7.2.2. Bound States and the Lippman–Schwinger Integral Equation

The Lippman–Schwinger equation can also be used to study bound states. In this case, we are interested in the Schrödinger equation solutions

\[\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E \psi(\mathbf{r}) \]

such that the wavefunction is normalizable

\[\int d^3r |\psi(\mathbf{r})|^2 < \infty \]

Further, if the zero of energy is such that \(V(\mathbf{r}) \to 0 \) as \(\mathbf{r} \to \infty \), then we have that the bound state energies are negative

\[E = -\frac{\hbar^2 k^2}{2m} \quad \text{with} \quad k^2 > 0. \]

To simplify the discussion consider the central potential case \(V(\mathbf{r}) = V(r) \) with

\[V(r) = \frac{2m}{\hbar^2} V(r), \]

Schrödinger's equation becomes
\[(\nabla^2 - \kappa^2)A(r) = U(r)A(r)\]

with \(\int d^3r |A(r)|^2 < \infty\). To convert this to an integral equation, we need the Green function for the differential operator \((\nabla^2 - \kappa^2)\).

The scattering case \(G_+\) was the Green function for \((\nabla^2 + k^2)\) with outgoing spherical wave asymptotic condition. By letting \(k = i\kappa\) in \(G_+\) we will find the Green function we need as well.

Instead of an oscillatory outgoing asymptotic wave, we will demand exponentially damped \(e^{-kr}\) yielding the normalizability we need at the bound state case.

So \((\nabla^2 + k^2)G_+(r, r')\) \((\text{let } k = i\kappa)\)

\[= (\nabla^2 - \kappa^2)\left[\sum_{l=0}^{\infty} \sum_{m= -l}^{l} (2l+1) G_l^m(r, r'; k = i\kappa) Y_l^m(\theta, \phi) Y_l^m(\theta, \phi) \right] \]

\[= \delta^3(r - r')\]
Where now
\[G^2_{\pm}(r, r'; k = i\lambda) = \frac{Z}{4\pi} J_\ell(i\lambda r) H_{\ell}(i\lambda r'). \]

At the same time we have that there are no normalizable solutions to the free equation
\[(\nabla^2 - k^2) 4^{\text{in}}(r) = 0 \]
and
\[\int d^3x |4^{\text{in}}(r)|^2 < \infty \Rightarrow 2^{\text{in}}(r) = 0, \]
(i.e. there is no potential to provide a bound state).

Then the Lippman-Schwinger bound state integral equation becomes a homogeneous integral equation
\[4(r) = 2 \int d^3r' \sum_\ell \sum_{m=\ell} J_\ell(i\lambda r) H_{\ell}(i\lambda r') \times \]
\[\times Y_{\ell m}^*(\theta', \varphi') Y_{\ell m}(\theta, \varphi) U(r') 2(r'). \]

For a central potential we have
\[4(r) = \sum_\ell \sum_{m=-\ell}^{\ell} R_{\ell}(r; x) Y_{\ell m}^*(\theta, \varphi) \]
\[\times Y_{\ell m}(\theta, \varphi) \]
where $R_\ell(r, x)$ depends on the energy eigenvalue ℓ. Substituting into the integral equations yields

$$
\frac{\partial^2}{\partial t^2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} R_\ell(r, x) Y_\ell^m(\theta, \phi) d\theta d\phi
$$

$$
= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} \int_0^\infty dr' r'^2 j_l(i x r) h_{l'}(i x r')
$$

$$
\times Y_\ell^m(\theta, \phi) W(r') R_{\ell'}(r', x)
$$

$$
\times \int d\theta' d\phi' Y_{\ell'}^{m'}(\theta', \phi') Y_\ell^m(\theta, \phi)
$$

$$
= \delta_{\ell, \ell'} \delta_{mm'}
$$

$$
= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_\ell^m(\theta, \phi) \int_0^\infty dr' r'^2 j_l(i x r) h_{l'}(i x r')
$$

$$
\times W(r') R_{\ell'}(r', x)
$$

Since the $Y_\ell^m(\theta, \phi)$ are independent, we find an integral equation for each l and R_ℓ.

For each l and R_ℓ:

\[R_{\ell}(r; x) = x \int_0^\infty dr' r'^2 j_{\ell}(ixr') h_{\ell}(ixr') x \times U(r') \Re(r' ; x). \]

Knowing the large \(r \) behavior of the spherical Hankel function,
\[h_{\ell}(ixr) \sim \frac{1}{ixr} e^{-ixr} \quad \text{as} \quad r \to \infty, \]
we can check the asymptotic behavior of \(R_{\ell}(r; x) \) to see that it is normalizable.

As \(r \to \infty \), \(r_1 = r \) and \(r_2 = r' \) in the integrand above, so
\[R_{\ell}(r; x) \sim 2x h_{\ell}(ixr) \int_0^\infty dr' r'^2 j_{\ell}(ixr') x \times \Re(r') \Re(r' ; x) \]
\[\sim \left(\frac{e^{-ixr} e^{-ic \ell r}}{r} \right) \int_0^\infty dr' r'^2 j_{\ell}(ixr') U(r') \Re(r' ; x). \]
For $x > 0$, $R_{\ell} (r; x) \to 0$ as $r \to \infty$ rapidly. Energy is nonzero for guarantee that $\tilde{Z} (r)$ is normalizable.

So we have that the L-S equation for the bound state radial function $R_{\ell} (r; x)$ is obtained from the L-S scattering equation and $\tilde{Z}^{(4)} (r)$ by letting $k \to i \kappa$ with $x > 0$ and neglecting the $2^{(\text{in})} (r) = j_{\ell} (kr)$ free solution. This line of reasoning suggests that we consider the scattering L-S equation for complex values of k. Thus consider $\tilde{Z}^{(4)} (r; z)$ with $z \in \mathbb{C}$ and the L-S equation

\[
\tilde{Z}^{(4)} (r; z) = j_{\ell} (z r) - i z \int_0^\infty dr' r'^2 j_{\ell} (z r') \times
\]

\[
\times [he (z r')] U (r) \tilde{Z}^{(4)} (r'; z).
\]

For asymptotic values of r, we have that the spherical Bessel function

\[
he (z r) \ll r^{2 \ell + \frac{1}{2}}.
\]
\[j_1(2r) \sim \frac{1}{2\pi} \left[e^{i[2r - (l+1)\frac{\pi}{2}]} - e^{-i[2r - (l+1)\frac{\pi}{2}]} \right] \]
\[\sim \frac{|\Im z|}{r} e^{-\frac{\pi}{2r}} \]

For \(|\Im z| \neq 0 \), this grows exponentially as \(r \to \infty \), and \(2j_1^4(z, 2) \) defined by their integral equation is not normalizable.

On the other hand, the scattered wave function given by the integral term is well defined as \(r \to \infty \) as long as \(\Im z > 0 \). This follows from the behavior of the Hankel function again:
\[h_1(2r) \sim \frac{1}{2\pi} e^{i[2r - (l+1)\frac{\pi}{2}]} \]
\[\sim \frac{|\Im z|}{r} e^{-(\Re z)\frac{\pi}{2r} - (l+1)\frac{\pi^2}{2r}} e^{-\frac{\pi}{2r}} \]

Because \(r > r_0 \) (by definition), the exponential damping of \(h_1(2r) \) dominates over the exponential
growth of $J_e(zr^2)$ as long as $\text{Im} z > 0$.

Thus we would like to eliminate the inhomogeneous term $\tilde{J}_k(z_r)$ from the equation since it alone diverges at $r \to \infty$ for any $\text{Im} z \neq 0$. This can be done by multiplying the integral equation by $J_e(z_r)$ and let $z \to z_0$

$$(z-z_0) \tilde{J}_k^{(4)}(r;z) = (z-z_0) J_e(r;z)$$

$$-iz \int_{0}^{\infty} dr' r'^2 J_e(zr') h_0(zr') \times$$

$$\times \mathcal{U}(r') (z-z_0) \tilde{J}_k^{(4)}(r';z).$$

Since $J_e(r;z)$ is analytic at $z = z_0$, we have

$$\lim_{z \to z_0} (z-z_0) J_e(z_r) = 0.$$

This implies

$$\lim_{z \to z_0} (z-z_0) \tilde{J}_k^{(4)}(r;z) = \lim_{z \to z_0} (-iz \int_{0}^{\infty} dr' r'^2 J_e(zr') \times$$

$$\times h_0(zr') \mathcal{U}(r') (z-z_0) \tilde{J}_k^{(4)}(r';z))$$
If \(\psi^{(4)}_{l}(r; z) \) has a simple pole at \(z = z_0 \), then

\[
\psi^{(4)}_{l}(r; z) = \frac{\text{Re}(r; -iz_0)}{z - z_0} + \text{regular at } z = z_0
\]

and the integral equation reduces to

\[
\text{Re}(r; -iz_0) = -iz_0 \int dr' r'^2 j_l(2r) h_0(2r_0') \times
\]
\[
\times U(r') \text{Re}(r'; -iz_0)
\]

But this is just the bound state L-S integral equation if we set \(z_0 = iX \). Hence, we have found the bound states of the potential \(U(r) \) by studying the analytic structure of the L-S integral \(p \)-wave function. The bound state radial wave function is given by the residues of the simple pole in the scattering wave function.

\[
\psi^{(4)}_{l}(r; k) = \frac{\text{Re}(r; X)}{k - iX} + \text{analytic function in complex } k \text{ plane}
\]
The position of the pole occurs at the bound state energy E,

$$k = iX = i\sqrt{\frac{2m|E|}{\hbar^2}} \quad \text{with} \quad E = -|E|.$$

For the wavefunction to be normalizable, we had that $X > 0$. Thus, the bound state poles of the scattering wavefunction lie on the positive imaginary axis in the complex k-plane.

Since the scattering amplitude is given by (page -1065-)

$$f^{(4)}(r, k) = -\sum_{l=0}^{\infty} (2l+1)\int dr' r'^2 J_l(kr') \phi_l(r', k) \frac{\rho_l(k)}{k}$$

$$= \sum_{l=0}^{\infty} (2l+1) \frac{e^{ikr} \sin(kr)}{k} \phi_l(k)$$ (page -1077-)

Then if bound state poles occur in $\phi_l^+(r; k)$ at $k = iX$, $X > 0$, the poles should occur in $f(t, k)$ and hence the phase shifts $\delta_l(k)$.
