
1. Introduction
Fractured rock aquifers compose about 75% of the Earth's near-surface aquifer systems (Dietrich et al., 2005) and 
often contain coexisting fluids with different densities in the fractures. Understanding the role of variable-density 
fluids on flow, transport, and mixing in fractures is essential to the prediction, design, and operation of many 
subsurface activities because fractures are the main flow paths in subsurface rocks. As shown in Figure  1, 
variable-density flows in vertical fractures can commonly occur in fractured geologic media. For example, in 
coastal fractured aquifers, the denser seawater can preferentially intrude through fractures saturated with fresh-
water (Park et  al.,  2012). Thus, understanding variable-density flows in fractures is important for managing 
water resources in coastal aquifers. Further, magma flow in dykes often involves variable-density flows (Yamato 
et  al.,  2012), and variable-density fluid flows also occur during geologic CO2 or H2 sequestration, in which 

Abstract Fluids with different densities often coexist in subsurface fractures and lead to variable-density 
flows that control subsurface processes such as seawater intrusion, contaminant transport, and geologic carbon 
sequestration. In nature, fractures have dip angles relative to gravity, and density effects are maximized in 
vertical fractures. However, most studies on flow and transport through fractures are often limited to horizontal 
fractures. Here, we study the mixing and transport of variable-density fluids in vertical fractures by combining 
three-dimensional (3D) pore-scale numerical simulations and visual laboratory experiments. Two miscible 
fluids with different densities are injected through two inlets at the bottom of a fracture and exit from an outlet 
at the top of the fracture. Laboratory experiments show the emergence of an unstable focused flow path, 
which we term a “runlet.” We successfully reproduce the unstable runlet using 3D numerical simulations and 
elucidate the underlying mechanisms triggering the runlet. Dimensionless number analysis shows that the runlet 
instability arises due to the Rayleigh-Taylor instability (RTI), and flow topology analysis is applied to identify 
3D vortices that are caused by the RTI. Even under laminar flow regimes, fluid inertia is shown to control the 
runlet instability by affecting the size and movement of vortices. Finally, we confirm the emergence of a runlet 
in rough-walled fractures. Since a runlet dramatically affects fluid distribution, residence time, and mixing, the 
findings in this study have direct implications for the management of groundwater resources and subsurface 
applications.

Plain Language Summary Groundwater systems are often composed of fractured rocks, and the 
fractures provide major pathways for groundwater flow and mass transport. Fractured rock aquifers account 
for about 75% of the Earth's near-surface aquifer systems, and fluids with different densities often coexist in 
subsurface fractures. Thus, understanding the role of variable-density fluids on fracture flows is essential for 
managing groundwater resources and predicting, designing, and operating many subsurface applications. The 
effects of density are strongest in vertical fractures; however, most previous studies on flow and transport 
through fractures are limited to horizontal fractures, and few have investigated the density effects on flow and 
mixing through vertical fractures. In this study, we report both experimental and numerical evidence of an 
intriguing, focused flow path caused by a density contrast between two fluids and elucidate the underlying 
mechanisms triggering the resulting unstable focused flow in vertical fractures, which we name a “runlet.” 
Further, vortices, which are characterized by rotating flow patterns, are shown to emerge and control the 
instability of the runlet. Since the runlet dramatically affects fluid distribution, residence time, and mixing, the 
findings in this study have direct implications for managing groundwater resources and subsurface applications.
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injected less dense CO2 or H2 tends to migrate upwards and can leak through fractures (Tongwa et al., 2013). The 
leakage of CO2 or H2 can lead to serious consequences such as jet fire, unconfined vapor cloud explosion, and 
toxic chemical release (Portarapillo & di Benedetto, 2021). Variable-density flows in channels are not limited 
to geophysical flows; they are also very common in various industrial applications in the field of biochemical 
and materials engineering. Chemical samples and biological materials with different densities are often trans-
ported in channel flows in applications of these fields (Günther & Jensen, 2006; Morijiri et al., 2011). Therefore, 
understanding density effects on transport and mixing in channel flows is critical for the prediction, design, and 
operation of various applications.

Many previous studies have shown that density contrast has a significant impact on flow and solute trans-
port in fractures (Graf & Therrien, 2005, 2007; Shikaze et al., 1998). An experimental study by Tenchine and 
Gouze (2005) showed that even a weak density contrast between two fluids, coupled with fracture wall roughness 
effects, can create preferential solute transport paths and stagnation zones that result in anomalously long tails in 
breakthrough curves. Even without fracture wall roughness, density contrasts have been shown to impact the flow 
and transport of solutes in a horizontal straight channel (Bouquain et al., 2011). Such density effects on flow and 
solute transport may dramatically increase when a fracture is inclined or vertical, which is common in nature. For 
example, Ronen et al. (1995) showed that a slight density contrast can dramatically change tracer breakthrough 
curves in vertical conduit flows. However, few studies have investigated density effects on the flow and transport 
of variable-density fluids in vertical fractures.

Further, variable-density fluid flow affects fluid mixing, which can in turn affect dissolution and precipitation 
patterns (Chaudhuri et al., 2009; Simmons, 2005; Tsang & Neretnieks, 1998). For example, in CO2-brine injec-
tion experiments conducted by Ott and Oedai (2015), the mixing of CO2 and brine formed carbonic acid that 
dissolved carbonate minerals. The study found that the dissolution occurred preferentially in the lower part of 
the horizontally oriented rock sample. Snippe et al. (2017) explained that in Ott and Oedai's experiments, gravity 
effects played an important role in determining the zone of preferential mixing and dissolution. Other studies, 
such as Oltéan et  al.  (2013), investigated buoyancy-driven dissolution in a vertical fracture and reported the 
geometrical changes of dissolution patterns over a wide range of Péclet, Damköhler, and Richardson numbers. 
A follow up study (Ahoulou et al., 2020) elucidated that the dissolution patterns were controlled by the level of 
density contrast. The density effects on mixing, dissolution, and precipitation would be much stronger in vertical 
fractures. However, most previous studies focused on variable-density fluid flow in porous media or horizontal 
fractures, and density effects on mixing and transport in vertical fractures have been elusive.

In particular, density effects may induce flow instability, which affects fluid flow, transport, and mixing. For 
example, the experiment on dissolution in inclined rectangular blocks showed that the dissolution patterns were 
affected by flow instability due to density stratification (Cohen et al., 2020). This example highlights that flow 
instability caused by density contrast can be critical in fracture flows. Different mechanisms have been proposed 
to explain the origin of instability in variable-density flows (Almarcha et  al.,  2010; Fernandez et  al.,  2002; 
Kneafsey & Pruess, 2010; Trevelyan et al., 2011; Wooding et al., 1997; Zalts et al., 2008). The most common 
explanation is Rayleigh-Taylor instability (RTI). In RTI, the displacement at the interface between two miscible 
fluids of different densities can lead to unstable density stratifications and fingering patterns due to gravity and 
buoyancy effects generated by concentration gradients. Another well-known situation that can lead to flow insta-
bility is Kelvin-Helmholtz instability (KHI). KHI occurs when there is a sufficient velocity difference across the 
interface between two fluids. However, the leading mechanisms triggering flow instability in vertical fractures 
with variable-density fluids remain unclear.

In this study, we report both experimental and numerical evidence of an intriguing, focused flow path caused by 
a density contrast between two fluids and investigate the underlying mechanisms triggering the resulting unsta-
ble focused flow in vertical fractures. Three-dimensional (3D) numerical simulations are conducted for a wide 
range of controlling factors, including density contrast, flow rate, solute diffusivity, and fracture roughness. Flow 
topology analysis is conducted to analyze the complex 3D flow fields and to identify the locations and number of 
vortices that control the instability of focused flow. Further, dimensionless number analysis is used to elucidate 
the underlying mechanisms triggering the observed instability, and we extend the findings to a rough fracture.

The remainder of this article is organized as follows. The experiment and simulation setups are detailed in 
Section 2. The results are given and discussed in Section 3. In Section 4, we summarize our key findings and 
conclusions.
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2. Methods
2.1. Experimental and Numerical Simulation Setup

Fracture flow is often simplified as the flow between two parallel flat plates, known as Hele-Shaw flow 
(Al-Bahlani & Babadagli, 2012; Chen, 1989; Saffman & Taylor, 1958). In this study, we start with a vertical flow 
cell with parallel flat plates and then extend the findings to rough fractures. A Hele-Shaw cell is an idealized 
but good proxy for identifying critical flow and fluid-related factors that affect variable-density flow and solute 
transport in a vertical fracture. For visual laboratory experiments, we used two flat transparent polycarbonate 
sheets (100 mm × 100 mm × 12.7 mm) separated by spacers to form a fracture with a uniform aperture of 4 mm. 
Two nonreactive miscible fluids with different densities (Fluid 1 and Fluid 2) were introduced through two inlets 
at the bottom of the fracture and exited through a single, elongated outlet at the top of the fracture (Figures 2a 
and 2b). The size of the two inlet ports was 3 mm 𝐴𝐴 × 3 mm, and the rectangular outlet port was 3 mm 𝐴𝐴 × 60 mm. 
The two inlets were placed 38 mm apart at the bottom of the system. The fluid and flow-related conditions used 
in the laboratory experiment are identical to the reference case (Case 1) shown in Table 1. The denser fluid (Fluid 
1) was composed of Na2CO3, NaCl, and water, and Fluid 1 was injected through the left inlet port. The lighter 
fluid (Fluid 2) was composed of Na2CO3 and water, and was introduced through the right inlet port. The addition 
of NaCl in Fluid 1 was to make the density difference between the two fluids. The denser fluid (Fluid 1) also 
contained a dye (Brocresol green) to enable the imaging of fluid distributions, and a RaspberryPi spy camera was 
used for digital imaging. Readers are referred to Xu et al. (2023) for additional experimental details.

Numerical simulations were used to investigate the effects of density contrasts, injection rates, diffusion, and 
fracture roughness on variable-density flows in a vertical fracture. Figure 2c shows the simulation setup that 
is based on the laboratory experimental setup, and Figure 2d provides a simulated image of the concentration 
distribution, in which the concentration value is proportional to Fluid 1 concentration. The entire domain was 
discretized into 400 𝐴𝐴 ×  400 𝐴𝐴 × 16 cells where each cell is a cube of edge length 0.25 mm. All domain boundaries 
were set to no-slip boundaries except for the inlets and outlet. The inlets are set as a fixed flow rate condition 
while the outlet is set as a fixed pressure condition. We simulated a total of 14 cases to study the effects of density 

Figure 1. Schematic diagram of a common scenario where a vertical fracture is intersected by two other fractures that 
introduce fluids with distinctive properties into the vertical fracture. In three-dimensional (3D) fracture networks, such a 
scenario (two different fluids flowing into a fracture through two other fractures that intersect the fracture) is very likely to 
occur.
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contrasts, injection rates, diffusion, and roughness. Table 1 lists the fluid and flow-related parameters for all the 
numerical cases. The reference case (Case 1) refers to the case in which the conditions were identical to those in 
the laboratory experiment. The parameters that differ from the reference case are shown in boldface.

The experimental and numerical setup mimics a common situation where a vertical fracture is intersected by two 
other fractures that introduce fluids with distinctive properties into the vertical fracture (Figure 1). In 3D fracture 
networks, such a scenario (two different fluids flowing into a fracture through two other fractures that intersect 
the fracture) is very likely to occur (e.g., Bochet et al., 2020). The mixing of fluids in fractures is relevant to 
engineered subsurface systems in fractured aquifers where the injection and withdrawal of fluids occur, such as 
in aquifer storage and recovery (ASR), carbon mineralization, and geothermal systems. In these applications, 
an exogenic fluid is injected into a groundwater system. The injected fluid typically has a density and velocity 
that is distinct from the ambient groundwater. Thus, in a typical field setting where there is a background flow 
of an ambient fluid, the injection of a less dense fluid can lead to the coexistence of two fluids with different 
densities in a fracture. Our experimental setup realized the coexistence of two fluids in a simple yet effective way. 
Specifically, our study design resulted in a situation where a lighter fluid is flowing more dominantly through 
a vertical fracture. The injection of the denser fluid with a smaller flow rate mimics the background fluid flow, 
and the setup allows the system to reach a quasi-steady state where the two fluids coexist. If we inject only the 
less dense fluid, the system will eventually be fully occupied by the injection fluid. The most dynamic fluid-rock 
interactions will occur in fractures that have the coexistence of two different fluids over a long time, and the study 
design allows one to investigate such a situation.

2.2. Governing Equations and Numerical Solution

3D pore-scale numerical simulations are conducted to study the variable-density flow and transport of miscible 
fluids of different densities in a vertical fracture. Fluid flow in a fracture can be described by the Navier-Stokes 
(N-S) equations that consider the mass and momentum conservations

Figure 2. (a) Experimental setup used in the laboratory experiment. (b) A snapshot from a laboratory experiment. The 
fracture aperture is 4 mm, the injection rate is 0.17 ml/min for lighter fluid, 1.36 ml/min for denser fluid, and the density ratio 
is 1,111/1031.8. (c) Setup and boundary conditions of the numerical model. (d) A snapshot of depth-averaged concentration 
distribution obtained from the numerical simulation of Case 1. Concentration values represent the normalized concentration 
of Fluid 1 where the maximum concentration after the normalization is 1. The maximum concentration in the colorbar is 
set to 0.16 to better show the runlet shape and the higher concentration around the runlet. The injection rates and the fluid 
properties are identical to the laboratory experiment.
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𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜕𝜕𝜌𝜌) = 0 (1)

𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜌𝜌𝜌𝜌𝜌𝜌) = −∇𝑝𝑝 + 𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌∇

2
𝜌𝜌 (2)

where 𝐴𝐴 𝐴𝐴 is the velocity field, 𝐴𝐴 𝐴𝐴 is the pressure field, 𝐴𝐴 𝐴𝐴 is the fluid density, 𝐴𝐴 𝐴𝐴 is the gravitational acceleration, and 
𝐴𝐴 𝐴𝐴  is the kinematic viscosity. Solute transport in a fracture is described by the advection-diffusion equation (ADE)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝑢𝑢𝜕𝜕) −𝐷𝐷∇

2
(𝜕𝜕) = 0 (3)

where 𝐴𝐴 𝐴𝐴 is the normalized solute concentration in Fluid 1 (denser fluid) and 𝐴𝐴 𝐴𝐴 is the diffusion coefficient. Thus, 
the concentration is one when the fluid is composed purely of Fluid 1 (denser fluid), and the concentration is zero 
when the fluid is composed purely of Fluid 2 (lighter fluid).

Since the density variability in our system arises due to the two miscible fluids with different densities, the fluid 
density 𝐴𝐴 𝐴𝐴 can be expressed as a linear function of concentration 𝐴𝐴 𝐴𝐴

Density (𝐴𝐴 kg∕m3 ) Injection rate (𝐴𝐴 ml∕min ) Diffusion coefficient (𝐴𝐴 m
2
∕s ) Péclet number

Case 1 (reference case) Fluid 1 1,111 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 2 Fluid 1 1031.8 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 3 Fluid 1 1,040 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 4 Fluid 1 1,073 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 5 Fluid 1 1186.6 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 6 Fluid 1 1289.8 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 7 Fluid 1 1,111 0.17 𝐴𝐴 𝟏𝟏𝟏𝟏
−𝟔𝟔 𝐴𝐴 10 

Fluid 2 1031.8 1.36

Case 8 Fluid 1 1,111 0.17 𝐴𝐴 𝟏𝟏𝟏𝟏
−𝟕𝟕 𝐴𝐴 100 

Fluid 2 1031.8 1.36

Case 9 Fluid 1 1,111 0.17 𝐴𝐴 𝟏𝟏𝟏𝟏
−𝟖𝟖 𝐴𝐴 10

3 
Fluid 2 1031.8 1.36

Case 10 (noninertial) Fluid 1 1,111 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Case 11 Fluid 1 1,111 0.17 𝐴𝐴 10
−9 𝐴𝐴 1.26 × 10

3 
Fluid 2 1031.8 0.17

Case 12 (rough fracture) Fluid 1 1031.8 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Cases 13 and 14 (rough 
fracture)

Fluid 1 1,111 0.17 𝐴𝐴 10
−9 𝐴𝐴 10

4 
Fluid 2 1031.8 1.36

Note. Fluid 1 and Fluid 2 have the identical kinematic viscosity of 𝐴𝐴 1.08 × 10
−6
(

m
2
∕s

)

 for all cases. Péclet number is defined as 𝐴𝐴
𝑢𝑢𝑢𝑢

𝐷𝐷
 where 𝐴𝐴 𝐴𝐴  is the fracture aperture, 𝐴𝐴 𝐴𝐴 is 

the maximum injection velocity, and 𝐴𝐴 𝐴𝐴 is the diffusion coefficient.

Table 1 
Fluid and Flow-Related Parameters Used in the Numerical Study Cases
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𝜌𝜌 = 𝜌𝜌0 +
𝜕𝜕𝜌𝜌

𝜕𝜕𝜕𝜕
(𝜕𝜕 − 𝜕𝜕0) (4)

where 𝐴𝐴 𝐴𝐴0 is the reference concentration of the lighter fluid which we set to be zero, and 𝐴𝐴 𝐴𝐴0 is the reference density 
at the reference concentration. Thus, Equations 2 and 3 are coupled through Equation 4 in a nonlinear way: the 
change of concentration distribution affects the fluid density, which in turn affects the flow field.

The N-S equations are nonlinear partial differential equations. The convective terms in the governing equa-
tions involve the multiplication of variables, such as velocity and density, resulting in the nonlinearity of the 
system. To reduce the nonlinearity, we applied the Boussinesq approximation (Gartling & Hickox, 1985; Gray 
& Giorgini, 1976). By neglecting density variations in the convective terms, the governing equations become 
quasilinear. The Boussinesq approximation is valid when the density variability is small and when the gravity 
force term in the momentum equation is significantly larger than the inertia term, which is the case of this study 
(Hamimid et al., 2021; Huang et al., 2020). Even with the Boussinesq approximation, some simulations took 
several weeks using computation resources at Minnesota Supercomputing Institute (MSI). Thus, the Boussinesq 
approximation was essential for investigating multiple numerical scenarios that we pursued in this study. With the 
Boussinesq approximation, Equations 1 and 2 can be simplified to

∇ ⋅ 𝑢𝑢 = 0 (5)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜕𝜕𝜕𝜕) = −

∇𝑝𝑝

𝜌𝜌0
+

𝜌𝜌

𝜌𝜌0
𝑔𝑔 + 𝜈𝜈∇

2
𝜕𝜕 (6)

We solve Equations 5 and 6 for fluid flow, Equation 3 for transport, and flow and transport equations are coupled 
through Equation 4.

We used OpenFOAM (Weller et al., 1998), an open-source CFD software developed by OpenCFD Ltd to perform 
numerical simulations. buoyantBoussinesqPimpleFoam is a flow solver that solves the N-S equations for incom-
pressible flow with the Boussinesq approximation. We coupled the buoyantBoussinesqPimpleFoam with a solver 
for ADE (scalarTransportFoam). The flow and transport equations are coupled through the fluid density term 
that is a function of solute concentration. In summary, fluid flow that honors concentration-dependent density is 
solved by buoyantBoussinesqPimpleFoam, and solute transport and mixing that determines the fluid density field 
is solved by scalarTransportFoam. The maximum Reynolds number (𝐴𝐴 Re =

𝑢𝑢𝑢𝑢

𝜈𝜈
 ) considered in this study is around 

10, which is obtained using the fracture aperture as 𝐴𝐴 𝐴𝐴  and the maximum injection velocity as 𝐴𝐴 𝐴𝐴 . This indicates 
that the flow is in the laminar regime (Wood et al., 2020), and thus we set the simulation type to be laminar in 
the OpenFOAM input file.

2.3. Flow Topology Analysis

Various flow topologies can emerge in 3D velocity fields (Bakker & Berger,  1991; Délery,  2013; Perry & 
Chong, 1994; Romanò et al., 2017). In particular, the flow fields of variable-density flows can be complex 
and thus challenging to characterize (Bresciani et al., 2019; Contreras et al., 2017; Hidalgo & Dentz, 2018; 
Lee & Kang, 2020; Stein et al., 1989). A powerful way to analyze complex 3D velocity fields is by identifying 
and tracking the essential structures of a flow field using the concept of vector field topology (Asimov, 1993; 
Globus et  al.,  1991; Helman & Hesselink,  1989; Perry & Fairlie,  1975; Theisel et  al.,  2008). Vector field 
topology reduces flow complexity through the identification of the topological features of the flow field (e.g., 
stagnation points, dividing stream surfaces), which constitutes the backbone of a flow field. Moreover, tracking 
these topological features over time or over a change in system parameters provides insight into the dynamics 
of the system (Chiogna et al., 2015; Cirpka et al., 2015; de Barros et al., 2012; Lester et al., 2009; Theisel 
et al., 2005).

Stagnation points constitute key information about a flow field and thus the identification of stagnation points is 
an important step in the topology analysis. For a 3D vector field 𝐴𝐴 𝐴𝐴(𝑥𝑥) , a stagnation point 𝐴𝐴 𝐴𝐴0 is extracted by finding 

𝐴𝐴 𝐴𝐴(𝑥𝑥0) = 0 with 𝐴𝐴 𝐴𝐴(𝑥𝑥0 ± 𝜀𝜀) ≠ 0 (where 𝐴𝐴 𝐴𝐴 is an arbitrarily small quantity) and is classified based on the eigenvalues 
𝐴𝐴 𝐴𝐴𝑖𝑖 (𝐴𝐴 𝐴𝐴 = 1..3 ) of the Jacobian matrix of the 3D vector field 𝐴𝐴 𝐴𝐴 (𝑥𝑥0) . Depending on the sign of the real parts of the 

eigenvalues 𝐴𝐴 Re(𝜆𝜆𝑖𝑖) , the stagnation points can be classified into four nondegenerate types: sources, sinks, repelling 
saddles, and attracting saddles
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Sources ∶ 0 < Re(𝜆𝜆1) ≤ Re(𝜆𝜆2) ≤ Re(𝜆𝜆3)

Repelling saddles ∶ Re(𝜆𝜆1) < 0 < Re(𝜆𝜆2) ≤ Re(𝜆𝜆3)

Attracting saddles ∶ Re(𝜆𝜆1) ≤ Re(𝜆𝜆2) < 0 < Re(𝜆𝜆3)

Sinks ∶ Re(𝜆𝜆1) ≤ Re(𝜆𝜆2) ≤ Re(𝜆𝜆3) < 0

 

Degenerate types only arise rarely (Perko, 2001), and so they are disregarded. The flow patterns around the four 
types of stagnation points are fundamentally different. Sources and sinks consist of outflow and inflow, respec-
tively. A repelling saddle has one direction of inflow and two directions of outflow, while an attracting saddle has 
one direction of outflow and two directions of inflow. Each of these types can be further divided into two types 
according to the imaginary parts of the eigenvalues 𝐴𝐴 Im(𝜆𝜆𝑖𝑖)

Focus ∶ Im(𝜆𝜆1) = 0 and Im(𝜆𝜆2) = −Im(𝜆𝜆3) ≠ 0

Nodes ∶ Im(𝜆𝜆1) = Im(𝜆𝜆2) = Im(𝜆𝜆3) = 0

 

Note that here and above, the numbering of the eigenvalues does not matter. For the focus type, there is a rotating 
pattern in the inflow or outflow plane, whereas for the node type, the flow lines are asymptotically straight when 
approaching the stagnation point. These eight types of 3D stagnation points are visualized in Figure 3. In this 
study, we identify focus saddle type stagnation points, which are associated with vortices (Figures 3f and 3h). 
We relied on a VTK-based open-source code to identify the stagnation points and their type (Bujack et al., 2021).

3. Results and Discussion
3.1. The Origin of the Runlet

In the laboratory experiments, the fracture sample was initially filled with the lighter fluid (Fluid 2). Then, simul-
taneously, the denser fluid (Fluid 1) was continuously injected from the left inlet, and the lighter fluid (Fluid 2) 
was continuously injected from the right inlet. The two fluids mixed in the fracture and exited through a constant 
pressure outlet. Experimental results show that the lighter fluid was confined to a narrow path in a vertical frac-
ture. The narrow path is not straight and the shape of the narrow path continuously changes in time (Figure 2b). 
In this paper, we term the narrow path of the lighter fluid as a “runlet” and denote the continuous change (fluctu-
ation) of runlet shape as the “runlet instability.” The numerical result of the reference case is shown in Figure 2d. 
The concentration values were averaged in the aperture direction to obtain the depth-averaged concentration field 
and normalized by the maximum concentration. The simulation successfully reproduces the key features of the 
experimental results such as the formation of the runlet and the instability of the runlet (Figure 2d). However, 
small-scale features such as the mushroom-shaped lighter fluid parcels observed in the experiment (runlet in the 
lighter blue region in Figure 2b) are not evident in the simulation results. To test the effect of mesh resolution, 

Figure 3. Eight common types of stagnation points in three-dimensional (3D) vector fields (modified from 
Weinkauf (2000)). Repelling focus saddle (f) and attracting focus saddle (h) type stagnation points are associated with 
vortices, and thus we identify those stagnation points in this study.

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034729, W

iley O
nline L

ibrary on [20/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

CAO ET AL.

10.1029/2023WR034729

8 of 19

we simulated the reference case using grids with different resolutions and 
chose the optimum mesh resolution of 0.25  mm  ×  0.25  mm  ×  0.25  mm 
(400 × 400 × 16 cells). Using supercomputing resources at MSI, it took about 
10 days to run one case using 128 cores and 400 GB RAM. Refining the 
mesh resolution by twice did not make any noticeable change, but the compu-
tation time increased significantly. Due to the stochastic nature of instability, 
noise in physical experiments, and the limitation of numerical simulation, 
one cannot capture all the features observed in the experiments such as the 
detailed ripples around runlet. Figure 4 shows the comparison of experiment 
and simulation of reference case (Case 1) at different times of fluid injec-
tion. The concentration contour lines of C = 0.11, C = 0.123, and C = 0.13 
at three different times nicely show good correspondence to the laboratory 
experiment. Thus, the numerical simulation is capable of reproducing key 
features such as runlet evolution and runlet instability, which are the focus 
of this study. In particular, concentration values are higher around the runlet 
compared to the background concentration both in the experiment and the 
simulation, which we discuss further in Section 3.3.

In both the laboratory experiments and numerical simulations, the lighter fluid 
was confined by the denser fluid. To confirm the domain size effect, we also 
simulated a case with a larger domain size of 150 mm × 150 mm and confirmed 
that the key features of runlet remained the same. Therefore, the general conclu-
sion of the study is independent of the domain size. We hypothesize that the 
density contrast between the two fluids causes the runlet. To test this hypothe-
sis, we simulated Case 2, where the experimental conditions are identical to the 
reference case but without the density contrast (Table 1). In other words, two 
fluids with different densities are injected in the reference case, while two fluids 
with the same density are injected in Case 2, i.e., 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 . Figure 5 shows the 

concentration distributions and projected 3D streamlines from the two simula-
tion cases (Please also refer to Movie S1). From the concentration distribution 
of the reference case (Figure 5a), we can clearly observe that the lighter fluid is 
confined to an unstable runlet. Whereas in Case 2, there is no runlet (Figure 5c), 
and the streamlines are smooth and relatively straight (Figure 5d). The larger 
injection rate of Fluid 2 causes Fluid 2 to occupy more space compared to Fluid 
1, and there is limited mixing between the two fluids, as shown by the segre-
gation of the fluids. This demonstrates that the density difference between the 
two injected fluids underpins the formation of the unstable runlet in the vertical 
fracture and also strongly affects the overall fluid mixing.

To further study the effects of density contrast on the formation runlet, we 
simulated four cases with different levels of density contrast (Cases 3–6 
in Table 1) and compared them with the reference case (Case 1). Larger 𝐴𝐴 𝐴𝐴 
means the density changes more with the same concentration difference, 
which means the two fluids have a larger density difference. Figure 6 shows 
the projected concentration distributions and 3D streamlines of the reference 
case and Cases 3–6. For Case 3 with the smallest 𝐴𝐴 𝐴𝐴 , although we can clearly 
see the runlet, the runlet was stable and did not fluctuate (Figure 6a). In addi-
tion, from the streamlines of Case 3 (Figure 6b) we could identify two stable 
vortices near the inlet. For all the other cases, the runlets were unstable, more 
vortices occurred around the runlet, and the vortices traveled upwards along 
the runlet. The instability of the runlet increased as 𝐴𝐴 𝐴𝐴 increased. These results 
confirm that the formation and instability of the runlet are strongly affected 
by the density contrast between the fluids. Density contrast between the 
lighter fluid and the background fluid should be large enough to sustain the 
narrow runlet and to induce vortical flows.

Figure 4. Comparison of experimental and numerical results of the reference 
case. (a) Experimental result after 25 min of fluid injection. (b) Simulation 
result after 25 min of fluid injection. (c) Experimental result after 50 min 
of fluids injection. (d) Simulation result after 50 min of fluid injection. (e) 
Experimental result after 75 min of fluid injection. (f) Simulation result after 
75 min of fluid injection.

Figure 5. (a) Depth-averaged concentration distribution of Case 1 (the two 
fluids have different densities). The lighter fluid is confined to a runlet. 
Note that the colorbar shows the entire concentration range (0–1) but in log 
scale. (b) Three-dimensional (3D) streamlines of Case 1. The streamlines 
clearly visualize the runlet and the emergence of vortices along the runlet. 
(c) Depth-averaged concentration distribution of Case 2 (the two fluids have 
the same density). (d) 3D streamlines of Case 2. Note that in both cases, the 
injection rate of Fluid 2 (right inlet) is larger than the injection rate of Fluid 1 
(left inlet).
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From the concentration distribution shown in Figure 5a, we find that the inter-
face between the lighter and denser fluids is not sharp. The diffused interface 
of two fluids in the reference case (Case 1) is caused by the active mixing 
between the two fluids along the runlet. While in the Case 2 (Figure 5c), 
there is limited mixing between the two fluids, as shown by the segregation 
of the fluids. Mixing will reduce the density difference between the runlet 
and background fluid, and the runlet may disappear for enhanced mixing 
conditions. The mixing between two fluids is controlled by fluid stretching 
and diffusion (Dentz et al., 2011; Le Borgne et al., 2013; Yoon et al., 2021). 
Fluid stretching due to velocity heterogeneity is known to control mixing by 
controlling the length elongation and width compression of the mixing zone 
near the fluid interface. Vortices that appear near the runlet seem to enhance 
fluid stretching, and diffusion ultimately mixes the two fluids. If the diffu-
sion coefficient is larger, the mixing of the two fluids will be enhanced, and 
the density gradient between the runlet and background fluid will decrease, 
which may lead to the eventual disappearance of the runlet. To study the 
effects of mixing on the density contrast and the runlet formation, we consid-
ered three cases with different diffusion coefficients (Cases 7–9 in Table 1) 
and compared the results with the reference case. If the density contrast is the 
origin of runlet formation, it is expected that the runlet will not form or will 
dissipate for high enough diffusion coefficients. The diffusion coefficient is 
10 −9 [m 2/s] in the reference case and was varied from 10 −6 to 10 −8 [m 2/s] in 
Cases 7 to 9.

Several measures that quantify the mixing state of a system exist, such as 
interface deformation (de Anna et al., 2013), scalar dissipation (Le Borgne 
et  al.,  2010), and dilution index (de Barros et  al.,  2012; Kitanidis,  1994). 
Here, we present the dilution index, which effectively quantifies the mixing 
state over the domain of interest. The dilution index is given by

𝐸𝐸(𝑡𝑡) = exp(−
∫

𝑐𝑐(𝑥𝑥𝑥 𝑡𝑡) log[𝑐𝑐(𝑥𝑥𝑥 𝑡𝑡)]d𝑥𝑥) (7)

where 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) is the normalized concentration. The dilution index is a global 
measure of dilution, which is integrated over the domain of interest. Figure 7 
shows the evolution of dilution index in time for the cases with different 
diffusion coefficients and the case without density difference (Case 2). The 
dilution index of Case 2 (dashed line) is significantly smaller than other 
cases, and this indicates that the runlet significantly increases the overall 
mixing state of the system. Also, the dilution index increases as the diffusion 
coefficient increases, which indicates that the two fluids mix more efficiently 
for a higher diffusion coefficient. Stronger mixing will lead to a decrease in 
the density gradient between the runlet and the background fluid, and may 
limit the formation and instability of the runlet.

The concentration distributions and projected 3D streamlines of Cases 7–9 
are shown in Figure 8. For Case 7 with the highest diffusion coefficient of 

10 −6 [m 2/s], the two fluids mix well, leading to the disappearance of the runlet (Figure 8a). For Case 8, in which 
the diffusion coefficient is 10 −7 [m 2/s], the runlet is visible near the inlet, but it is relatively short and stable 
(Figure 8c). From the streamlines in Figure 8d, we observe that the vortical flows are only present near the inlet, 
and then the streamlines disperse rapidly. For Case 9 (Figures 8e and 8f)), in which the diffusion coefficient is 
smaller, we clearly observe an unstable runlet, but there are fewer vortical flow structures than in the reference 
case (Figures 8g and 8h)) which has the smallest diffusion coefficient. These results confirm that the formation 
of the runlet and the presence of vortical flows along it are strongly affected by the mixing of  the two fluids. Only 
when the diffusion coefficient is small enough, the density contrast between the lighter fluid and the background 
fluid is large enough to sustain the narrow runlet and to induce vortical flows.

Figure 6. (a) Depth-averaged concentration distribution of Case 3 
(𝐴𝐴 𝐴𝐴 = 0.008 ). (b) Projected three-dimensional (3D) streamlines of Case 3. (c) 
Depth-averaged concentration distribution of Case 4 (𝐴𝐴 𝐴𝐴 = 0.04 ). (d) Projected 
3D streamlines of Case 4. (e) Depth-averaged concentration distribution of 
Case 1 (reference case; 𝐴𝐴 𝐴𝐴 = 0.077 ). (f) Projected 3D streamlines of Case 1. (g) 
Depth-averaged concentration distribution of Case 5 (𝐴𝐴 𝐴𝐴 = 0.15 ). (h) Projected 
3D streamlines of Case 5. (i) Depth-averaged concentration distribution of 
Case 6 (𝐴𝐴 𝐴𝐴 = 0.25 ). (j) Projected 3D streamlines of Case 6.
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3.2. Runlet Instability and Flow Topology Analysis

As defined in Section 3.1, the runlet instability means the fluctuation and the 
continuous change of runlet shape in time. To quantify the level of fluctuation 
of the runlet, we identified the centerline along the runlet by identifying the 
location of the minimum concentration on each horizontal x-y plane and trac-
ing those points in the vertical direction (the red line in Figures 2d and 9b). 
Note that we discretized the domain into 400 horizontal layers with a thick-
ness of 0.25 mm. We define the traced line of minimum concentration as the 
centerline of the runlet, and the length of the centerline represents the length 
of the runlet. We can then track the length of the runlet in time. Figure 9a 
shows the change in the length of the centerline (runlet) in time. We observe 
that the length of the centerline increases roughly linearly in time and then 
asymptotes to a constant value. This indicates that the runlet becomes longer 
and unstable over time and eventually reaches a quasi-steady state where the 
instability does not intensify further nor dissipate. At the quasi-steady state, 
the runlet continues to fluctuate as shown in Movie S1.

From the streamlines of the reference case (Figure 5b), we observe that a 
number of vortices occur along the runlet. Critical stagnation points associ-
ated with the vortices were extracted using a topology analysis tool (Bujack 
et al., 2021). We analyzed the focus saddles (Figures 3f and 3h) because the 
spiral flow around these stagnation points has the same flow pattern as vorti-
ces. The identified focus saddles are shown with blue circles in Figure 9b. 

Most of them are indeed located at the center of vortices or near the vortices. Thus, the number of focus saddles 
is an indicator of the number of vortices. The stagnation points are densely populated near the inlet, and the 
number decreases in the vertical (flow) direction. In other words, more vortices exist near the lower part of the 
system, which is also where the concentration gradients are higher. High concentration gradients at the lower part 
of the system may lead to RTI (Kull, 1991; Sharp, 1984), and the vortices produced by RTI may be the origin of 
the runlet instability. The relation between RTI, vortices, and runlet instability will be further discussed in the 
following section.

The spiral flows around vortices affect the flow pattern around the runlet, bending the runlet and leading to the 
instability of runlet. To check if the vortices are playing a crucial role in causing the runlet instability, we calcu-
lated the total number of focus saddles and plotted the total number of these stagnation points over time. The 
trends of the number of stagnation points and that of the length of the centerline are almost identical (Figure 9a). 
This result suggests that the number of stagnation points, especially the number of focus saddles, can be used to 
quantify the instability of the runlet, and the instability of the runlet is strongly affected by the vortices.

3.3. Origin of Runlet Instability: RTI Versus KHI

Here, we investigate the origin of the vortices that control the instability of the runlet over time. Vortical flows 
can be generated by either concentration gradients or velocity gradients in our system. The concentration and 
velocity distribution at multiple horizontal cross-sections (at z = 25 mm, 50 mm, and 75 mm from the bottom 
of the domain) at three pore volume injection (PVI) are shown in Figure 10. One PVI is equivalent to the time 
required for the injected fluid volume to reach the total pore volume of the fracture domain (pore volume divided 
by injection rate). From the concentration maps (Figures 10a, 10c, and 10e), a large concentration gradient around 
the runlet is evident. In particular, the concentration at the perimeter of the runlet is higher than that in other 
areas, showing the nonmonotonic concentration profile. Note that during injection, the denser fluid sinks to the 
bottom of the fracture due to gravitational effects, displacing the lighter fluid that initially filled the fracture. As 
both fluids are continuously pumped into the fracture, the denser fluid occupies most of the fracture near the 
inlet, except where the runlet is. The runlet is formed by the injected lighter fluid, thus having a low concentra-
tion. The runlet has a high velocity because the lighter fluid is flowing through a narrow runlet. Thus, the denser 
fluid near the runlet moves along with the lighter fluid due to the shear drag exerted by the high-velocity runlet 
flow. This explains the maximum fluid concentration at the perimeter of the runlet, which is also observed in the 
experiment.

Figure 7. The evolution of dilution index in time. The red line for reference 
case (Case 1, 𝐴𝐴 𝐴𝐴 = 10

−9 [m 2/s]), the black line for Case 7 (𝐴𝐴 𝐴𝐴 = 10
−6 [m 2/s]), 

the blue line for Case 8 (𝐴𝐴 𝐴𝐴 = 10
−7 [m 2/s]), the green line for Case 9 (𝐴𝐴 𝐴𝐴 = 10

−8 
[m 2/s]), and the red dash line for Case 2 (without density difference).
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The instability of the interface between two fluids caused by differ-
ent densities is known as RTI (He et  al.,  1999; Kull,  1991; Sharp,  1984; 
Tryggvason,  1988). Here, we qualitatively describe the overall process 
induced by RTI and quantitatively confirm the discussed processes in the 
following sections. The density contrast between the runlet and surround-
ing fluid can lead to opposing flow directions between the denser and 
lighter  fluids. At an early stage, the denser fluid at the bottom of the fracture 
and near the runlet is pulled along the runlet because of the injection force 
(Figure 11I). This is due to the drag force exerted on the surrounding denser 
fluid by the fast-flowing lighter fluid. Then, due to the density effect, the 
denser fluid sinks to the bottom of the fracture and mixes with the surround-
ing fluid causing RTI. This is how a rotating flow pattern (vortex) emerges 
at the bottom of the fracture (Figure 11II). Subsequently, the vortex moves 
upward due to the drag force along the runlet, and the runlet bends due to the 
spiral flows (Figure 11III). The upward movements of vortices are shown in 
Movie S1. As the vortex rises, the same phenomenon occurs on the other side 
of the runlet and another vortical flow emerges. Thus, vortices emerge on 
either side of the runlet, leading to the runlet bending in alternating directions 
(Figure 11IV). Figure 11 is a schematic showing the step-by-step process.

The Rayleigh (Ra) number is a dimensionless number that is commonly 
used to predict and describe the instability of variable-density flows. Ra 
is the ratio comparing the convective mass transfer and the diffusive mass 
transfer. When Ra is greater than some critical Rayleigh number, Rac, the 
density-driven convective transport is dominant, and the spiral vortical flows 
result from the RTI (Cengel et al., 2001; Le Quere, 1990; Solano et al., 2022). 
The critical Rayleigh number allows us to predict the occurrence of RTI, and 
the specific value is dependent on a given experimental setup. We quantify 
Ra using the following definition that is based on the concentration gradient 
(Hage & Tilgner, 2010; Ślezak et al., 2004):

Ra =
𝑔𝑔𝑔𝑔𝑔𝑔

4

𝐷𝐷𝐷𝐷

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (8)

where 𝐴𝐴
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is the concentration gradient and 𝐴𝐴 𝐴𝐴 = −

1

𝜌𝜌

𝜕𝜕𝜌𝜌

𝜕𝜕𝜕𝜕
 describes the density 

change with regard to concentration. We estimated Ra along the z-direction 
for different diffusion coefficients (reference case and Cases 7–9 in Table 1). 

The representative length 𝐴𝐴 𝐴𝐴  of the fluid volume is taken to be half of the fracture aperture (2 mm). The entire 
domain is divided into 400 horizontal layers where each layer has the size of 100 mm × 0.25 mm × 4 mm. Ra is 
then calculated for each horizontal subdomain and then plotted along the vertical direction. In each subdomain, the 

Figure 8. (a) Depth-averaged concentration distribution of Case 7 
(D = 10 −6 m 2/s). (b) Projected three-dimensional (3D) streamlines of Case 
7. (c) Depth-averaged concentration distribution of Case 8 (D = 10 −7 m 2/s). 
(d) Projected 3D streamlines of Case 8. (e) Depth-averaged concentration 
distribution of Case 9 (D = 10 −8 m 2/s). (f) Projected 3D streamlines of Case 
9. (g) Depth-averaged concentration distribution of Case 1 (D = 10 −9 m 2/s; 
reference case). (h) Projected 3D streamlines of Case 1.

Figure 9. (a) Number of focus saddles (repelling or attracting) and length of the centerline as a function of time. (b) Location 
of focus saddles at a snapshot of the reference case. Blue circles show the location of identified focus saddles, and the red line 
shows the centerline.
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locations of the maximum and minimum concentration values are identified. Then, 𝐴𝐴 𝐴𝐴𝐴𝐴 is obtained by taking  the 
concentration difference between these two points, and 𝐴𝐴 𝐴𝐴𝐴𝐴 is obtained by estimating the distance between the two 
points.

Figure 12a shows the evolution of Rayleigh number (Ra) as a function of vertical location (z) for cases with 
different diffusion coefficients, the red line for reference case (Case 1, D = 𝐴𝐴 10

−9 [m 2/s]), the black line for Case 
7 (𝐴𝐴 𝐴𝐴 = 10

−6 [m 2/s]), the blue line for Case 8 (D = 𝐴𝐴 10
−7 [m 2/s]), and the green line for Case 9 (𝐴𝐴 𝐴𝐴 = 10

−8 [m 2/s]). 
As shown in Figure 12a, Ra decreases as the diffusion coefficient increases because stronger diffusion leads to 
a reduced concentration difference. For the case in which the diffusion coefficient is 10 −7 [m 2/s] (red line), the 
maximum Ra is ∼𝐴𝐴 7 × 10

5 , and when the diffusion coefficient is 10 −8 [m 2/s] (green line), the maximum Ra is ∼
𝐴𝐴 1.3 × 10

6 . Considering that the runlet is stable in the case with a diffusion 
coefficient of 10 −7 [m 2/s] (red line), and the runlet becomes unstable in the 
case for a diffusion coefficient of 10 −8 (green line), we can infer that the 
instability emerges when Ra is somewhere between 𝐴𝐴 7 × 10

5 and 𝐴𝐴 1.3 × 10
6 (the 

gray zone in Figure 12a). Therefore, the critical Rayleigh number (at which 
the runlet becomes unstable) is in the order of 𝐴𝐴 1 × 10

6 .

Figure 12b shows the evolution of Rayleigh number (Ra) as a function of 
vertical location (z) for cases with different 𝐴𝐴 𝐴𝐴 . The red line shows the refer-
ence case where 𝐴𝐴 𝐴𝐴 = 0.077 . At smallest 𝐴𝐴 𝐴𝐴 of 𝐴𝐴 0.008, the runlet was observed 
but it was stable, and the system showed runlet instability at 𝐴𝐴 𝐴𝐴 = 0.04 . There-
fore, we can infer that the instability emerges when Ra is somewhere between 

𝐴𝐴 5 × 10
5 and 𝐴𝐴 1.1 × 10

6
, indicated by the gray zone in Figure 12b. The range of 

the critical Ra is consistent with what we obtained from the cases with differ-
ent diffusion coefficients (Figure 12a). Combining these results, we can limit 
the range of critical Ra to be between 𝐴𝐴 7 × 10

5 and 𝐴𝐴 1.1 × 10
6 .

For the cases with the unstable runlet, Ra is larger than Rac only near the 
inlet. This implies that the vortices, which control the instability, can only 

Figure 10. Concentration and velocity fields in cross-sections at (a and b) 25 mm, (c and d) 50 mm, and (e and f) 75 mm 
from the bottom of the domain. Concentration around the runlet is higher than in other areas. Velocity is greatest at the runlet 
center.

Figure 11. Developmental stages of vortices and unstable runlet. Blue arrows 
show the movement of the lighter fluid, black arrows show drag force exerted 
on the denser fluid by the runlet, and red arrows show the movement of the 
denser fluid.
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originate near the lower part of the system. Indeed, it can be observed from Figure 9a that most of the vortices are 
located near the injection port. Although the Ra at the upper part of the system is smaller than Rac, the vortices 
can travel upwards with the flow because of the injection force and lead to the bending and instability of the 
runlet. Movie S1 confirms that the instability in the upper part is governed by the vortices that migrated from 
the bottom part. Traditionally, when the Rayleigh number is larger than critical Rayleigh number, instability sets 
in and convection cells appear. However, the appearance of convection cells, which we call vortex in this study, 
does not necessarily mean the runlet instability in our system. Ra should be larger than Rac such that it allows the 
upward movement of vortices, which leads to the instability of runlet.

Another well-known mechanism that can lead to flow instability is the KHI (Funada & Joseph, 2001; Smyth & 
Moum, 2012). KHI occurs when there is a sufficient velocity difference across the interface between two fluids. 
The large velocity shear can induce instability along the interface. Therefore, the interface becomes an unstable 
vortex sheet. From the velocity fields at different cross-sections (Figures 10b, 10d, and 10f), we observe a rapid 
change in the velocity magnitude near the runlet, which may lead to KHI. For KHI, the Richardson number (Ri) 
is the dimensionless number that is used to predict the instability. Ri represents the ratio of the buoyancy term to 
the flow shear term

Ri =
𝑔𝑔

𝜌𝜌

𝜕𝜕𝜌𝜌

𝜕𝜕𝜕𝜕

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2 (9)

where 𝐴𝐴
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is the velocity gradient. When the Richardson number is below the critical Richardson number Ric, the 

fluid becomes unstable. In other words, the fluid flow should be stable if Ri of the system is significantly larger 
than Ric. Therefore, we estimate the minimum Ri that our system can reach. If the minimum Ri is much larger 
than Ric, we can conclude that the KHI is not the cause of the instability. To obtain the smallest Ri that can 
occur in our system, we estimate the largest velocity difference 𝐴𝐴 𝐴𝐴𝐴𝐴 . The maximum velocity difference possible 
in our  system is the injection velocity. Thus, the maximum 𝐴𝐴 𝐴𝐴𝐴𝐴 is taken as the injection velocity, which is around 
2.5 𝐴𝐴 mm∕s . 𝐴𝐴 𝐴𝐴 is taken as the density of the lighter fluid, which is 1031.8 kg/m 3. 𝐴𝐴 𝐴𝐴𝐴𝐴 is taken as half of the fracture 
aperture, which is 2 mm, and 𝐴𝐴 𝐴𝐴𝐴𝐴 is taken as the density difference between the lighter and denser fluid, which 
is 79.2 kg/m 3. Using these numbers, the smallest Ri in the system is estimated to be about 240. The values of 
Ric from previous studies range from 0.2 to 1.0 (Abarbanel et al., 1984; Galperin et al., 2007; Howard, 1961). 
Considering the Ri calculated in our system is 2 orders of magnitude larger than the reported values of Ric, the 
RTI appears to be the main mechanism that makes the runlet unstable.

3.4. Influence of Inertial Force

From Figure 9b, we observe that more stagnation points are present near the inlet, and the number decreases in 
the flow (vertical) direction. This is because more vortices appear at the lower part of the system due to the high 

Figure 12. (a) Evolution of Rayleigh number (Ra) as a function of vertical location (z) for cases with different diffusion 
coefficients. z = 0 mm is at the bottom of the fracture (where the inlet is located). (b) Evolution of Rayleigh number (Ra) as a 
function of vertical location (z) for cases with different α. The critical Ra is within the Ra range indicated by the gray zones.
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concentration gradient near the inlet. As we discussed before, the spiral flow 
around vortices makes the runlet unstable. Intuitively, more vortices should 
lead to a more unstable runlet. However, in both experimental and simulation 
results (Figures 2b–2d), we observed that runlets are stable and straight near 
the injection point (lower part) and become unstable as the distance from the 
inlet increases. One reason for the stability may be due to the high inertial 
force of lighter fluid near the inlet, suppressing the effects of vortical flows. 
To investigate the influence of inertial force on the stability of the runlet, we 
considered Case 10 that solves Stokes equations instead of N-S equations to 
simulate noninertial flow. Stokes equations can be obtained by removing the 
inertial terms in the momentum balance Equation 2

𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
= −∇𝑝𝑝 + 𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌∇

2
𝜌𝜌 (10)

After applying the Boussinesq approximation, Equation 9 can be written as

𝜌𝜌0
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −∇𝑝𝑝 + 𝜌𝜌𝜌𝜌 + 𝜌𝜌0𝜈𝜈∇

2
𝜕𝜕 (11)

The parameters of the fluid used in this case are the same as the reference 
case in Table  1. We compare this case (Case 10) with the reference case 
(Case 1) where we account for the inertial force. The concentration distri-
butions and projected 3D streamlines of the case that neglect inertial force 
are shown in Figures 13a and 13b. Results show that in both cases, the upper 
half part of the runlet is unstable, and the wavelengths are similar. However, 
in the case that the inertial force is neglected, the instability initiates near 
the inlet, and  the upward movements of vortices are limited, which is clearly 
different from the case considering the inertia (Movie S1). The results are 
consistent with the hypothesis that in the case considering the inertial force, 
although vortices emerge at the lower part of the system as predicted by the 
high Rayleigh number, the large inertial force caused by the fast runlet flow 

maintains the straightness of the runlet near the inlet. As we discussed in Section 3.3, the vortices travel up along 
with the flow because of the injection force. In the upper part, due to the decrease in inertial force, the vortical 
flow effect dominates over the injection force, so the runlet shows enhanced fluctuations. In the case that neglects 
the inertial force, the vortices appearing at the lower part can lead to the fluctuation of the entire runlet, but the 
vortices show limited upward movement due to the lack of inertia force.

To further study the effects of inertial force on the runlet stability, we simulated Case 11 with a smaller injection 
rate of the lighter fluid than the reference case (Case 1). The inertial force increases as the injection rate increases. 
In Case 11 shown in Table 1, the injection rate of the lighter fluid is the same as the injection rate of the denser 
fluid, which is 0.17 ml/min, an order of magnitude smaller than the lighter fluid injection rate in the reference 
case. From the concentration distributions (Figure 13e) of Case 11, although the inertial force is smaller, the 
lower part of the runlet is still straight due to the inertial force. Further, the upper part of the runlet is unstable in 
both cases but the wavelength in Case 11 is significantly shorter than that in the reference case, which is consist-
ent with what is observed in laboratory experiments (Xu et al., 2023). Studies on confined laminar impinging 
slot-jet also reported that the size of a vortex increases with increasing Reynolds number (Sexton et al., 2018; 
Sivasamy et al., 2007). From Case 11, we can conclude that the increase in injection rate of lighter fluid increases 
the wavelength of the runlet, which is associated with the size of vortices. These findings highlight that the inertia 
effect can be critical for fracture flows even in the laminar flow regimes.

3.5. Effects of Fracture Roughness and Aperture Variability

Fracture surfaces are rough in nature, and fracture roughness is known to significantly affect fluid flow and 
transport. For example, aperture variability due to surface roughness can lead to preferential flow paths and 
stagnation zones (Kang et al., 2016; Tsang & Neretnieks, 1998; Yoon & Kang, 2021). To study the effects of 

Figure 13. (a) Depth-averaged concentration distribution of the Case 10 
that neglects inertial force. (b) Projected three-dimensional (3D) streamlines 
of the Case 10 that neglects inertial force. (c) Depth-averaged concentration 
distribution of the reference case. (d) Projected 3D streamlines of the reference 
case. (e) Depth-averaged concentration distribution of the Case 11, in which 
the injection rate of lighter fluid is 0.17 ml/min. (f) Projected 3D streamlines 
of the Case 11, in which the injection rate of lighter fluid is 0.17 ml/min.
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surface roughness on runlet, we conducted 3D numerical simulations on a 
real rock fracture geometry (Cases 12–14). The surface topography data was 
obtained by scanning a natural fracture (Sawayama et al., 2021) and was used 
to generate a rough fracture. We chose an area of 𝐴𝐴 100mm × 100mm from the 
data set. Figure  14a shows the aperture map between the two rough frac-
ture surfaces. The mechanical aperture (the average distance between the two 
fracture surfaces) is fixed to be 4 mm such that it is consistent with the cases 
with parallel plates. Figure 14b shows the cross-sections of the rough fracture 
at four different locations. Generally,  the lower half of the fracture has larger 
aperture values than the upper half (Figure 14a).

To investigate density effects on runlet formation in rough fractures, we first 
simulated the case in which the two fluids have the same density (Case 12). 
The fluid properties we used in this case are the same as Case 2 (Table 1). No 
runlet is formed in the rough fracture without density contrast (Figures 14c 
and 14d), which confirms that the density contrast between two fluids injected 
is critical to the formation of the runlet  also in a rough fracture. We then 
considered the case in which the two fluids have the density difference (Case 
13). In Figure 14a, the blue arrow indicates the injection position of lighter 
fluid, and the black arrow indicates the injection position of denser fluid. The 
concentration distribution (Figure 14e) clearly shows that the runlet of lighter 
fluid is present and unstable in the rough fracture case. The 3D streamlines 
(Figure 14f) show that there are vortices along the runlet, and they cause the 
runlet to become unstable, similar to that observed in the uniform aperture 
fracture (i.e., parallel plates).

To further study the effects of fracture roughness on the formation and insta-
bility of the runlet, we simulated an additional case (Case 14) by rotating the 
fracture. For Case 14, the injection position of lighter fluid is indicated with 
the orange arrow, and the injection position of denser fluid is indicated with 
red arrow in Figure 14a. The result (Figures 14g and 14h) shows that the 
runlet formation is significantly different from Case 12. The concentration 
distribution (Figure 14g) shows that the width of the runlet is larger in Case 
14. The increase in runlet width and area is attributed to the aperture variabil-
ity. In Case 14, the right half of the fracture where the lighter fluid is injected 
has relatively smaller apertures, while the left half of the fracture where the 
denser fluid is injected has larger apertures. When the lighter fluid flows 
through the zone with narrower apertures, due to the mass conservation, the 
flow cross-sectional area of lighter fluid will likely increase. Therefore, in 
Case 14, the runlet width is larger. This is evident from the 3D streamlines 
(Figure  14h), in which we can observe how the streamlines are dispersed 
and tend to flow to the area with larger fracture aperture. Furthermore, the 
streamlines show that there is only one large stable vortex near the inlet that 
does not travel upwards. This indicates that the aperture variability can affect 
the movement of vortices. Results from this section confirm that a runlet still 
appears in rough fractures, but the shape and instability of runlet are sensitive 
to a given aperture field. In nature, fracture roughness and aperture can vary 
widely (Ogilvie et al., 2006; Zhang et al., 2019), and thus a more compre-
hensive study on runlet formation in rough fractures should be an important 
topic of future study.

4. Summary and Conclusions
In this study, we investigated variable-density flows in vertical fractures and elucidated the formation and origin 
of the unstable runlet based on a visual laboratory experiment and direct 3D numerical simulations. Results 

Figure 14. (a) Aperture map formed by two rough fracture surfaces. Dashed 
lines show cross-sectional locations. Blue arrow shows the injection position 
of lighter fluid in the Case 13. Orange arrow shows the injection position of 
lighter fluid in the Case 14. For the Case 14, we rotate the fracture to place 
the injection position at the bottom. (b) Cross-sections of the rough fracture. 
(c) Depth-averaged concentration distribution of the rough fracture case in 
which the two fluids have same density at three pore volume injection (PVI). 
(d) Projected three-dimensional (3D) streamlines in the rough fracture case 
in which the two fluids have same density at three PVI. (e) Depth-averaged 
concentration distribution of the Case 13 at three PVI. The unstable runlet is 
still evident in rough fracture. (f) Projected 3D streamlines of the Case 13 at 
three PVI. Note the vortices along the runlet. (g) Depth-averaged concentration 
distribution of the Case 14 at three PVI. The runlet is wider. (h) Projected 
3D streamlines of the Case 14 at three PVI. The projected 3D streamlines are 
dispersed due to aperture variability. Cases 13 and 14 are based on the same 
rough fracture but the injection location is different.

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034729, W

iley O
nline L

ibrary on [20/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

CAO ET AL.

10.1029/2023WR034729

16 of 19

show that when two fluids with different densities are injected at the bottom of a vertical fracture, the lighter 
fluid is confined to a narrow runlet which could be unstable. The formation of the runlet requires a sufficient 
density difference between the fluids, and the mixing of the two fluids is demonstrated to play an important 
role. If there is no density difference between the two fluids, or if the two fluids are well-mixed, the runlet does 
not appear.

We identified RTI as the origin of vortices that control the instability of the runlet. The large concentration gradi-
ent between the runlet and surrounding fluid, especially at the lower part of the fracture, leads to the emergence 
of vortices due to the RTI. The estimation of the critical Rayleigh number further confirmed that the instability 
arises due to the RTI: the estimated Rayleigh number near the inlet is larger than the critical Rayleigh number. 
Further, flow topology analysis of the velocity field identified vortices, which are shown to be strongly corre-
lated with runlet instability. Vortices emerge due to the RTI near the inlet, and they are shown to travel along the 
runlet, controlling the runlet instability. The number of vortices over time showed a very similar trend to the time 
evolution of the runlet length.

Inertial force is shown to control the effect of vortices on runlet instability. Vortices emerge near the inlet, but 
high local inertial force near the inlet keeps the runlet straight. Due to the injection force, the vortices travel 
upwards with the flow. In the upper part, where the inertial (injection) force decreases, the vortical flows domi-
nate the shaping of the runlet, making the runlet to be unstable. In the case without inertial force, the instability 
not only occurs in the upper part of the fracture, but also near the inlet. The vortices that appear near the inlet 
make the entire runlet become unstable due to the lack of inertia. The upward movements of vortices are limited 
due to the lack of inertia force, but their effects near the inlet affect the entire runlet. The injection rate of the 
lighter fluid is also shown to control the wavelength of the unstable runlet and the size of the vortices. When the 
injection rate is smaller, which means the inertial force is smaller, the wavelength and size of vortices are smaller. 
Our results highlight that even in laminar fracture flow conditions, inertia can play a critical role. Finally, we 
confirmed the formation of unstable runlets in rough fractures, and aperture variability is demonstrated to play an 
important role in shaping the runlet and its instability.

In this study, various factors affecting the formation and instability of a runlet in a vertical fracture were explored. 
The results of this study elucidate the underlying mechanisms triggering the instability in variable-density frac-
ture flows and provide insights into the complex interplay between transport, mixing, and runlet instability in a 
vertical fracture. This study has important implications for the prediction, design, and operation of subsurface 
processes and applications that involve variable-density fluids in channel flows. For example, the unstable runlet 
may have strong impact on the extent of seawater intrusion in coastal aquifers. Further, runlets may have even 
more dramatic effects if dissolution and precipitation reactions are present. The locations of dissolution and 
precipitation will be a strong function of runlet characteristics, which may control the efficiency of geologic 
carbon mineralization. The effects of the runlet on dissolution and precipitation reactions in rough fractures is an 
important topic for future study.

Data Availability Statement
All simulation input files are available in Cao et al. (2023) through the Data Repository for University of Minne-
sota (DRUM).
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