
GEOPHYSICAL RESEARCH LETTERS, VOL. 14, NO. 11, PAGES 1107-1110, NOVEMBER 1987 

ELASTIC INTERFACE WAVES ALONG A FRACTURE 

Laura J. Pyrak-Nolte and Neville G. W. Cook 

Department of Material Science 85 Mineral Engineering, University of California, Berkeley and 
Earth Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 

Abstract. Non-welded interfaces can be treated as a 

displacement discontinuity characterized by elastic 
stiffnesses. Applying this boundary condition to a gen- 
eralized Rayleigh wave, it is shown that a fast and a 
slow dispersive wave can propagate along the fracture, 
even when the seismic properties of the rock on each 
side are identical. 

Introduction 

The reflection and refraction of seismic waves by 
welded interfaces between lithologies, across which both 
stresses and displacements in the wave are continuous, 
are understood well and are used extensively. Under 
conditions of low and even moderate effective stress, 
which may prevail to crustal depths of several kilome- 
ters, contacts between lithologies may not be welded. 
Furthermore, discontinuities in the form of joints, frac- 
tures and faults are important crustal features. These 
discontinuites within the same lithology also may 
behave as non-welded contacts at low and moderate 

values of effective stress. There is considerable interest 

in locating and characterizing both natural discon- 
tinuites in rock masses and induced discontinuites such 

as hydrofractures. 
In this paper, we develop the theory for a seismic 

interface-wave that can propagate along a fracture. 
This theory is based on the seismic properties of a 
non-welded interface or a displacement discontinuity. 
We have determined that the seismic response of a sin- 
gle fracture is modeled well by representing the fracture 
as a boundary between two elastic half-spaces subject 
to the following set of boundary conditions: continuous 
stress, but discontinuous displacements [Schoenberg, 
1980]. The discontinunity in displacement is defined to 
be inversely proportional to the specific stiffness of the 
fracture. We applied this set of boundary conditions to 
a generalized Rayleigh wave and derived the dispersion 
relationship of elastic interface waves that can travel 
along a fracture. These waves are not Stoneley waves 
[StoneIcy, 1924; Sewaza and Kanai, 1939] because the 
material properties of the half-spaces on either side of 
the fracture are the same. Two waves exist: a "slow" 

wave which exists at all frequencies and all fracture 
stiffnesses, and a "fast" wave which exists only for cer- 
tain excitation frequencies. 
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Existence of Elastic Interface-Waves 

An interface wave between two media separated by 
a non-welded contact (or fracture) can be derived by 
finding the displacements at the surfaces of the media, 
subject to coupling through the fracture stiffness. The 
half space for z > O is medium 1, while medium 2 is 
the half-space for z < O. The fracture consists of the 
x-y plane and has components of specific stiffness, •x, 
•y, and •z, in the x, y, and z directions. A solution for 
a generalized surface wave can be expressed as 
uiexp{ikx-rz-ikct } where u i is the component of dis- 
placement in the direction i--x,y, or z, k is the 
wavenumber and c the phase velocity. The assumed 
solution for medium i can be expressed as the linear 
combination of two components: 

I 

uil-- uil + ui• i•x,y,z (!) 

where u/ is the longitudinal component and ui" is the 
transverse co,•mponent. The transverse component must 
satisfy div u ----0, while the longitudinal component 
must satisfy curl u' • 0. The components are: 

' ' ' [ -c• ] (ik,0,_rl) D exp {_rlz + ikx} (2) (Uxl,Uyl,Uzl) • c2k2 
It II II 

(%, ,uy, ,Uz, )= (s,,a,,ik)Q, exp{-slZ -I- ikx} (3) 
where a• , D and Q• are constants and 

2 
o• 1 

In these equations, a is the compressional wave velocity 
and/• is the shear wave velocity. A similar solution for 
medium 2 can be expressed as [Ux,Uy,Uz] 
exp {ikx + rz-ikct• and also consists of two com- 
ponents: 

tli2 = 1li2 '+- Ui2 i= x,y,z (4) 
where 

(Ux2,Uy2,Uz2) -- (c2k 2 ) (ik,0,r2) E exp(r2z + ikx) (5) 
II II II 

(%2 ,uy2 Uz2 ) -- (s2,a2, -ik) Q2 exp{s2z + ikx} (6) 
where a2, E and Q• are constants and 
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Fig. 1. A graph of the slow wave and fast wave velo- 
city as a function of frequency. Upper asymptote is the 
shear wave velocity and the lower asymptote is the 
Rayleigh wave velocity. c• t = c• 2 = 5800 m/s, •t • •2 
-- 3800 m/s, Pl • P2 • 2600 kg/m 3, n x --nz • 10ø 
Pa/m. 

To the assumed solutions for displacements in medium 
i and 2, the following displacement discontinuity boun- 
dary conditions were applied: 

Tzzl 
-Uz -- (7) 

/•z 

= (s) 
Tzx 1 

Ux, -ux = (g) 

rzx I --- rzx 2 (10) 

Uy 1 -Uy 2 -- rzYl (11) 
•y 

rzy 1 = rzy2 (12) 
where 

,',.x -- + 

These boundary conditions describe continuous stress 
across the interface, but discontinuous displacements. 
As in the case of the Stonely wave, there is no displace- 
ment component in the direction perpendicular to the 
direction of propagation (equations (11), (12), (2), (3), 
(5), (6)). Applying the remaining boundary conditions 
(7), (8), (9), (10) to equations (2), (3), (5), (6) and elim- 
inating (al/c)2D, (a•/c)•E, ik=ql, and ik=q2 from the 
resulting equations, leads to the following determinant: 

2ptfi•2(1 --c2/(•12) 1/2 
t/2 -- 

{1 1/2} 

2 2 2 1/2 

--1 

Particle M otJon 
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z 

Fig. 2. 
wave. 
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or propagation 

Particle motion of the fast and slow interface- 

For a wave to exist, the velocity, c, and the 
wavenumber, k, must be such that this determinant 
vanishes. Furthermore, the velocity of this interface- 
wave must be real to be a traveling wave solution. The 
wave velocities were found numerically for the case 
where the properties of the elastic half-spaces are equal, 
namely: O• 1 '-- a 2 '-- 5800 m/s, •1 '-- •2 '-- 3800 m/s, Pl 
-- P2 -- 2600 kg/m 3, for both nx -- •z and •x • •z. 
At most, two solutions to the determinant are found, 
corresponding to two distinct interface waves. For 
sufficiently low frequencies, however, only one wave is 
found to exist. Figure i displays the wave velocity vs. 
frequency for the two waves (referred to as the "fast" 
wave and the "slow" wave) that exist at a non-welded 
contact for the specific case where •x--nz= 10ø 
Pa/m. At high frequency or low stiffness, both waves 
approach an asymptote defined by the Rayleigh wave 
velocity. At low frequencies or high stiffness, the slow 
wave approaches an asymptote defined by the shear 
wave velocity, while the fast wave approaches the shear 
velocity with a finite slope, and ceases to exist below a 
threshold frequency. Both wave velocities are functions 
of frequency and stiffness, and therefore these waves 
are weakly dispersive. 

The particle motion of the waves is depicted in Fig- 
ure 2. From direct calculation of the normal modes, it 
was determined that the x-components of displacement 
are in phase in the fast wave, and therefore the fast 
wave velocity is insensitive to gx. For the slow wave, 
the z-components of the wave are in phase and there- 
fore the slow wave velocity is insensitive to •z. 
Together, the waves can be thought of as coupled Ray- 
leigh waves. In the limit of low stiffness or high fre- 
quency, the fracture behaves as two free surfaces each 
of which supports a Rayleigh wave. As stiffness is 
increased, the coupling increases between the two Ray- 
leigh waves, providing two new waves which contain 
different combinations of the original Rayleigh wave 
particle motions. 

--2Plf/•2(1--c2/f/•) 

{1 -I-(2ft•kPl/mz)(1--c2/ftl2) •/2} 
2 2 1/2 {(1--c /fil) •t-(kfl•px/•)(2---c2/ft•)} 

1 

--(1--c2/fi•) '/2 

=0 
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Fig. 3. A graph showing the regions for existence in 
terms of frequency and specific stiffness in the x- 
direction, and the ratio of •z/•x the specific stiffnesses 
in the x and z directions. The slow wave always exists. 
a•: a 2 : 5800 m/s, fi•: fi2 : 3800 m/s, /9• ---- /9• 
= 2600 kg/m 3. 

Fig. 5. A graph showing the regions of existence of the 
slow and fast waves for a wavenumber ---- 5600 in terms 
of the ratio of the shear moduli and the ratio of the 

densities. o/1 = 5358 m/s, ]•1 = 3800 m/s, /91 • 2600 
kg/ms, •x -- •z ---- 109 Pa/m. Poiseoh's ratio ---- 0.25. 

Figure 3 shows the regions of existence for the 
waves in terms of frequency as a function of the specific 
stiffness in the x direction along the fracture. It was 
found that the slow wave exists for all frequencies and 
all stiffnesses. However, the region of existence of the 
fast wave depends on frequency and the relationship 
between •x and •z. In Figure 3, threshold curves are 
drawn for the cases where •x -- •z, •x -- 0.1 •z, and •x 
---- 10 •z- As •z/•x increases, the threshold of existence 
for the fast waves moves to higher frequencies. 

Existences curves were also determined for the case 

where the material properties of the elastic half-spaces 
are not equal. Curves are given for wavenumbers of k 
---- 0.056 (Figure 4) and k ---- 5600 (Figure 5), which 
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Fig. 4. A graph showing the regions of existence of the 
slow and fast waves for a wavenumber ---- 0.056 in 
terms of the ratio of the shear moduli and the ratio of 

the densities showing. a• -- 5358 m/s, • -- 3800 m/s, 
p• -- 2600 kg/m a, •x----•z- 109 Pa/m. Poiseoh's 
ratio = 0.25. 

roughly corresponds to frequencies of 200 Hz and 20 
MHz. Each material was assigned a Poisson's ratio of 
0.25 (X----/•). Existence was investigated for different 
ratios of shear moduli (/•/ttl) and density (P2/Pl). 
When the material properties of the media are not 
equal, the existence of both waves depends on fre- 
quency. As the excitation frequency is decreased, the 
region of existence of both waves diminishes and a 
region where neither wave exists appears. 

Conclusions 

Elastic interface waves can exist along a non-welded 
contact between two media having the same material 
properties. The "slow" wave always exists, while, the 
"fast" wave has a threshold of existence which depends 
on the excitation frequency and the relationship 
between components of the specific stiffness parallel 
and perpendicular to the fracture. Both waves are 
weakly dispersive. When the material properties of the 
media on either side of the fracture are not equal, the 
existence of both waves is frequency dependent and 
depends on the ratio of the shear moduli. 

Acknowledgements 

The authors gratefully acknowledge useful discus- 
sions with D.D. Nolte. This work was supported by the 
Director, Office of Basic Energy Sciences, Division of 
Engineering, Mathematics, and Geosciences, of the U. 
S. Department of Energy under contract DE-AC03- 
76SF00098. 

References 

Schoenberg, M., Elastic wave behavior across linear slip 
interfaces, J. Acous. Soc. Amer.., 68, 1516-1521, 1980. 



11 •0 Pyrak-Nolte, et al.: Elastic Interface Waves along Fractures 

Sezawa, K. and K. Kanai, The range of possible 
existence of Stonely waves and some related prob- 
lems, Bull. Earthquake Res. Inst., Tokyo, • 1-8, 
1939. 

Stoneley, R., Elastic waves at the surface of separation 
of two solids, Proc. Roy. Soc. (London) A., 106, 416- 
428, 1924. 

N. G. W. Cook and L. J. Pyrak-Nolte, Department of 
Materials Sciences and Mineral Engineering, University of 
California, Berkeley, California 94720. 

(Received: July 15, 1987 
Accepted: August 31, 1987.) 


