ∂2 ~A(x) = 0.
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Although the action is manifestly Lorentz invariant the choice of the
Coulomb gauge destroys the invariance. However the physical quantities, as
we have seen for the Hamiltonian and momentum, are expressible in terms
of Fµν and hence are gauge and therefore Lorentz invariant. Later in the
course we will use manifestly Lorentz invariant gauge subsidiary conditions
rather than the Coulomb gauge. Recall that a gauge transformation of the
potentials is given by

~A′ = ~A − ~∇Λ (1.1.102)

φ′ = φ +
1
c

∂Λ
∂t

(1.1.103)

or in 4-vector notation
A′µ = Aµ + ∂µΛ (1.1.104)

where Λ = Λ(x) is an arbitrary function of space-time. Clearly ~E and ~B are
gauge invariant since under gauge transformations Fµν is invariant

F ′µν = ∂µA′ν − ∂νA′µ = Fµν + ∂µ∂νΛ − ∂ν∂µΛ = Fµν . (1.1.105)

As stated above all observables can be written in terms of the covariant field
strength tensor Fµν . Hence any theory formulated in terms of the potentials
Aµ must be locally gauge invariant if the observables are to be. We will study
this invariance requirement in great detail later.

As we have seen we can formulate the dynamics of the photon field in
terms of a Lagrangian and action principle (plus gauge fixing condition). In
addition to time evolution of the field we also have the fact that the field is a
quantum operator and obeys commutation relations (1.1.75). These also can
be formulated in terms of quantization rules for the Lagrangian. The action
is given in equation (1.1.97) applying the Coulomb gauge condition and the
fact that φ = 0 reduces it to

Γ0 =
1
2

∫
d4x∂µ

~A · ∂µ ~A. (1.1.106)

This is just to the action calculated from the Lagrangian

L =
1
2
∂µ

~A · ∂µ ~A. (1.1.107)
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The momentum canonically conjugate to the fields is defined as

Πi(x) ≡ ∂L
∂Ȧi

(x) = Ȧi(x). (1.1.108)

Hence the canonical quantization procedure can be formulated as

[Πi(~x, t), Aj(~y, t)] = +iδij
tr(~x − ~y), (1.1.109)

with the canonical momentum defined above the transversality condition is
built into the fields.

There is no reason we should not describe all relativistic particles in a
similar manner. For instance consider spin 0, neutral particles with mass
m. They are described solely by their momentum h̄~k and mass m , having
energy E2 = ~p 2c2 + m2c4 and no spin. The totality of free particle states is
then given by

|0 >−−−−vacuum state

|~k >−−−−1 particle state

|~k1, ~k2 >= |~k1 > |~k2 >−−−−2 particle state

...

...

...

|~k1, ~k2, ..., ~kN >= |~k1 > ...|~kN >−−−−N particle state

...

...

...

. (1.1.110)

The inner product in the Hilbert space is given as

< ~k′|~k >= (2π)32ωkδ3(~k − ~k′) (1.1.111)

with

ωk ≡
√

~k2 + m2. (1.1.112)

Again we can introduce creation and annihilation operators for these scalar
particles a†(~k) and a(~k), respectively, so that

a(~k)|0 >≡ 0 (1.1.113)
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while
a†(~k)|0 >≡ |~k > (1.1.114)

a†(~k1)...a†(~kN )|0 >≡ |~k1, ..., ~kN > (1.1.115)

and so on.
Hence the operators obey the commutation relations

[a(~k), a†(~l)] = (2π)32ωkδ3(~k −~l) (1.1.116)

[a(~k), a(~l)] = 0 = [a†(~k), a†(~l)]. (1.1.117)

The number operator, Hamiltonian and momentum operator are given by

N∞ =
∫

d3k

(2π)32ωk
a†(~k)a(~k) (1.1.118)

H =
∫

d3k

(2π)32ωk
h̄ωka†(~k)a(~k) (1.1.119)

~P =
∫

d3k

(2π)32ωk
h̄~ka†(~k)a(~k) (1.1.120)

with

N∞|~k1, ..., ~kN >= N |~k1, ..., ~kN > (1.1.121)

H|~k1, ..., ~kN >= (
N∑

i=1

h̄ωki )|~k1, ..., ~kN > (1.1.122)

~P |~k1, ..., ~kN >= (
N∑

i=1

h̄~ki)|~k1, ..., ~kN > . (1.1.123)

Since these particles have no spin their wave functions are just plane
waves u(x) = e−ikx and v(x) = u∗(x) = e+ikx. Thus we can Fourier trans-
form the creation and annihilation operators to obtain a quantum field op-
erator for a scalar, spin 0, mass m particle

Φ(x) =
∫

d3k

(2π)32ωk
[a(~k)e−ikx + a†(~k)e+ikx]. (1.1.124)
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Because k2 = m2 we find that the time evolution of the field is given by the
Klein- Gordon equation

(∂2 + m2)Φ(x) = 0. (1.1.125)

The momentum space commutation relations become equal time commuta-
tion relations for the field Φ(x) and its canonically conjugate momentum
Π(x) = Φ̇(x)

δ(x0 − y0)[Π(x),Φ(y)] = δ(x0 − y0)[Φ̇(x),Φ(y)] = −iδ4(x − y) (1.1.126)

(there is no transversality condition to satisfy here).
As before all of this can be further summarized by specifying the La-

grangian for the scalar field from which the equations of motion follow as
Euler-Lagrange equations. That is the action is given by

Γ0 =
∫

d4xL (1.1.127)

with Lagrangian

L =
1
2
∂µΦ∂µΦ − 1

2
m2Φ2. (1.1.128)

The Euler-Lagrange equations describe the dynamics

∂L
∂Φ

− ∂µ
∂L

∂(∂µΦ)
= 0 = −(∂2 + m2)Φ. (1.1.129)

The momentum field cannonically conjugate to the field Φ(x) is defined in
analogy to classical mechanics as

Π(x) ≡ ∂L
∂Φ̇

(x) = Φ̇(x). (1.1.130)

The canonical quantization procedure then specifies the equal time commu-
tation relations between the field “coordinate” and the canonically conjugate
field “momentum”

δ(x0 − y0)[Π(x),Φ(y)] = −iδ4(x − y). (1.1.131)

Similarly we can quantize fermions, particles with spin 1
2 . However,

by the Pauli principle or Fermi-Dirac statistics, the multi-particle states are
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anti-symmetric under interchange of particles. Hence for consistency reasons
their creation and annihilation operators will obey anti-commutation rela-
tions rather than commutation relations. In what follows we will develop the
field theory for these anti-commuting operators.

Finally the space-time field operator approach to describe the relativis-
tic quantum mechanics of particles allows us to manifestly maintain Lorentz
invariance by summarizing the dynamics of our fields by means of the quan-
tum field Lagrangian. In what we have discussed so far the particles have
been noninteracting or free. The number operator for each particle state
(oscillator mode) commuted with H, hence it did not change in time. Thus
there was no absorption or emission of particles. In fact we did not even have
their scattering here. We must introduce interactions among the particles so
that the field operators not only create and annihilate single particles but
can pair produce particles, allow for particle- anti-particle annihilation and
so on. The field operators then take into account the effects of the cloud
of virtual particles surrounding any interacting particle. The dynamics for
non-interacting particles was summarized in their free field equations

∂2 ~A = 0, for photons (1.1.132)

(∂2 + m2)Φ = 0, for spinless scalars. (1.1.133)

If they are to interact they must couple to other fields, that is there must
appear sources on the right hand side of these field equations. Basically they
will become coupled non-linear partial differential equations. We will not
be able to solve them exactly only approximately. Perturbation theory will
assume the interactions are small and so the solutions will be written as a
power series expansion in their strength. However before delving into this in
detail let’s step back a bit and review special relativity and quantum mechan-
ics since, as we have seen, they play such a crucial role in the formulation of
field theory.
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