Initially let's consider such separable systems. $H = H_0 + H_s$

Further, since we have worked out many "spinless" problems—let's ignore the orbital motion. For the Schrödinger eq.

e.g., Suppose consider the hydrogen atom. For the pure Coulomb interaction we have $H = H_0$

$$= \frac{\hat{p}^2}{2m} + V(r)$$

$$= \frac{-e^2}{4\pi\varepsilon_0 r} \uparrow 1$$

Hence this is a separable (trivial) case since the interaction is completely independent of the spin. Hence

$$|\Psi\rangle = |\Psi_0\rangle \otimes |\Psi_s\rangle$$

& $\text{int}_s |\Psi_s\rangle = 0 \Rightarrow |\Psi_s\rangle$ is independent.

The wavefunctions are then just products of orbital & spin functions.
Choosing E, L^2, L_z, S_z, $S=\frac{3}{2}$ as our CSDO then the eigenfunctions are simply

$$\langle \vec{r}, \vec{s}, m_s | n_l, m_l, m_s, m_s \rangle$$

$$\langle n_l, m_l, m_s \rangle \rightarrow \frac{2}{\sqrt{2}} \chi_{n_l m_l} \left(\vec{r} \right) e^{i m_s \phi}$$

That is, the wavefunctions are just products of the constant wavefunctions $\chi_{n_l m_l}(\vec{r})$ and the S_z eigenspinors $(\hat{s}) = e^{i \phi} \chi_0(\vec{r}) = (\vec{0})$

Since $H = H_0$, the energy levels remain unchanged — but we now have doubled the number of states with each energy level corresponding to the e- spin up or down along the z-axis!
Next, let the H-atom in a weak B-field $\mathbf{B} = B \mathbf{t}$. The proton and e^- will interact with the B-field through their orbital and spin magnetic moments. Since $\frac{M_e}{mp} \ll 1$ ($\frac{1}{2000}$) we will neglect the proton's magnetic moment's interaction energies (NMR!) compared to the electron.

Now the dipole energy is $H_{\text{dipole}} = -\mathbf{\mu} \cdot \mathbf{B}$ for the e^-. $\mathbf{\mu}$ has 2-terms (more antislater)

$$\mathbf{\mu} = \frac{\mathbf{g}}{2m} \mathbf{L} + \frac{\mathbf{e}}{m} \mathbf{S} = \frac{-e}{2m} \mathbf{L} - \frac{e}{m} \mathbf{S}$$

$$\Rightarrow \quad H_{\text{dipole}} = \frac{eB}{2m} \left(L_z + 2S_z \right)$$

And the H-atom Hamiltonian becomes

$$H = H_{\text{coulomb}} + \frac{eB}{2m} \left(L_z + 2S_z \right) = H_{\text{coulomb}} + H_{\text{dipole}}.$$
Since H still commutes with \mathbf{L}^2, S_z, S_x, S_y, it is diagonalized by the same eigenstates.
\[|n, l, m; s, \mu_s\rangle = |n, l, m; \frac{1}{2}, \mu_s\rangle \]

Since $s = \frac{1}{2}$ we drop it from list to save writing.

\[\Rightarrow |n, l, m, \mu_s\rangle \]

Hence
\[H|n, l, m, \mu_s\rangle = \frac{\hbar^2}{2} \left(\frac{e^2}{4\pi \varepsilon_0} \right)^2 l^2 n^2 \]
\[+ \frac{eB\hbar}{2m} (m + 2\mu_s) \left| n, l, m, \mu_s\rangle \right\]
\[= \left[-\frac{m e^2}{2} \alpha^2 \frac{1}{n^2} + \mu_B B (m + 2\mu_s) \right]|n, l, m, \mu_s\rangle \]

Bohr magneton
\[\mu_B = 5.7 \times 10^{-5} \text{ eV} \]

Hence E_n now depends on m, μ_s also. We have removed some of the degeneracy of the energy levels.
ex. The ground state was 2-fold degenerate due to spin $\uparrow \downarrow$ of e-
now it's "split" into 2 non-deg.
states
$n=1 \Rightarrow l=0 = m$ but $m_s = \pm 1/2$

$$E_{n=1} = -13.6\text{eV} \pm \mu_B B$$

Spin down is ground state
agrees with intuition
Hippie $= -\tilde{\mu} \cdot B \rightarrow \tilde{\mu}$ is opposite
/spin (neg. change)
So lower energy
$\tilde{\mu}$ aligns with $B \Rightarrow$
\text{5 anti-parallel with } B

For the first excited state we
had

$N=2 \ \ l=0, \ m=0, \ m_s = \pm \frac{1}{2}$

$N=1 \ l=1, \ m=-\frac{1}{2}; \ m_s = \pm \frac{1}{2}$

8 degenerate states

for $H_{\text{cont.}}$

Now
\[E_{m=-2} = -\frac{13.6 \text{eV}}{4} + M_B B \]

\[
\begin{pmatrix}
 2 & 0 & 0 & 0 \\
 1 & \frac{1}{2} & \frac{1}{2} & 0 \alpha \pm 1 \\
 0 & 0 & 0 & 0 \alpha \pm 1 \\
 -1 & -\frac{1}{2} & -\frac{1}{2} & 1 \alpha \pm 1
\end{pmatrix}
\]

Some we split. The 8 degenerate states into 5 states, 3 of which are still doubly degenerate, etc.

In multi-electron atoms, add contributions from all \(e^- \) → the # of spectral lines increase and the spacing may be varied by varying \(B \).

This is called the (weak field) Zeeman Effect. Move on this later (strong field).

Since we have worked a lot of spinless problems let's focus just on some pure spin dynamics.

i.e. \[i \hbar \frac{\partial}{\partial t} (X_{\infty}^s)_{ms} = \{H_s\} \ \ \ \ \ \ \ \ \ \ (X_{\infty}^s)_{ms}, \dot{ms} \]