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ABSTRACT

The detection of fractures in an anisotropic medium is com-
plicated by discrete modes that are guided or confined by frac-
tures such as fracture interface waves. Fracture interface waves
are generalized coupled Rayleigh waves whose existence and
velocity in isotropic media depend on the stiffness of the frac-
ture, frequency of the source, and shear-wave polarization. We
derived the analytic solution for fracture interface waves in an
orthorhombic medium and found that the existence and veloc-
ity of interface waves in anisotropic media are also affected
by the orientation of a fracture relative to the layering. Labo-
ratory measurements of fracture interface waves using ultra-
sonic transducers (central frequency ∼1 MHz) on garolite

specimens confirmed that the presence of fracture interface
waves can mask the textural shear-wave anisotropy of waves
propagating parallel to the layering. At low stresses, a layered
medium appears almost isotropic when a fracture is oriented
perpendicular to the layering, and conversely, a layered
medium exhibits stronger anisotropy than the matrix for a frac-
ture oriented parallel to the layering. The matrix shear-wave
anisotropy is recovered when sufficient stress is applied to
close a fracture. The theory and experimental results demon-
strated that the interpretation of the presence of fractures in
anisotropic material can be unambiguously interpreted if mea-
surements are made as a function of stress, which eliminates
many fractured-generated discrete modes such as fracture in-
terface waves.

INTRODUCTION

Discontinuities such as fractures, joints, and faults occur in the
earth’s crust in a variety of rock types. Previous research has shown
the existence of discrete modes caused by single and parallel sets of
fractures. For example, several studies (Murty, 1975; Pyrak-Nolte
and Cook, 1987; Suarez-Rivera, 1992; Gu et al., 1996; Pyrak-Nolte
et al., 1996) have shown that fractures support coupled Rayleigh
waves (also known as “fracture interface waves”) that propagate
along fractures in an otherwise isotropic material. The existence
of fracture interface waves depends on the wavelength of the signal,
the fracture specific stiffness relative to the material properties of the
matrix, and the polarization of a shear-wave source relative to the
fracture plane. Nihei et al. (1994) showed theoretically the existence
of Love waves in an isotropic medium, where the Love waves are
guided by the presence of parallel fractures. Xian et al. (2001) dem-
onstrated experimentally that leaky compressional-wave guided
modes, occurring in sets of parallel fractures in an isotropic

medium, are sensitive to the stiffness distributions within the frac-
ture sets and can propagate over at least 60 wavelengths.
Few studies have examined seismic-wave propagation in frac-

tured anisotropic rocks (e.g., Kundu and Boström, 1992; Carcione,
1996, 1997, 1998; Rüger, 1998; Chaisri and Krebes, 2000; Car-
cione and Picotti, 2012). Schoenberg (2009) derived a second-rank
compliance tensor (inverse of stiffness tensor) for a vertically frac-
tured transversely isotropic medium with a set of parallel fractures
to theoretically decompose the contribution into the fractures versus
that from the matrix. However, effective medium approaches ignore
the existence of fracture interface waves and other fracture guided
modes that can affect seismic interpretations. Because these guided
modes are frequency dependent, broadband data can result in the
observation of both effective medium and discrete mode behavior,
resulting in overlapping scattering regimes. For example, Nolte et al.
(2000) demonstrated experimentally that different scattering
regimes coexist when broadband sources are used. Specifically,
they observed that the transition from long wavelength to short
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wavelength scattering behavior for fracture interface waves is a
smooth transition, where both interface waves and resonant-
scattered Rayleigh waves are observed.
In this paper, we demonstrate the effect of fracture interface

waves on the interpretation of seismic anisotropy of an orthorhom-
bic medium for shear waves propagating parallel to the layering. We
present the theoretical derivation for fracture interface waves in
an orthorhombic medium for two specific conditions: (1) a fracture
oriented perpendicular to the layering and (2) a fracture oriented
parallel to the layering. In addition, we present the results from lab-
oratory experiments that demonstrate and confirm the theoretical
predictions that the presence of fracture interface waves can mask
the matrix anisotropy. The theoretical and experimental results
show that the background or matrix anisotropy is recovered as frac-
tures close under normal stress.

THEORY

The existence and behavior of fracture-interface waves along
fractures in isotropic material has been shown theoretically in pre-
vious works (e.g., Murty, 1975; Pyrak-Nolte and Cook, 1987; Gu
et al., 1996). In those studies, a fracture is represented by a set of
boundary conditions (often referred to as the “displacement discon-
tinuity theory” or “linear-slip theory”). These nonwelded boundary
conditions are that stress across a fracture is continuous, but the
displacement is not. The discontinuity in displacement is inversely
proportional to the specific stiffness of the fracture (Mindlin, 1960;
Kendall and Tabor, 1971; Murty, 1975; Schoenberg, 1980; Kitsu-
nezaki, 1983; Schoenberg, 1983; Myer et al., 1985; Pyrak-Nolte
et al., 1990a, 1990b; Murty and Kumar, 1991; Suarez-Rivera, 1992;
Gu, 1994).
Here, we present the theoretical derivation of fracture interface

waves for a medium with a single fracture oriented either parallel

(the FH medium), or perpendicular (the FV medium) to the matrix
layering. In both cases, the layers of the matrix lie in the x-y plane.
The layered matrix is considered as an orthorhombic or a modified
vertically transversely isotropic (VTI) medium, and a fracture is
represented as a nonwelded contact between two identical media
(i.e., the same material density, and elastic constants).

Fracture perpendicular to layering (FV)

In the FVmedium, a fracture is assumed to lie vertically in the x-z
plane (solid line in Figure 1). The half space for y > 0 is medium 1,
whereas the half space for y < 0 is medium 2. The displacement
discontinuity boundary conditions that represent the fracture are

uð1Þy − uð2Þy ¼ σð1Þyy ∕κy;

σð1Þyy ¼ σð2Þyy ;

uð1Þx − uð2Þx ¼ σð1Þxy ∕κx;

σð1Þxy ¼ σð2Þxy ;

uð1Þz − uð2Þz ¼ σð1Þyz ∕κz;

σð1Þyz ¼ σð2Þyz ; (1)

where κx and κz represent the shear-specific stiffnesses of the frac-
ture, κy is the normal specific stiffness, and σ is a second-rank tensor
representing stress across the fracture. Superscripts (1) and (2) in-
dicate the parameters in medium 1 and medium 2, respectively.
A detailed derivation of the solution for fracture interface waves

is given in Appendix A. Here, we present the secular equations for
the symmetric interface wave,

��
η22 − η23
η21

�
ð2ξ4 − ξ2 − 2ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
Þ− η22ð2ξ2 − 1Þ

�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q
κy ¼ 0; (2)

and, for the antisymmetric interface wave,

1

η22

��
η22−η23
η21

�
ð2ξ4−ξ2−2ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2−η21

q ffiffiffiffiffiffiffiffiffiffiffi
ξ2−1

p
Þ−η22ð2ξ2−1Þ

�

−2
ffiffiffiffiffiffiffiffiffiffiffi
ξ2−1

p
κx¼0; (3)

where

ξ ¼ CS∕C;

η1 ¼ CS∕CP;

η2 ¼ C�
P∕CP;

η3 ¼ ζ∕CP: (4)

In equation 4, C is the fracture interface wave velocity, CS is the
S-wave velocity and CP, C�

P are P-wave velocities (Figure 1).
The normalized normal stiffness is κy ¼ κy∕ωZS, and κx ¼
κx∕ωZS is the normalized shear stiffness (ZS ¼ ρCS is the
shear-wave impedance, where ρ is medium density). Symbol ζ is
a notation for convenience, and it can be expressed by the off diago-
nal stiffness component c12 (see Appendix A) and density ρ as

Figure 1. A sketch of a vertically fractured medium with a horizon-
tal matrix layering (FV). A fracture lies in the x-z plane (the solid
line), whereas all the layers lie in the x-y plane (dashed lines). Sym-
bols CP and C�

P represent horizontal P-waves propagating along the
x-axis and y-axis, respectively. Symbol CS represents horizonally
propagated S-waves, which are polarized parallel to layers as indi-
cated by the dotted arrows in medium 1 and medium 2. All waves
propagates in the intact portion of the media (not along or through
the fracture).
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ζ ¼
ffiffiffiffiffiffiffiffiffiffiffi
c12∕ρ

p
: (5)

The secular equations (equations 2 and 3) for the two interface
modes are used to determine the range of existence and velocity
of fracture interface waves. From equation 2, the symmetric mode
existence depends only on the normal fracture specific stiffness κy
whereas the existence of the antisymmetric mode depends only on
the shear fracture specific stiffness κx (equation 3). Both modes also
depend on the frequency of the signal. If the last term in equation 2
(or equation 3) is set to zero (i.e., fracture specific stiffness
κy ¼ κx ¼ 0, and the surfaces are decoupled), the solution reverts
to that for a Rayleigh wave.
CS, CP, and C�

P were directly measured in our experiments (see
“Experimental Approach” section). However, measuring ζ is more

complicated. In a VTI or orthorhombic medium, the off diagonal
stiffness components c12 and c13 determine the azimuthally varying
wave velocities. In this study, ζ is obtained by comparing the “si-
mulated” Rayleigh wave velocities with the experimentally mea-
sured Rayleigh wave velocity. From a parameter study of the
effect of ζ (i.e., c12) on the interface wave velocities, it is observed
that the value of ζ affects the Rayleigh wave velocity (Figure 2). The
Rayleigh wave velocity increases with increasing ζ. We determined
the value of ζ by comparing the theoretically derived Rayleigh
wave velocities with the Rayleigh wave velocity from laboratory
measurements.
Using the parameters from experimental measurements (Table 1),

fracture interface wave velocities were obtained by numerically
solving equations 2 and 3. Figure 3 shows the interface wave veloc-
ities (phase and group) normalized by the bulk shear-wave velocity
(polarized parallel to the layers) as a function of normalized fracture
stiffness κy (or κx) as in the theoretical section. Like the isotropic
case, the phase and group velocities range from the Rayleigh veloc-
ity at low fracture specific stiffness (or high frequency) when the
fracture behaves like a free surface, to the bulk shear-wave velocity
at higher fracture specific stiffness (or low frequency) when the
fracture is essentially closed and behaves like a welded contact.

Fracture parallel to layering (FH)

Similar to the FV medium, equations for symmetric and antisym-
metric interface waves were also derived for the case when the frac-
ture and the layers are parallel to each other (the FH medium, see
Figure 4). A detailed derivation for fracture interface waves for the
FH medium is given in Appendix B.
The secular equation for symmetric interface waves in the FH

medium is

�
η22 − η24
2η21

��
ð2ξ2 − 1Þ

�
2ξ2 −

2η21η
2
2

η22 − η24

�
− 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q �

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q
· κz ¼ 0; (6)

and for the antisymmetric interface wave is

ðη22 − η24Þη23
2η41η

2
2

�
ð2ξ2 − 1Þ

�
2ξ2 −

2η21η
2
2

η22 − η24

�
− 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q �

− 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
· κx ¼ 0; (7)

Figure 2. (a) Normalized interface-wave phase velocities (C∕CS) as
a function of normalized stiffness in the FV medium for different ζ
values. (b) Normalized interface-wave group velocities as a function
of normalized stiffness in the FV medium for different ζ values.
Here, in normalized stiffness k∕ωZ, CS represents an S-wave po-
larized parallel to the layers.

Table 1. Parameter values used in solving equations 2 and 3.
Values of the parameters (density, frequency, and wave
velocities) are based on experimental measurements.

Parameters in mediums 1 and 2 Value

f (Frequency: MHz) 0.21

CP (P-wave velocity: m∕s) 3106

C�
P (P-wave velocity: m∕s) 2818

CS (S-wave velocity: m∕s) 1515

ζ (m∕s) 2014

ρ (Density: kg∕m3) 1365
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where

ξ ¼ CS∕C;

η1 ¼ CS∕CP;

η2 ¼ C�
P∕CP;

η3 ¼ C�
S∕CP;

η4 ¼ ς∕CP: (8)

In equation 8, CS, CP, C�
S, and C�

P are S-wave and P-wave
velocities, respectively (Figure 4). Similar to the FV medium, ς
is expressed in terms of the stiffness component c13 (see Appen-
dix B), and density ρ as

ς ¼
ffiffiffiffiffiffiffiffiffiffiffi
c13∕ρ

p
: (9)

Here, CS, CP, C�
S, and C�

P were obtained from experimental mea-
surements of S-waves and P-waves propagating either parallel or
perpendicular to the layers (Figure 4), whereas ς was obtained
by fitting the Rayleigh-wave velocity. Figure 5 shows the effect
of different values of ς on the group and phase velocities of the slow
and fast interface waves for an FH medium. As the values of c13
increases, the Rayleigh-wave velocity increases.
The velocities of both interface wave modes were examined for

the conditions of our experiments. Table 2 lists all of the parameters
obtained from experiments (described in section “Experimental Ap-
proach”) used to solve equations 6 and 7. Solutions corresponding
to the symmetric and antisymmetric waves were found for the FH
medium. Normalized phase and group velocities as a function of
normalized stiffness are shown in Figure 6. The phase and group
velocities exhibited similar trends as for the FV medium (Figure 3):
phase and group velocities range from Rayleigh velocity at low
stiffness, to bulk shear-wave velocities at higher stiffness. The main
difference between the curves in Figures 3 and 6 is the value of the
interface wave velocity at low stiffness (i.e., the Rayleigh-wave
velocity), and the cut-off stiffness for the symmetric mode. The
cut-off stiffness is the value of fracture specific stiffness for which
the purely real symmetric mode no longer exists. Both these
differences are attributed to the matrix anisotropy. For example,
the low-velocity limit depends on the Rayleigh wave velocity,
which in turns depends on the material properties of the matrix,
i.e., the velocity of the Rayleigh wave differs for waves when propa-
gating along a surface that is parallel to the layering versus a surface
that is perpendicular to the layering.

Figure 3. (a) Normalized fracture interface-wave phase velocities
(symmetric and antisymmetric) as a function of normalized stiffness
for the FV medium; (b) normalized fracture interface-wave group
velocities as a function of normalized stiffness.

Figure 4. A sketch of a horizontally fractured medium with a hori-
zontal matrix layering (FH). A fracture (the solid line) lies in the x-y
plane as well as the layers (dashed lines). Symbols CP and C�

P re-
present horizontally and vertically propagated P-waves along the
x-axis and z-axis, respectively. Symbols CS and C�

S represent hori-
zontally and vertically propagated S-waves along the x-axis and z-
axis, whereas the former one is polarized vertically (perpendicular
to the layers). All waves propagate in the intact portion of the media
(not along or through the fracture).
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Shear-wave anisotropy in the FV and FH media

The existence of fracture interface waves can affect the interpre-
tation of shear-wave anisotropy of an orthorhombic medium. Using
the theoretically derived interface-wave velocities for the FV and
FH media, we examined the “apparent” shear-wave anisotropy.
Thomsen (1986) introduced the following equation to evaluate
shear-wave anisotropy by elastic components as

γ ¼ c66 − c44
2c44

; (10)

where in the FVand FH media, c66 depends on shear waves that are
polarized parallel to the layers (which we refer to as an SH-wave
with a velocity of VSH in the x-z plane), and c44 depends on shear
waves that are polarized perpendicular to the layers (referred to as
an SV-wave with a velocity of VSV),

Figure 5. (a) Normalized interface-wave phase velocities (C∕CS) as
a function of normalized stiffness in the FH medium for different ς
values. (b) Normalized interface-wave group velocities as a function
of normalized stiffness in the FH medium for different ς values.
Here, in normalized stiffness k∕ωZ, CS represents an S-wave po-
larized parallel to the layers.

Table 2. Parameter values used in solving equations 6 and 7.
Values of the parameters (density, frequency, and wave
velocities) are based on experimental measurements.

Parameters in mediums 1 and 2 Value

f (Frequency: MHz) 0.21

CP (Horizonal P-wave velocity: m∕s) 2966

CS (Horizontal S-wave velocity: m∕s) 1423

C�
P (Vertical P-wave velocity: m∕s) 2271

C�
S (Vertical S-wave velocity: m∕s) 1402

ς (m∕s) 1655

ρ (Density: kg∕m3) 1365

Figure 6. (a) Normalized fracture interface-wave phase velocities
(symmetric and antisymmetric) as a function of normalized stiffness
for the FH medium; (b) normalized fracture interface-wave group
velocities as a function of normalized stiffness.

Interface waves T103
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c66 ¼ ρV2
SH; c44 ¼ ρV2

SV; (11)

where γ can also be rewritten as

γ ¼ 1

2

��
VSH

VSV

�
2

− 1

�
. (12)

Figure 7 shows the ratio of VSH to VSV (an indicator of shear-wave
anisotropy exhibiting similar trends as γ) as a function of fracture-
specific stiffness. When interface waves are present, the matrix
anisotropy is masked at low values of fracture-specific stiffness.
As stress on a fracture increased, fracture-specific stiffness increases
because of the increase in contact area between the two surfaces and
the reduction in the aperture. For the FH case, the ratio VSH∕VSV

increases from nearly isotropic (VSH∕VSV ∼ 1) to the background
anisotropy (VSH∕VSV ∼ 1.06) with increasing stiffness. Conversely,
when the fracture is perpendicular to the layers (the FV medium),
the apparent anisotropy decreases from 1.12 to 1.06, i.e., to the ratio
of VSH to VSV of the layered matrix. This demonstrates theoretically
that the presence of fractures in a layered medium can lead to the
misinterpretation of the shear-wave anisotropy when fracture inter-
face waves are present, but not identified.

EXPERIMENTAL APPROACH

Seismic array experiments on intact and fractured
orthorhombic samples

Experiments were performed on cubic samples
(∼100 × 100 × 100mm) of garolite, a high-performance fiber glass
composite, to determine the effect of matrix anisotropy on the exist-
ence and velocity of interface waves, and the effect of fracture
orientation on apparent shear-wave anisotropy. Garolite is a layered
epoxy cloth laminate that is permanently assembled by heat, pres-
sure, and adhesives. One intact and two fractured samples were used
in this study and are shown in Figure 8. The synthetic fractures were
fabricated by cutting the samples with a band saw and belt-sanding
the surfaces. The difference between the two fractured samples FV
and FH (see Figure 8b and 8c) is the orientation of the fracture rel-

ative to the layering in the matrix. The thickness
of the layers in the matrix was on the order of
0.5 mm. A scan of three orthogonal surfaces
of the intact sample are presented in Figure 8d
for the layering planes that are parallel to face
E, and that are observed on face A and B. In
the FV sample, the fracture was oriented
perpendicular to the layering, whereas in the
FH sample, the fracture was oriented parallel
to the layering (same definition as the FV
medium and the FHmedium in the “Theory” sec-
tion). The dimensions of the samples are listed in
Table 3 along with the densities of the samples
that were determined gravimetrically. The uncer-
tainty in the dimensions of the samples is approx-
imately 50 micrometers. The Poisson’s ratios
listed in Table 5 were based on the compressional
(P-wave) and shear wave (S-wave) velocities
measured on an intact sample or on intact por-
tions of the fractured samples listed in Table 4.
The intact sample was used as a reference to de-
termine the seismic anisotropy of garolite for
compressional and shear waves propagating in
three orthogonal directions through the cubic
samples. All of the samples were sealed with
crystal clear tape to prevent the transducer cou-
plant from penetrating into the samples during
measurement.

Figure 7. Theoretical ratio of group velocities, VSH∕VSV, as a func-
tion of fracture-specific stiffness for two fractured media, FV and
FH. The polarizations of shear waves are taken relative to the layers.
The ratio approaches 1.06 (the background anisotropy ratio) when
fracture stiffness increases.

Figure 8. A sketch of the sample used in the experiments: (a) Intact containing no frac-
tures, (b) FV with a fracture (solid line) perpendicular to the layers (dashed lines), (c) FH
with a fracture parallel to the layers, (d) scans of three surfaces for the intact sample. The
dashed thin lines indicate the layers, and the solid thick lines indicate the fracture in the
samples. Capital letters A, B, etc., represent the face labels: face C is on the opposite side
of face A, face D is on the opposite side of face B, and face F is on the opposite side of
face E. The intact sample has layer planes parallel to face E. For the intact and the FH
samples, the load is from E to F; for the FV sample, the load is from B to D.
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A seismic array was used to send and receive P- and S-wave sig-
nals through the samples. The position of the array relative to the
loading direction is shown in Figure 9 along with the layout of the
P-wave and S-wave transducers. The load was always applied
perpendicular to a fracture plane. The seismic array consisted of
a source array and a receiver array each containing two P (Olym-
pus-Panametrics V103) and five S (Olympus-Panametrics V153)
contact piezoelectric transducers with a central frequency of
1 MHz. The transducer layouts for the source and receiver arrays
were mirror images of each other. The S-wave transducers were po-
larized either perpendicular or parallel to the layers, as well as to the
fracture. The transducers were coupled to a tape-sealed sample with
honey that had been baked to reduce the water content 8.75% by
weight. The couplant improves the coupling between the transducer
and the machined, tape-covered surface of the sample. A pulse
receiver (Panametrics 5077PR) was used to excite the source with
a 0.4 microsecond duration square wave with a repetition rate of
100 Hz, amplitude of 400 Vand a gain of þ10 dB. The transducers
and pulse receiver were coupled through a National Instrument PXI-
1042 that used a PXI-5122 digitizer to record and store the full
waveforms. For each transducer combination, a 100-μs window

of the waveform, with a time delay of 4 μs, was recorded with a
resolution of 0.01 μs∕point.
The existence and velocity of interface waves depend on the spe-

cific stiffness of the fracture which increases with increasing
stresses (see Bandis et al., 1983; Brown and Scholz, 1985, 1986;
Hopkins et al., 1987, 1990; Pyrak-Nolte, 1996; Pyrak-Nolte and
Morris, 2000). In this study, seismic measurements were performed
as a function of stress to change the specific stiffness of the frac-
tures. A uniaxial loading machine (Soiltest, Inc.) was used to apply
loads normal to the fracture that ranged from 0 to 160 kN. The loads
were applied in increments of either 8 or 80 kN. These applied loads
resulted in normal stresses that ranged from 0 to 1.6 MPa.

Laser profilometer measurements

Laser profilometery was performed to measure the fracture sur-
face roughness to determine if the asperity distribution differed for
the two fractures because of the difference in their orientations rel-
ative to the layers. A semiconductor laser (KEYENCE LK-G152)
with a wavelength of 650 nm was used to scan the fracture surface.
Two linear stages (NEWPORT MTM250PP1) controlled by a mo-
tion controller (NEWPORT Universal Motion Controller ESP 300)
moved the sample two dimensionally in a region of 100 × 10 mm

in a 0.1-mm increment.Table 3. Material properties of the intact, FH, and FV
samples.

Sample name Intact FH FV

Dimension (mm)

A to C 100.1 100.2 100.2

B to D 99.9 100.2 100.2

E to F 100.1 100.1 100.1

Density (kg∕m3) 1365 1360 1361

Table 5. Poisson’s ratio in the intact, FH, and FV samples.

Sample name Intact FH FV

Poisson’s ratio
SH (A to C) 0.341� 0.6% 0.325� 1.0% 0.344� 0.5%

SV (A to C) 0.362� 0.6% 0.350� 0.5% 0.365� 0.6%

SH (B to D) 0.319� 1.0% 0.335� 0.5% 0.295� 1.3%

SV (B to D) 0.347� 0.9% 0.359� 0.7% 0.327� 0.9%

SH (E to F) 0.186� 5.5% 0.192� 2.3% 0.177� 3.1%

SV (E to F) 0.186� 5.5% 0.192� 2.3% 0.177� 3.1%

Figure 9. Sketch of a sample showing the location of the source and
receiver arrays, the direction of loading and the distribution of P-
wave and S-wave transducers. The S-wave polarization is indicated
by the double-headed arrow below each S-wave transducer.

Table 4. P-wave and S-wave velocities (group) in the intact,
FH, and FV samples. All data were taken from intact
portions of the samples. When propagating along EF
direction or perpendicular to layers, SH- and SV-waves are
equivalent.

Sample name Intact FH FV

SH-wave
velocity (m∕s)
A to C 1507� 0.2% 1510� 0.6% 1515� 0.2%

B to D 1513� 0.4% 1501� 0.2% 1519� 0.3%

E to F 1410� 0.6% 1402� 0.2% 1418� 0.1%

SV-wave
velocity (m∕s)
A to C 1424� 0.5% 1423� 0.3% 1431� 0.1%

B to D 1420� 0.6% 1414� 0.6% 1428� 0.2%

E to F 1410� 0.6% 1402� 0.2% 1418� 0.1%

P-wave
velocity (m∕s)
A to C 3065� 0.4% 2966� 0.3% 3106� 0.4%

B to D 2936� 0.5% 3013� 0.3% 2818� 0.6%

E to F 2270� 0.8% 2271� 0.4% 2263� 0.5%
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RESULTS

The seismic anisotropy for the garolite samples for waves propa-
gating parallel to the layers was determined from measurements
made on the intact sample. Shear waves transmitted through the
intact sample are shown in Figure 10 for shear-wave transducers
polarized parallel to the layering (SH) and perpendicular to the
layering (SV). The shear waves are shown for normal stresses that
ranged from 0 to 1.6 MPa and are relatively independent of stress
(i.e., signals from all of the stresses overlap in Figure 10a). The
difference in arrival time between the SV-wave and SH-wave is
4.022� 0.066 μS and is insensitive to changes in stress. A wavelet
transformation was performed on the signals to determine the group
velocities for the SV- and SH-waves at a frequency of 0.21 MHz
(see Pyrak-Nolte and Nolte, 1995; Nolte et al., 2000 for details of
the wavelet transformation). Figure 10b shows the group velocity as

a function of stress for the SV- and SH-waves propagated through
the intact sample. As expected for an orthorhombic medium, shear
waves polarized perpendicular to the layers, have a lower group
velocity (SV: 1424 m∕s� 0.1%) than that for shear waves polar-
ized parallel to the layers (SH: 1507 m∕s� 0.2%). The ratio of
group velocities, VSH∕VSV, is approximately 1.06 and is indepen-
dent of stress for the intact garolite.
When a fracture is oriented perpendicular to the layering (the FV

sample), the SH-waves on the fracture no longer travel with the bulk
shear-wave velocity, but travel instead as fracture-interface waves
(Figure 11a). In this case, the SH-wave is stress-dependent whereas
the SV-wave behavior is independent of stress. The observed stress
dependent behavior of the SH-wave indicates that the energy is trav-
eling as a fracture-interface wave. No interface wave is generated
when shear waves are polarized parallel to a fracture. From the
wavelet transformation, VSV (perpendicular to the layers) is similar
to the wave-velocity behavior of the intact sample (increased only
from 1418 m∕s� 0.2% to 1421 m∕s� 0.1%), while VSH (parallel
to the layers) increases with increasing stress (1446 m∕s� 0.2% to
1500 m∕s� 0.1%) (Figure 11b). The Rayleigh-wave velocity mea-
sured along the surface of the FV fracture (shear transducer polar-
ized parallel to the layering), was around 1434 m∕s (�0.5%), which
is smaller than the interface-wave velocity under no external load.
The converse is observed when the fracture is oriented parallel to

the layering (the FH sample), i.e., the SV-waves on the fracture
(perpendicular to layers) no longer travels with the bulk shear-wave
velocity (Figure 12) and the behavior of the SH-waves (parallel to
layers) were once more independent of stress; VSH is constant
(1492 m∕s� 0.2%) with increasing stress, whereas VSV increases
from 1333 m∕s� 0.3% to 1408 m∕s� 0.1% for a stress increase
of 1.6 MPa (Figure 12b). The SV-waves exhibit a decrease in arrival
time with increasing stress and indicate that the SV-waves are trav-
eling as fracture interface waves under lower stress. The Rayleigh
wave measured along the surface of the FH fracture (shear trans-
ducer polarized perpendicular to the layering), exhibited a velocity
of around 1324 m∕s (�0.4%), which is smaller than interface wave
velocity under no external load.

DISCUSSION

As mentioned, fracture-interface waves are a form of generalized
coupled Rayleigh waves that travel with a velocity that ranges be-
tween the Rayleigh-wave velocity and the bulk shear-wave velocity.
The velocity of a fracture-interface wave is controlled by the proper-
ties of the matrix (density, seismic impedance) and the specific stiff-
ness of the fracture. The ability to estimate fracture-specific or
relative stiffness is important for predicting the hydraulic response
of fractures. Previous research has shown that fracture-specific stiff-
ness depends directly on the amount and distribution of contact area
between the two fracture surfaces and is affected by the aperture
distribution (Bandis et al., 1983; Pyrak-Nolte and Morris, 2000).
Fluid flow through a fracture is implicitly linked to fracture-specific
stiffness through the geometry of the fracture (Zimmerman, 1991;
Cook, 1992; Pyrak-Nolte, 1996; Pyrak-Nolte and Morris, 2000;
Petrovitch et al., 2013). Thus, seismic characterization of frac-
ture-specific stiffness from interface waves has the potential to char-
acterize relative fluid flow among fractures.
As mentioned, there are two types of nonevanescent interface

waves: symmetric (fast wave) and antisymmetric (slow wave)
waves (Pyrak-Nolte and Cook, 1987; Gu, 1994; Nihei et al., 1995).

Figure 10. (a) Shear-wave signals from the intact sample for waves
polarized parallel to the layering, SH, and perpendicular to the
layering, SV. (b) Group velocity at 0.21 MHz of the waves shown
in (a) as a function of stress. The small arrows indicate the load
direction.

T106 Shao and Pyrak-Nolte

D
ow

nl
oa

de
d 

05
/2

5/
15

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



In this study, we observed the antisymmetric or slow interface
waves that only depend on the shear stiffness of the fracture.
Our assumption that we are only observing the antisymmetric mode
is based on the simulation work of Nihei et al. (1999) showing that
the antisymmetric mode is best generated by a vertically polarized
source (vertical to the fracture) such as that used in our experiments.
Applying the theory for fracture interface waves and the proper-

ties of the corresponding samples, two theoretical curves (for FV
and FH, respectively, see Figure 13a) of normalized interface-wave
velocity (the interface wave group velocity VIW is normalized by the
bulk shear-wave velocity VS), are shown as a function of normal-
ized stiffness, where the stiffness is normalized by seismic imped-
ance, ZS, (phase velocity × density), and plane-wave angular
frequency ω. The curves were generated for a frequency of
0.21 MHz, i.e., the frequency at which the group velocities were

determined for Figures 10, 11, and 12. The value of VS and ZS de-
pend on the polarization of the shear-wave source relative to the
layering.
Interface waves were observed for SH-waves in the FV sample

and SV-waves in the FH sample, and exhibited group velocities in
the range of the theoretical fracture interface waves (Figure 13a).
From these results, the fracture specific stiffness was estimated
and is shown as a function of stress in Figure 13b. For normal
stresses less than 1 MPa, the estimated fracture stiffness of the frac-
ture in the FV sample is slightly larger than that in the FH sample.
At low stress, the difference in fracture specific stiffness for the two
fractures is attributed to differences in the asperity height distribu-
tions (Figure 14). From the surface roughness measurement, the as-
perity heights in the FV fracture are more uniform than those in the
FH fracture (Figure 14), i.e., a narrower distribution for FV. The

Figure 11. (a) Measured signals from the FV sample that contained
a fracture perpendicular to the layering. The signals recorded for SH
(polarization parallel to the layering) are fracture interface waves.
(b) Group velocities at 0.21 MHz, VSH and VSV, as a function of
stress for Sample FV. The dashed curve in (a) is the Rayleigh wave
in this sample, whose velocity was indicated by the dashed line in
(b). The small arrows indicate the load direction.

Figure 12. (a) Measured signals from the FH sample that contained
a fracture parallel to the layering. The signals recorded for SV
(polarization perpendicular to the layering) are fracture interface
waves. (b) Group velocities at 0.21 MHz, VSH and VSV, as a func-
tion of stress for Sample FH. The dashed curve in (a) is the Rayleigh
wave in this sample, whose velocity was indicated by the dashed
line in (b).The small arrows indicate the load direction.
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difference in asperity height occurs because the fracture in the FV
sample cuts across the layering (i.e., cloth), whereas the fracture in
the FH sample is parallel to the layering. The slightly faster increase
in stiffness for the FH than the FV fracture indicates that the large
apertures in the fracture are closing. For normal stresses higher than
1.2 MPa, the estimated fracture stiffness is close in value for FVand
FH, which indicates a sufficient closing of the fractures. The inter-
preted fracture shear stiffness is consistent with the geometrical
properties of the surfaces.
The interpretation of shear-wave splitting or apparent shear-wave

anisotropy for a fractured layered medium depends on the orienta-
tion of a fracture relative to the layering in the sample. For the intact
garolite sample, the ratio of the SH-wave group velocity to the SV-
wave group velocity is approximately 1.06 and is independent of
stress (for an intact sample or the intact portion of both the fractured
samples), when waves were propagated parallel to the layering

(Figure 15). However, if a fracture is present and oriented
perpendicular to the layering, the layered medium appears almost
isotropic (VSH∕VSV ∼ 1.02) at low stress but recovers the matrix
anisotropy (VSH∕VSV ∼ 1.06) at high stress (circles in Figure 15).
Conversely, if a fracture is oriented parallel to the layering, the lay-
ered medium appears more anisotropic (VSH∕VSV ∼ 1.12) at low
stress and also recovers the matrix anisotropy at high stress (squares
in Figure 15). Theoretical calculations (Figure 7) of VSH∕VSV as a
function of fracture-specific stiffness exhibit very close values and
trends consistent with the experimentally determined values. Thus,
the existence of fracture interface waves can mask the matrix
anisotropy of a medium if the fractures are not sufficiently closed
and if these guided modes are not identified.

CONCLUSIONS

A question arises whether competing sources of anisotropy can
be delineated for an anisotropic medium containing fractures. The

Figure 13. (a) Comparison of theoretical normalized group velocity
as a function of normalized stiffness for fracture interface waves and
measured values. (b) Estimated shear fracture-specific stiffness for
the fractures in samples FV and FH.

Figure 14. (a) Aperture distribution of the fracture surface of sam-
ple FV. (b) Aperture distribution of the fracture surface of sample
FH. The x-axis indicates the derivation from the average height of
each fracture surface.
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results reported here demonstrate that the presence of just a single
fracture can mask the matrix anisotropy caused by layering because
of discrete guided-modes that occur along fractures. A medium
can exhibit stronger or weaker anisotropy depending on the orien-
tation of the fracture relative to the layering. More importantly, the
matrix anisotropy can be recovered by increasing the fracture-
specific stiffness through the application of stress, i.e., closing
the fracture.
Because our experimental study was conducted at ultrasonic

frequencies, it is necessary to address the question of the applicabil-
ity of the theory to conditions in the field. The normalized stiffness
used in the derivation of fracture interface waves is a scaling param-
eter that enables the application of this theory to other frequencies.
The inverse of the normalized stiffness is normalized frequency
given as ωZS∕κ. When ωZS∕κ is between 1 and 100, fracture inter-
face waves will exist and travel with speeds between the Rayleigh-
wave and shear-wave velocity. For frequencies typically used in the
field, only a bulk shear wave would be observed for fractures with
specific stiffnesses commonly observed in laboratory samples
(κ ∼ 1011 → 1013 Pa∕m). However, for a frequency of 10 Hz, frac-
tures with specific stiffness that range between 106 → 108 Pa∕m
will support fracture-interface waves that travel with velocities
between the Rayleigh- and shear-wave velocities.
Finally, future studies need to extend these concepts to multiple

parallel fractures that, in addition to supporting fracture interface
waves, will also support other modes that are guided between frac-
tures. Ignoring the presence of guided modes in a fractured medium
can result in mistaken interpretation of fracture orientation and ma-
trix anisotropy.
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APPENDIX A

DERIVATION OF INTERFACE WAVES FOR
MEDIUM FV

For the FV medium, the fracture is vertical in the x-z plane, and
the symmetric axis of the layering is along the z-axis (Figure 1).
Waves are propagated along the x-axis without z-components,
but with exponentially decaying amplitudes along the y-direction.
The geometry of this problem is simplified to the x-y plane, and the
potentials for the fracture interface wave are expressed for the
P-waves as

ϕð1Þ ¼ Að1Þ exp½−pωyþ iωðx∕C − tÞ�; y ≥ 0;

ϕð2Þ ¼ Að2Þ exp½pωyþ iωðx∕C − tÞ�; y ≤ 0; (A-1)

and for the S-waves as

ψ ð1Þ ¼ Bð1Þ exp½−qωyþ iωðx∕C − tÞ�; y ≥ 0;

ψ ð2Þ ¼ Bð2Þ exp½qωyþ iωðx∕C − tÞ�; y ≤ 0; (A-2)

where superscripts (1) and (2) refer to medium 1 and medium 2, ω is
the angular frequency, t is the time, Að1Þ; Að2Þ; Bð1Þ and Bð2Þ are con-
stants that need to be determined, C is the interface wave velocity, p
and q are notations that can be expressed by P-wave velocityCP and
S-wave velocity CS as

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
C2 − 1

C2
P

q
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
C2 − 1

C2
S

q
. (A-3)

The particle displacement is obtained by applying the following
equations:

uð1Þx ¼ ∂ϕð1Þ

∂x
−
∂ψ ð1Þ

∂y
; uð1Þy ¼ ∂ϕð1Þ

∂y
þ ∂ψ ð1Þ

∂x
;

uð2Þx ¼ ∂ϕð2Þ

∂x
−
∂ψ ð2Þ

∂y
; uð2Þy ¼ ∂ϕð2Þ

∂y
þ ∂ψ ð2Þ

∂x
: (A-4)

Hooke’s law is used to relate stress (σ) and strain (ϵ) via the elastic
stiffness tensor C,

σ ¼ Cϵ. (A-5)

For convenience in the following steps, we applied Voigt’s notation
(xx → 1; yy → 2; zz → 3; yzðzyÞ → 4; xzðzxÞ → 5; xyðyxÞ → 6) to
transform the stress and strain tensor (σ and ϵ) into vectors as

σ ¼ ðσxx; σyy; σzz; σyz; σzx; σxyÞT ¼ ðσ1; σ2; σ3; σ4; σ5; σ6ÞT;
ϵ ¼ ðϵxx; ϵyy; ϵzz; ϵyz; ϵzx; ϵxyÞT ¼ ðϵ1; ϵ2; ϵ3; ϵ4; ϵ5; ϵ6ÞT;

(A-6)

and C into a 6 × 6 second-rank tensor with eight independent com-
ponents for the modified orthorhombic matrix (the shear modulus
along the horizontal direction of the layers are assumed to be the
same),

Figure 15. Experimental ratio of group velocities, VSH∕VSV, as a
function of stress for the intact sample, sample FV and FH. An iso-
tropic sample would approach a ratio of 1.0.
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0
BBBBBBB@

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

1
CCCCCCCA
: (A-7)

We then express normal and shear stress for media 1 and 2 in terms
of displacement as

σð1Þyy ¼ c12
∂uð1Þx

∂x
þ c22

∂uð1Þy

∂y
;

σð1Þxy ¼ c66

�
∂uð1Þx

∂y
þ ∂uð1Þy

∂x

�
;

σð2Þyy ¼ c12
∂uð2Þx

∂x
þ c22

∂uð2Þy

∂y
;

σð2Þxy ¼ c66

�
∂uð2Þx

∂y
þ ∂uð2Þy

∂x

�
; (A-8)

where the diagonal components c11, c22, and c66 are expressed by
wave velocities CP,C�

P, andCS (Figure 1) with material density ρ as

c11 ¼ ρC2
P; c22 ¼ ρC�

P
2; c66 ¼ ρC2

S: (A-9)

We introduce ζ (with velocity dimension: [m∕s]) to express the off
diagonal component c12,

c12 ¼ ρζ2: (A-10)

Applying the boundary conditions given in equation 1 in the main
body of this paper, four linear equations are obtained:

iðκx þ 2ωpρC2
SÞ

C
Að1Þ − ωρC2

S

�
1

C2
S
−

2

C2

�
Bð1Þ þ qκxBð1Þ

−
iκx
C

Að2Þ þ qκxBð2Þ ¼ 0;

ωρ

�
C�
P
2 − ζ2

C2
−
C�
P
2

C2
P

�
Að1Þ þ pκyAð1Þ

þ iqωρ
C

ðζ2 − C�
P
2ÞBð1Þ −

iκy
C

Bð1Þ þ pκyAð2Þ þ iκy
C

Bð2Þ ¼ 0;

2ip
C

ðAð1Þ þ Að2ÞÞ þ
�

2

C2
−

1

C2
S

�
ðBð1Þ − Bð2ÞÞ ¼ 0;

�
C�
P
2 − ζ2

C2
−
C�
P
2

C2
P

�
ðAð1Þ − Að2ÞÞ

þ iq
C
ðC�

P
2 − ζ2ÞðBð1Þ þ Bð2ÞÞ ¼ 0. (A-11)

When Að1Þ ¼ Að2Þ; Bð1Þ ¼ −Bð2Þ, the equation for the symmetric in-
terface wave is derived,

��
η22− η23
η21

�
ð2ξ4 − ξ2 − 2ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2− 1

p
Þ− η22ð2ξ2 − 1Þ

�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q
κ̄y ¼ 0; (A-12)

and when Að1Þ ¼ −Að2Þ; Bð1Þ ¼ Bð2Þ, the equation for antisymmetric
wave is (detailed explanation of symmetric and antisymmetric inter-
face waves can be found in Pyrak-Nolte and Cook, 1987; Nihei
et al., 1995; Gu et al., 1996)

1

η22

��
η22−η23
η21

�
ð2ξ4−ξ2−2ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2−η21

q ffiffiffiffiffiffiffiffiffiffiffi
ξ2−1

p
Þ−η22ð2ξ2−1Þ

�

−2
ffiffiffiffiffiffiffiffiffiffiffi
ξ2−1

p
κx¼0; (A-13)

where ξ ¼ CS∕C; η1 ¼ CS∕CP; η2 ¼ C�
P∕CP; η3 ¼ ζ∕CP, normal-

ized normal stiffness κy ¼ κy∕ωZS, and shear stiffness κx ¼
κx∕ωZS (ZS ¼ ρCS is the shear-wave impedance).

APPENDIX B

DERIVATION OF INTERFACE WAVES FOR
MEDIUM FH

For the FH medium, the fracture and layers lies in the x-y plane
(Figure 4). The derivation procedure is similar to that for the FV
medium (same forms for the wave potential, displacement, and
boundary conditions). The stiffness tensor C for a orthorhombic
matrix has the same form as the FV medium (equation A-7).
The normal and shear stresses for media 1 and 2 in terms of dis-

placement are

σð1Þzz ¼ c13
∂uð1Þx

∂x
þ c33

∂uð1Þz

∂z
;

σð1Þxz ¼ c44

�
∂uð1Þx

∂z
þ ∂uð1Þz

∂x

�
;

σð2Þzz ¼ c13
∂uð2Þx

∂x
þ c33

∂uð2Þz

∂z
;

σð2Þxz ¼ c44

�
∂uð2Þx

∂z
þ ∂uð2Þz

∂x

�
; (B-1)

where c33 and c44 can be expressed by wave velocities C�
S, C

�
P

(propagated perpendicular through layers) and material density ρ
as (see Figure 4)

c33 ¼ ρC�
P
2; c44 ¼ ρC�

S
2: (B-2)

Notation ς is also introduced to express the off diagonal component
c13,

c13 ¼ ρς2: (B-3)

Using the boundary condition given in equation 1 in the main body,
four linear equations are obtained:
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iðκxþ 2ωpρC�
S
2Þ

C
Að1Þ −ωρC�

S
2

�
1

C2
S
−

2

C2

�
Bð1Þ þqκxBð1Þ

−
iκx
C

Að2Þ þqκxBð2Þ ¼ 0;

iðκzþ 2ωqρς2Þ
C

Bð1Þ þωρ

�
C�
P
2

C2
P
−
2ς2

C2

�
Að1Þ−pκzAð1Þ

−
iκz
C

Bð2Þ −pκzAð2Þ ¼ 0;

2ip
C

ðAð1Þ þAð2ÞÞþ
�

1

C2
þq2

�
ðBð1Þ−Bð2ÞÞ ¼ 0;

�
C�
P
2

C2
P
−
2ς2

C2

�
ðAð1Þ−Að2ÞÞþ 2iqς2

C
ðBð1Þ þBð2ÞÞ ¼ 0: (B-4)

When Að1Þ ¼ Að2Þ; Bð1Þ ¼ −Bð2Þ, the equation for a symmetric inter-
face wavefield is obtained:

�
η22 − η24
2η21

��
ð2ξ2 − 1Þ

�
2ξ2 −

2η21η
2
2

η22 − η24

�
− 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q �

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q
· κz ¼ 0. (B-5)

When Að1Þ ¼ −Að2Þ; Bð1Þ ¼ Bð2Þ, we get the equation for an anti-
symmetric wavefield,

ðη22 − η24Þη23
2η41η

2
2

�
ð2ξ2 − 1Þ

�
2ξ2 −

2η21η
2
2

η22 − η24

�
− 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − η21

q �

−2
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
· κx ¼ 0; (B-6)

where

ξ ¼ CS∕C;

η1 ¼ CS∕CP;

η2 ¼ C�
P∕CP;

η3 ¼ C�
S∕CP;

η4 ¼ ς∕CP: (B-7)

In this case, C is the interface wave velocity, κz ¼ κz∕ωZS is the
normalized normal stiffness, and the normalized shear stiffness is
κx ¼ κx∕ωZS (ZS ¼ ρCS is the shear-wave impedance).
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