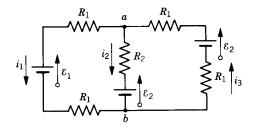
PHYSICS 271 ELECTRICITY AND MAGNETISM SECOND EXAMINATION

20 November 2000

INSTRUCTIONS: Answer all questions on the answer sheet provided, it will be the only paper that is collected. This is a closed book exam.

(25 pts) 1.) For the circuit drawn below:



- **1.a.**) What does the junction rule yield?
 - a) $\mathcal{E}_{1} + 2 \mathcal{E}_{2} = 0$ b) $i_{1} + i_{2} + i_{3} = 0$ $2i_{1}R_{1} + i_{2}R_{2} = \mathcal{E}_{1} + \mathcal{E}_{2}$ $= P - 2i_{1}R_{1} = 0$ c) $i_{1} + i_{2} = i_{3}$ $-2i_{1}R_{1} + i_{2}R_{2} = \mathcal{E}_{1} - \mathcal{E}_{2}$ $i_{2}R_{2} + 2i_{3}R_{1} = 0$
- **1.b.**) What does the loop rule yield?
 - **a)** $i_1 + i_2 = i_3$ **c)** $-2i_1R_1 + i_2R_2 = \mathcal{E}_1 - \mathcal{E}_2$ $i_2R_2 + 2i_3R_1 = 0$
 - **b)** $i_1 + i_2 + i_3 = 0$ $2i_1R_1 + i_2R_2 = \mathcal{E}_1 + \mathcal{E}_2$ $i_2R_2 + 2i_3R_1 = 0$ **d)** $2i_1R_1 + i_2R_2 = \mathcal{E}_1 + \mathcal{E}_2$ $i_2R_2 + 2i_3R_1 = 0$

1.c.) What is the current through the source of emf in the left branch?

a)
$$i_{1} = \frac{(2R_{1} + R_{2})(\mathcal{E}_{2} - \mathcal{E}_{1})}{4R_{1}(R_{1} + R_{2})}$$

b) $i_{1} = \frac{(\mathcal{E}_{2} - \mathcal{E}_{1})}{2(R_{1} + R_{2})}$
c) $i_{1} = \frac{(2R_{1} + R_{2})(\mathcal{E}_{1} - \mathcal{E}_{2})}{4R_{1}(R_{1} + R_{2})}$
d) $i_{1} = \frac{(2R_{1} + R_{2})(\mathcal{E}_{1} + \mathcal{E}_{2})}{4R_{1}(R_{1} + R_{2})}$

1.d.) What is the current through the source of emf in the right branch?

a)
$$i_{3} = \frac{R_{2}(\mathcal{E}_{1} - \mathcal{E}_{2})}{4R_{1}(R_{1} + R_{2})}$$
 c) $i_{3} = \frac{(2R_{1} + R_{2})(\mathcal{E}_{1} - \mathcal{E}_{2})}{4R_{1}(R_{1} + R_{2})}$

b)
$$i_{3} = \frac{\left(\mathcal{E}_{1} - \mathcal{E}_{2}\right)}{2\left(R_{1} + R_{2}\right)}$$
 d) $i_{3} = \frac{R_{2}\left(\mathcal{E}_{2} - \mathcal{E}_{1}\right)}{4R_{1}\left(R_{1} + R_{2}\right)}$

1.e.) What is the current through the source of emf in the center branch?

a)
$$i_{2} = \frac{(2R_{1} + R_{2})(\mathcal{E}_{2} - \mathcal{E}_{1})}{4R_{1}(R_{1} + R_{2})}$$

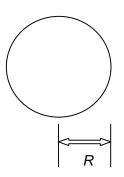
b) $i_{2} = \frac{(\mathcal{E}_{2} - \mathcal{E}_{1})}{2(R_{1} + R_{2})}$
c) $i_{2} = \frac{(\mathcal{E}_{1} - \mathcal{E}_{2})}{2(R_{1} + R_{2})}$
d) $i_{2} = \frac{(2R_{1} + R_{2})(\mathcal{E}_{1} + \mathcal{E}_{2})}{4R_{1}(R_{1} + R_{2})}$

1.f.) The potential difference V_a - V_b is equal to

a)
$$V_a - V_b = iR_{eq}$$
 b) $V_a - V_b = \frac{(2R_1 + R_2)\mathcal{E}_2 + R_2\mathcal{E}_1}{2(R_1 + R_2)}$

b)
$$V_a - V_b = \frac{\mathcal{E}_2}{2(R_1 + R_2)}$$
 d) $V_a - V_b = \frac{-\mathcal{E}_2}{2(R_1 + R_2)}$

(25 pts) 2.) Consider the circular loop of radius *R* carrying a current *i* in the clockwise direction as shown below.



2.a.) What is the direction of the magnetic field at the center of the circular loop?

a) B points up	c) B points to the right	e) B points into the page
b) B points down	d) B points to the left	f) B points out of the page
	g) B =0	

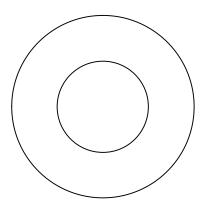
2.b.) The magnitude of the magnetic field, B, at the center of the circular loop is

a)
$$B = \frac{\mathbf{m}_0 i}{2\mathbf{p}R}$$
 c) $B = 0$, since *P* is a point of symmetry

b)
$$B = \frac{\boldsymbol{m}_0 i}{4\boldsymbol{p} R}$$
 d) $B = \frac{\boldsymbol{m}_0 i}{2R}$

2.c.) The magnetic dipole moment **m**of the above current loop is

a) $i\mathbf{p}R^2$, into the page c) $\mathbf{n} = 0$, since *P* is a point of symmetry b) $\frac{\mathbf{m}_0}{4\mathbf{p}}iR^2$, into the page d) $\frac{\mathbf{m}_0i}{2\mathbf{p}R}$, into the page (25 pts) 3.) Below is drawn a cross section of a hollow cylindrical conducting pipe of inner radius *a* and outer radius *R*, carrying a uniformly distributed current *i* flowing into the page.



3.a.) Determine the magnetic field for radius $r \ge R$.

a)
$$B = \frac{\mathbf{m}_0 i}{4\mathbf{p} r}$$
, tangent to circles in CW direction
b) $B = \frac{\mathbf{m}_0 i}{4\mathbf{p} r}$, into the page

c)
$$B = \frac{\mathbf{m}_0 i}{2\mathbf{p} r}$$
, tangent to circles in the CW direction

d)
$$B = \frac{\mathbf{m}_0 i}{2\mathbf{p} r}$$
, into the page

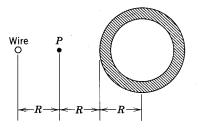
3.b.) Determine the magnetic field for radius $r \le a$.

a)
$$B = \frac{\mathbf{m}_0 i}{4\mathbf{p} a}$$
, tangent to circles in CW direction
b) $B = 0$
c) $B = \frac{\mathbf{m}_0 i}{4\mathbf{p} r}$, tangent to circles in the CW direction
d) $B = \frac{\mathbf{m}_0 i}{4\mathbf{p} r}$, into the page

3.c.) Determine the magnetic field for radius $a \le r \le R$.

a)
$$B = \frac{\mathbf{m}_0 i}{2\mathbf{p}r} \frac{(r^2 - a^2)}{(R^2 - a^2)}$$
, tangent to circles in CW direction
b) $B = \frac{\mathbf{m}_0 i}{2\mathbf{p}r} \frac{(r^2 - a^2)}{(R^2 - a^2)}$, into the page
c) $B = \frac{\mathbf{m}_0 i}{4\mathbf{p}r} \frac{(r^2 - a^2)}{(R^2 - a^2)}$, tangent to circles in the CW direction
d) $B = \frac{\mathbf{m}_0 i}{4\mathbf{p}r} \frac{(r^2 - a^2)}{(R^2 - a^2)}$, into the page

3.d.-e.) A wire is placed to run parallel to the above described current carrying pipe at a distance 3R from center to center, as drawn below. Current *I* flows in the wire so that the resultant magnetic field at the point *P* has the same magnitude, but opposite direction, as the resultant field at the center of the pipe.



3.d.) In what direction does *I* flow?

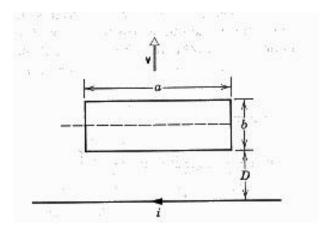
- **a**) I = 0, P is a symmetry point
- **b**) Out of the page
- c) Into the page

3.e.) The magnitude of *I* is

a)
$$I = \frac{3}{8}i$$

b) $I = \frac{3}{4}i$
c) $I = \frac{3}{8}\frac{a}{R}i$
d) $I = \frac{3}{4}\frac{a}{R}i$

(25 pts) 4.) A rectangular loop of wire with length a, width b, and resistance R is placed near an infinitely long wire carrying current i, as shown below. The distance from the long wire to the loop is D.



4.a.) The magnetic flux, Φ_B , through the loop is

a)
$$\Phi_{B} = \frac{\mathbf{m}_{0}i}{2\mathbf{p}\left[D + \frac{b}{2}\right]}ab$$

b) $\Phi_{B} = \frac{\mathbf{m}_{0}i}{2\mathbf{p}}a\ln\left[1 + \frac{b}{D}\right]$
c) $\Phi_{B} = \frac{\mathbf{m}_{0}i}{2\mathbf{p}D}ab\ln\left[1 + \frac{b}{D}\right]$
d) $\Phi_{B} = \frac{\mathbf{m}_{0}i}{2\mathbf{p}D}ab$
e) $\Phi_{B} = 0$

4.b.) The current *I* in the loop as it moves away from the long wire with speed *v* is

a)
$$I = \frac{\mathbf{m}_{0}i}{2\mathbf{p}RD^{2}}abv$$
b)
$$I = \frac{\mathbf{m}_{0}i}{2\mathbf{p}R\left[D + \frac{b}{2}\right]^{2}}abv$$
c)
$$I = \frac{\mathbf{m}_{0}i}{2\mathbf{p}R\left[D + \frac{b}{2}\right]^{2}}abv$$
d)
$$I = \frac{\mathbf{m}_{0}i}{2\mathbf{p}R\left[D + \frac{b}{2}\right]^{2}}e^{-\mathbf{k}}$$
e)
$$I = 0$$

- **4.c.**) The direction of the current *I* in the loop as it moves away from the long wire with speed *v* is
- **a**) 0 **b**) CW **c**) CCW