PHYSICS 271

ELECTRICITY AND MAGNETISM
 FIRST EXAMINATION

13 October 2000

INSTRUCTIONS: Answer all questions on the answer sheet provided, it will be the only paper that is collected. This is a closed book exam.

1. a) An insulating rod of length L has charge $-q$ uniformly distributed along its length, as shown below. What is the linear charge density of the rod?
a) $\lambda=\frac{q}{L+a}$
c) $\lambda=\frac{q}{L}$
e) $\lambda=0$
b) $\lambda=\frac{-q}{L+a}$
d) $\lambda=\frac{-q}{L}$

2. b) What is the direction of the electric field at point \boldsymbol{P} ?
a) \mathbf{E} points up
b) \mathbf{E} points down
c) \mathbf{E} points to the right
d) \mathbf{E} points to the left
e) \mathbf{E} is zero
3. c) The magnitude of the electric field at \boldsymbol{P} is:
a) $E=\frac{q}{4 \pi \varepsilon_{0} a(L+a)}$
b) $E=\frac{q}{4 \pi \varepsilon_{0}\left(\frac{L}{2}+a\right)^{2}}$
c) $E=\frac{q}{4 \pi \varepsilon_{0}(L+a)^{2}}$
d) $E=\frac{q}{4 \pi \varepsilon_{0}(L+a) L}$
e) $E=0$
4. a) Suppose a spherically shaped planet with radius R has an excess positive charge Q uniformly distributed over its surface. The electric field at radial distances $r>R$ from the center of the planet is:
a) $\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
b) $\vec{E}=\frac{-Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
c) $\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} R^{2}} \hat{r}$
d) $\vec{E}=\frac{-Q}{4 \pi \varepsilon_{0} R^{2}} \hat{r}$
e) $\vec{E}=0$
5. b) What is the electric field inside the planet?
a) $\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} R^{2}} \hat{r}$
b) $\vec{E}=\frac{-Q}{4 \pi \varepsilon_{0} R^{2}} \hat{r}$
c) $\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
d) $\vec{E}=\frac{-Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
e) $\vec{E}=0$
6. c) In addition, the planet is surrounded by a positively charged dust cloud containing total charge q and extending from the surface of the planet out to a radius R_{D}. The cloud has a spherically symmetric charge distribution with volume charge density given by $\rho(r)=\frac{q}{4 \pi\left(R_{D}-R\right) r^{2}}$ for $R \leq r \leq R_{D}$, and zero otherwise. What is the electric field at radial distances $r>R_{D}$?
a) $\vec{E}=\frac{Q+q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
b) $\vec{E}=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
c) $\vec{E}=\frac{Q+q}{4 \pi \varepsilon_{0} R_{D}{ }^{2}} \hat{r}$
d) $\vec{E}=\frac{-Q-q}{4 \pi \varepsilon_{0} R_{D}{ }^{2}} \hat{r}$
e) $\vec{E}=0$
7. d) What is the electric field at radial distances $R \leq r \leq R_{D}$?
a) $\vec{E}=\frac{Q+q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
b) $\vec{E}=\frac{Q+q}{4 \pi \varepsilon_{0} R^{2}} \hat{r}$
c) $\vec{E}=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \frac{(r-R)}{\left(R_{D}-R\right)} \hat{r}$
d) $\vec{E}=\frac{Q+q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}-\frac{q}{4 \pi \varepsilon_{0} r^{2}} \frac{\left(R_{D}-r\right)}{\left(R_{D}-R\right)} \hat{r}$
e) $\vec{E}=0$
8. a) Two conducting spheres are far apart. The smaller sphere carries a total charge of q. The larger sphere has a radius that is twice that of the smaller and is neutral. After the two spheres are connected by a conducting wire, the charges on the smaller and larger spheres, respectively, are:

a) $\frac{1}{3} q$ and $\frac{2}{3} q$
b) $\frac{2}{3} q$ and $\frac{1}{3} q$
c) $-q$ and $+2 q$
d) $\frac{1}{2} q$ and $\frac{1}{2} q$.
e) q and 0
9. b) A hollow metal sphere is charged to a potential V. The potential at its center is:
a) 0
b) $-V$
c) V
d) 2 V
e) πV
10. A potential difference V_{0} is applied to a parallel plate capacitor with plate area A and plate separation d. The battery is disconnected and then a dielectric slab of thickness b and dielectric constant κ_{e} is centrally inserted between the plates as shown below.

11. a) What is the magnitude of the electric field E_{0} in the gaps between the plates and the dielectric slab?
a) $E_{0}=\frac{q}{\varepsilon_{0} A}$
b) $E_{0}=\frac{q}{\varepsilon_{0} K_{e} A}$
c) $E_{0}=\frac{V_{0}}{d}$
d) $E_{0}=\frac{V_{0}}{\kappa_{e} d}$
12. b) What is the magnitude of the electric field E in the dielectric slab?
a) $E=E_{0}$
b) $E=\kappa_{e} E_{0}$
c) $E=\frac{V_{0}}{d}$
d) $E=\frac{1}{\kappa_{e}} E_{0}$
13. c) What is the potential difference V between the plates after the slab has been inserted?
a) $V=V_{0}$
b) $V=\frac{V_{0}}{\kappa_{e}}$
c) $V=V_{0}\left[1-\frac{b}{d}\left(\frac{\kappa_{e}-1}{\kappa_{e}}\right)\right]$
d) $V=E_{0}(d-b)$
14. d) What is the capacitance with the slab in place?
a) $C=\frac{\varepsilon_{0} A}{\left[d+\frac{b}{\kappa_{e}}\right]}$
b) $C=\frac{\varepsilon_{0} \kappa_{e} A}{\left[\kappa_{e}(d-b)+b\right]}$
c) $C=\frac{q}{V}$
d) $C=\kappa{ }_{e} \frac{\varepsilon_{0} A}{d}$
15. e) Find the ratio of the stored energy before to that after the slab is inserted.
a) $\frac{U_{0}}{U}=1$, energy is conserved
b) $\frac{U_{0}}{U}=\frac{\kappa_{e} d}{\kappa_{e}(d-b)+b}$
c) $\frac{U_{0}}{U}=\frac{d}{\kappa_{e}(d-b)+b}$
d) $\frac{U_{0}}{U}=\kappa_{e}$
16. f) How much work is done on the slab as it is inserted?
a) $W=0$, energy is conserved
b) $W=\frac{1}{2} C_{0} V_{0}^{2}-\frac{1}{2} C V^{2}$
c) $W=\frac{1}{2} C V_{0}^{2}-\frac{1}{2} C_{0} V_{0}^{2}$
d) $W=\frac{1}{2} C V_{0}^{2}$
