as wavepackets or using box normalization, since we understand the nature of these continuum normalized eigenfunctions, we will, with appropriate care, use them directly.

1.3.8. Boundary Conditions on the Wavefunction

By Postulate 2, the probability density $P = |\psi(\mathbf{r}, t)|^2$ is observable, hence it must be everywhere finite and continuous. $|\psi|^2$ is finite if and only if the wavefunction $\psi(\mathbf{r}, t)$ is finite everywhere. Further, it is a sufficient condition for $|\psi|^2$ to be continuous that $\psi(\mathbf{r}, t)$ is continuous. Using the principle of superposition it can also be shown to be necessary. Assume ψ is continuous and, by superposition, that $\psi = \psi_1 + \psi_2$ is a solution to the Schrödinger equation with ψ, ψ_2 solutions and $\psi_1 \in \mathcal{C}$. We can show that ψ_2 is continuous by considering $|\psi|^2 = |\psi_1|^2 + |\psi_2|^2 + \psi_1^* \psi_2 + \psi_2^* \psi_1$, all of which are continuous.

Since $|\psi|^2 = |\psi_1|^2 + |\psi_2|^2 + \psi_1^* \psi_2 + \psi_2^* \psi_1$, we have that

$\lambda \psi_1 \psi_2 + x^* \psi_1 \psi_2$ is continuous.
Choosing $\lambda = \lambda^*$ \Rightarrow 2\lambda^* \phi_2 + 2\phi_2^*$ is continuous.
Choosing $\lambda = -\lambda^*$ \Rightarrow 2\lambda^* \phi_2 - 2\phi_2^*$ is continuous.

Thus it follows that $2\lambda^* \phi_2$ must be continuous. So since ϕ_1 is continuous, this implies $2\phi_2$ must be $\text{inc}(x)$, i.e., ϕ_1 is continuous and the principle of superposition implies ϕ_2 is continuous.

Thus continuity of $2\lambda^* \phi_2$ combined with the principle of superposition implies ϕ_1 is continuous.

Proceeding further, consider integrating the Schrödinger equation

$$\frac{-\hbar^2}{2m} \nabla^2 \psi + V \psi = E \psi,$$

over volume Q.

$$\int d^3r \nabla^2 \psi = \frac{2m}{\hbar^2} \int d^3r V \psi - \frac{2mE}{\hbar^2} \int d^3r \psi$$

Using Gauss' theorem on the LHS implies

$$\oint \nabla \psi = \frac{2m}{\hbar^2} \int d^3r V \psi - \frac{2mE}{\hbar^2} \int d^3r \psi$$
where Σ is the surface bounding volume S. Consider a volume with infinitesimal height as below.

The surface integral over the sides is infinitesimal and so negligible, thus

$$\oint d\mathbf{S} \cdot \mathbf{\nabla} \mathbf{v} = \int_{S_+} d\mathbf{S} \cdot \mathbf{\nabla} \mathbf{v} + \int_{S_-} d\mathbf{S} \cdot \mathbf{\nabla} \mathbf{v}.$$

The volume integral of $\mathbf{\nabla} \mathbf{v}$ is also negligible since \mathbf{v} is continuous and the volume is infinitesimal.

So we obtain

$$\int_{S_+} d\mathbf{a} \wedge \mathbf{\nabla} \mathbf{v} - \int_{S_-} d\mathbf{a} \wedge \mathbf{\nabla} \mathbf{v}$$

$$\quad = \frac{2m}{\hbar^2} \int d^3r \mathbf{V} \mathbf{a}$$

where $d\mathbf{S} = \mathbf{n} da$ on S_+ and $d\mathbf{S} = -\mathbf{n} da$ on S_-.

If the potential V is non-singular in R^3, then $\int d^3r V \varphi_1$ is negligible. Hence
$$\int d^3n \cdot \nabla \varphi_1 = \int d^3n \cdot \nabla \varphi_2,$$
and
$$\nabla \cdot \varphi_1 = \nabla \cdot \varphi_2.$$
This implies that $\nabla \cdot \varphi_1 = \nabla \cdot \varphi_2,$

The gradient is continuous across the volume. Since the volume was arbitrarilly chosen we conclude that $\nabla \varphi_1$ is continuous whenever the potential V is non-singular.

In the case of singular potentials such as Dirac δ-function potentials, the correct boundary condition for the gradient of φ_1 cannot be obtained directly from integrating the Schrödinger equation as above for the case at hand along with the continuity of the wavefunction. Alternatively, one can approximate the singular potential with a sequence of regular potentials for which the gradient of the wavefunction is continuous. Then take the limit to obtain the correct wavefunction.
In short then, the boundary conditions for the wavefunction are:

1) It is everywhere finite
2) It is everywhere continuous
3) For a non-singular potential, it is continuous.

As an aside, the boundary conditions on ψ can be obtained by demanding continuity of the probability current along with the principle of superposition.

Example: Consider a particle of mass m and energy E > 0 in one dimension moving in the potential

\[V(x) = \begin{cases}
V_0 & \text{if } x < 0 \\
0 & \text{if } x > 0
\end{cases} \]
The Schrödinger equation in the 2 regions is given by:
\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) + V_0 \psi(x) = E \psi(x), \quad x < 0
\]
\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x), \quad x > 0.
\]
Defining \(k = \sqrt{\frac{2mE}{\hbar^2}} > 0 \) \((E > 0)\)
and \(V_0 = \frac{2mV_0}{\hbar^2} = \text{constant} > 0\),
The Schrödinger equation takes the form,
\[\frac{d^2 \psi}{dx^2} + (k^2 - V_0) \psi = 0, \quad x < 0\]
\[\frac{d^2 \psi}{dx^2} + k^2 \psi = 0, \quad x > 0.\]
Considering the case where \(0 < E < V_0 \), we have that \(0 < k^2 < V_0 \), thus with the definition of \(Z = \sqrt{V_0 - k^2} > 0 \), the Schrödinger equation reduces to:
\[\frac{d^2 \psi}{dx^2} - Z^2 \psi = 0, \quad x < 0\]
\[\frac{d^2 \psi}{dx^2} + k^2 \psi = 0, \quad x > 0.\]
The solution is
\[u(x) = \begin{cases}
 A_+ e^{2x} + B_+ e^{-2x}, & x < 0 \\
 A_+ \cos kx + B_+ \sin kx, & x > 0
\end{cases} \]

We next impose the boundary conditions on \(u(x) \):

1) \(u \) is finite everywhere: in particular \(u(-\infty) \) is finite \(\Rightarrow B_+ = 0 \).

2) \(u \) is continuous everywhere: in particular \(u \) is continuous at \(x = 0 \)
\[\lim_{\varepsilon \to 0} (u(\varepsilon) - u(\varepsilon)) = 0 \]
\[\Rightarrow A_+ = A_- \]

3) \(u \) is non-singular hence \(\frac{d}{dx} u \) is continuous everywhere: in particular at \(x = 0 \)
\[\lim_{x \to 0^-} \frac{d}{dx} u(x) = \lim_{x \to 0^+} \frac{d}{dx} u(x) \]
\[\Rightarrow k A_+ = k B_- \]
Thus, calling $\beta > \equiv N$, we have

$$\varphi(x) = \begin{cases} N \frac{k^2}{x} e^{\frac{x}{k}}, & \text{if } x < 0 \\ N (\sin kx + \frac{k}{x} \cos kx), & \text{if } x > 0. \end{cases}$$

This satisfies the Schrödinger equation and is everywhere continuous and finite, with its derivative also continuous everywhere.

We can take the limit $V_0 \to \infty$ to determine the solution to the infinite potential barrier problem.

For $V_0 \to \infty \Rightarrow N_0 = \frac{2mv_0}{h^2} \to \infty$ and hence $k = \sqrt{N_0 - \frac{1}{k^2}} \to \infty$.
Thus the solution becomes

\[q(x) = \begin{cases}
0, & \text{if } x < 0 \\
N \sin \kappa x, & \text{if } x > 0 .
\end{cases} \]

Thus in the region where the potential \(V(x) \) diverges, the wave function vanishes \(q(x) = 0 \) for \(x < 0 \). Further \(q(x) \) is still finite and continuous everywhere, but the derivative of the wave function is no longer continuous when the potential has the infinite discontinuity at \(x = 0 \).

\[\lim_{x \to 0^-} \frac{d}{dx} q(x) = 0 , \quad \text{but} \]

\[\lim_{x \to 0^+} \frac{d}{dx} q(x) = kN \neq 0 . \]