| Purdue
University
Department of Physics
PHYS
241 AGU SEG ARMA e-Data MatWeb
GMIG
Home |
|
| |
Laboratory of Applied Experimental Geophysics We Love Rocks & Physics! |
|
|
|
| |
Fractures and fracture networks have the greatest potential for compromising the integrity of subsurface reservoirs for CO2 sequestration. The ability to extract or sequester fluids and materials in the subsurface requires detailed information on the mechanical, hydraulic and chemical integrity of subsurface formations. Current geophysical methods can provided either detailed information in a small volume adjacent to a borehole, or information over larger volumes, but at much lower spatial resolution. To bridge this gap, nano- and/or micro- sensors could be distributed to target locations in the subsurface to provide local detailed information of the formation, fluids and microbial life. The development and deployment of such sensors is listed as a need for physical, chemical and biological sensing in the DOE report on Basic Research Needs in Geosciences: Facilitating 21st Century Energy Systems 2007. The objective of this research is to determine how to control the injection and retrieval of sensor swarms within fracture networks Stages of Swarm Evolution ![]() Swarm Velocity , Percent of Swarms that Bifurcate and Bifurcation Depth as a function of Aperture ![]() Composite Image of Swarms in Different Aperture Fractures (value at the top is 0.5*aperture) ![]() |
This page has been
accessed at least
times since the counter was last reset on June 9, 2012.