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The interface between two wedges can be treated as a displacement discontinuity characterized by

elastic stiffnesses. By representing the boundary between the two quarter-spaces as a displacement

discontinuity, coupled wedge waves were determined theoretically to be dispersive and to depend

on the specific stiffness of the non-welded contact between the two wedges. Laboratory experiments

on isotropic and anisotropic aluminum confirmed the theoretical prediction that the velocity of

coupled wedge waves, for a non-welded interface, ranged continuously from the single wedge wave

velocity at low stress to the Rayleigh velocity as the load applied normal to the interface was

increased. Elastic waves propagating along the coupled wedges of two quarter-spaces in non-welded

contact are found to exist theoretically even when the material properties of the two quarter-spaces

are the same. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4821987]

PACS number(s): 43.35.Cg, 43.35.Pt, 43.20.Jr, 43.20.Bi [MD] Pages: 3551–3560

I. INTRODUCTION

Elastic waves, that propagate along the wedge formed

by two intersecting planes with stress free boundaries, were

originally studied for elastic waves propagating along crystal

structures such as acoustic phonons and surface magnons1

and as a use for delay-lines.2 Since their discovery, many

well documented theoretical3 and experimental4–8 studies of

wedge waves (WWs) have been conducted (also see review

articles9–11). WWs were found to exhibit characteristic prop-

erties that differ from other types of surface waves that make

them useful for delay line applications. For example, the

energy in these waves is highly localized and exists only

within a few wavelengths of the wedge tip. WWs were also

found to be extremely polarization dependent.1,3,4 Several

wedge modes can propagate below the Rayleigh velocity for

small angle wedges (<45�), but as the wedge angle

increases, higher evanescent modes exist with velocities

greater than the Rayleigh velocity.3 Theoretically, these flex-

ural modes are dispersionless for a perfectly smooth surface

and a very sharp wedge tip;2 however, for imperfect wedges

(i.e., rough edges) a dispersive waveform was both theorized

and observed experimentally.5,12

Research on WWs expanded into areas of plate theory

studies,13 different wedge geometries,14,15 wedge diffrac-

tion,16 dispersion,17 anisotropy18,19 and electrostatic wave

theory.20,21 Experimentally WWs were studied for water

loaded wedges,22,23 laser induced waves7,24 and wedge

imperfection studies5 for a wide range of wedge angles

(08�1208). No analytical expression that accurately postu-

lates the WW velocity for wedge angles of 908 has been

found, but numerical approximations have been determined

to be in good agreement with experimental measurements.6

WW applications also include coupling along different

geometries and boundary conditions.25–27 More recently, the

numerical approximations set forth by Maradudin et al.1 were

used to couple two orthogonal wedges with different isotropic

properties.28 The coupling gave rise to a new type of wave-

form, named Rayleigh–Stoneley (RS) waves, that propagate

along the coupled tips of two isotropic, orthogonal wedges in

welded contact. This RS wave is essentially a Stoneley type

wave29 propagating along the geometry described above.

The RS wave is theoretically very interesting and gives

rise to several important discoveries in the type of wave-

forms propagated along coupled quarter-spaces. However,

the RS range of existence only extends from 0 to 0:3 for

ratios of the Lam�e constants (l2/l1) and densities (q2/q1).28

RS waves do not exist when the two media are the same,

similar to the behavior of a Stoneley wave.29 This limitation

on the existence of the RS waves decreases the possible

materials in the lab or field that could be used to experimen-

tally verify this waveform.

In this paper, a theoretical and experimental study of

coupled wedge waves, along a non-welded contact, was per-

formed for two orthogonal quarter-spaces in contact made of

isotropic and anisotropic materials. The theory predicts a dis-

persive wave that depends on the specific stiffnesses of the

contact. The velocity of this coupled wedge wave (CWW)

ranges continuously from the WW velocity at low stress to

the Rayleigh velocity at high stress. This CWW exists for

two quarter-spaces even when the material properties of the

quarter-spaces are the same, unlike the RS wave. Since

CWWs are able to exist when the two media are the same,

CWWs can be used to characterize surface fractures on the

laboratory and field scales.

An experimental study was also performed on two iso-

tropic aluminum cubes and two anisotropic aluminum bars,

under normal applied load. The measured waves were

observed to propagate at velocities within the theoretically

predicted range for CWWs and indeed exhibited the disper-

sive trend predicted by the theory.

II. THEORY

The theoretical derivation of CWWs along a non-

welded contact between two quarter-spaces is based on the
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derivation approach used for RS waves.28 In this section, the

derivation of coupled wedge waves is described by assuming

the interface can be represented as a non-welded contact,30

i.e., the stress across the interface is continuous but the dis-

placements are not. These boundary conditions lead to the

existence of CWWs even when the material properties of

the two quarter-spaces are the same, unlike the RS wave.

The theory is derived in general in the following sections

and the appendixes contain the isotropic and anisotropic ma-

terial parameters.

A. Problem geometry

The geometry is defined such that an intersection exists

on the x1-x3 plane at x2 ¼ 0, between two media (Fig. 1).

The fracture is modeled as perfectly smooth for x3 > 0.

Medium 1 exists in the quarter-space x1 > 0, x2 > 0, x3 > 0,

and medium 2 exists in the quarter-space defined by

x1 > 0; x2 < 0; x3 > 0.

A free surface exists on the x1-x2 plane at x3 ¼ 0.

Medium 1 has a mass density qð1Þ and elastic moduli

C
ð1Þ
a; b; l; � . The lowercase greek letters indicate the Cartesian

indices (i.e., a; b; l; � ¼ 1; 2; 3 for the x1; x2; x3 direction,

respectively), and the superscript indicates the medium.

Similarly, the mass density qð2Þ and elastic moduli C
ð2Þ
a; b; l; �

correspond to medium 2. The CWW solution is derived for

the general case when the two media have different material

properties. However, the theoretical and experimental results

presented here demonstrate that CWWs exist even when the

material properties of the two media are the same.

B. Setting up the problem

Throughout the theoretical section, the same variables

and notation used by Sokolova et al.28 will be implemented.

For waves propagating along the intersection (Fig. 1), the

displacement and stress fields are assumed to have the fol-

lowing form:

uaðx1; x2; x3; tÞ ¼ eiðkx1�xtÞ ~Uaðx2; x3jkÞ

þ e�iðkx1�xtÞ ~U
�
aðx2; x3jkÞ; (1)

and

Ta; bðx1; x2; x3; tÞ ¼ eiðkx1�xtÞ ~Ta; bðx2; x3jkÞ

þ e�iðkx1�xtÞ ~T
�
a; bðx2; x3jkÞ; (2)

where k is the wave vector (k ¼ x=v), x is the frequency, t
is the time, ~Ua are the displacement amplitudes, ~Ta; b are the

stress amplitudes and the greek subscripts (a; b) represent

the direction (i.e., a ¼ 1; 2; 3 corresponds to x1; x2; x3). The

x3 j k symbol means the function also has a dependence on k.

The equations of motion can be written in terms of the dis-

placement and stress as

q
@2ua

@t2
¼
X3

b¼1

@Tab

@xb
; (3)

where q is the density. The stress tensor is then written in

terms of the strains and elastic moduli as

Tab ¼
X3

l�¼1

Ca; b; l; �
1

2

@ul

@x�
þ @u�
@xl

� �
; (4)

such that after simplification

~T
ð1=2Þ
ab ðx2; x3 j kÞ ¼

X3

l;v¼1

C
ð1=2Þ
ab;l;vDvðkÞ ~U

ð1=2Þ
l ðx2; x3 j kÞ;

(5)

where the D operators are defined as

D1ðkÞ ¼ ik; D2ðkÞ ¼
@

@x2

; D3ðkÞ ¼
@

@x3

: (6)

Applying Eqs. (1) and (2) to the equations of motion yields

�qx2 ~Ua ¼
X3

b; l; �¼1

DbðkÞCa; b; l; �D�ðkÞ ~Ua : (7)

The geometry of a single wedge is a quarter plane

extending from 0 to 1 and leads naturally to an expansion

extending over the same region. Laguerre polynomials,

which are orthonormal from ½0; 1Þ, are written as orthonor-

mal basis functions and used in a linear series to represent

the displacement amplitudes as1

~U
ð1=2Þ
a ðx2; x3j kÞ ¼

X1
m;n¼0

aða;1=2Þ
mn /mð6kx2Þ/nðkx3Þ; (8)

where

/a ¼ e�x=2 LaðxÞ
a!

; LaðxÞ ¼ ex da

dxa
ðe�xxaÞ: (9)

The amn terms are the coefficients of the expansion and La is

the Laguerre polynomial. This expansion [Eq. (8)] is inserted

FIG. 1. A single fracture exists along the x1-x3 plane at x2 ¼ 0. The wave

propagates at x2 ¼ x3 ¼ 0 in the x1 direction. h defines the shear wave trans-

ducer polarization angle. The circles and the arrows indicate the direction of

the wave propagation to obtain the values of the respective elastic constants

(e.g., C33 and C11).
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into the equations of motion [Eq. (7)], multiplied by

/pð6kx2Þ/qðkx3Þ and integrated over each quarter-space

such that the advantage of orthonormality is used. With the

use of the identityð61

0

/að6kxÞ/bð6kxÞdx ¼ 6
dab

k
; (10)

and

dab ¼
1 if a ¼ b
0 if a 6¼ b;

�
(11)

the equations of motion reduce to

�qð1=2Þv2
X1

m;n¼0

aða;1=2Þ
m;n dpmdqn

¼ 6
X3

b¼1

DbðkÞ
ð1

0

ð61

0

~T
ð1=2Þ
a;b ðx2; x3 jkÞ

� /pð6kx2Þ/qðkx3Þdx2dx3: (12)

Equation (12) is solved using integration by parts and the

definition of the stress amplitude at the interface put forth by

Sokolova et al.,28

sðaÞn �
ð1

0

/nðkx3Þ ~Ta; 2ð0; x3jkÞdx3: (13)

The resulting relation is

X3

l¼1

X1
m;n¼0

½Mða;l;1=2Þ
p;q;m;n � qð1=2Þt2daldpmdqn� aðl;1=2Þ

mn

¼ 7/pð0Þsða;1=2Þ
q ; (14)

where M, which is a Hermitian matrix related to the elastic

tensor, is defined in the appendixes for both isotropic and

anisotropic media.

Defining the eigenvalues of M as k and the components

of the eigenvectors as Vmn, the displacement amplitudes,

amn, are written using the similarity transformation. For

Hermitian matrices, the similarity transformation is com-

prised of a diagonal matrix of eigenvalues and two matrices

of the concatenation of eigenvector components. Applying

the identity matrix (i.e., �Q �Q
� ¼ �I, where �Q is unitary) to

each side of the first term in Eq. (14)

�Q �Q
�X3

l¼1

X1
m;n¼0

½Mða;l;1=2Þ
p;q;m;n � qð1=2Þt2daldpmdqn�

� �Q �Q
�
aðl;1=2Þ

mn ¼ 7sða;1=2Þ
q ; (15)

and making use of the similarity transformation yields

X1
m¼0

aða; 1=2Þ
m; n ¼ 7

X3

b¼1

X1
q¼0

Gða; b; 1=2Þ
nq sðb; 1=2Þ

q ; (16)

where

Gða; b; 1=2Þ
nq ¼

Xjmax

j¼1

Qða; 1=2Þ
n ðjÞQðb; 1=2Þ�

q ðjÞ
kðjÞ � qð1=2Þv2

;

jmax ¼ 3ðmmax þ 1Þðnmax þ 1Þ (17)

and

Qða; 1=2Þ
n ðjÞ ¼

Xmmax

m¼0

Vða; 1=2Þ
mn ðjÞ: (18)

Here mmax ð¼nmaxÞ refers to the number of expansions per-

formed in Eq. (8).

The expansion coefficients are related to the amplitude

at the interface (x2 ¼ 0), by

Uða; 1=2Þ
n � k

ð1
0

/nðkx3Þ ~U
ð1=2Þ
a ð0; x3jkÞ dx3: (19)

Using Eqs. (8) and (10), Eq. (19) is rewritten as

Uða; 1=2Þ
n ¼

X1
m¼0

aða; 1=2Þ
m; n : (20)

Substituting Eq. (20) into Eq. (16) yields

Uða; 1=2Þ
n ¼ 7

X3

b¼1

X1
q¼0

Gða; b; 1=2Þ
nq sðb; 1=2Þ

q ; (21)

and is re-arranged to give

Gða; b; 1=2Þ�1 Uða; 1=2Þ ¼ 7 sðb; 1=2Þ: (22)

Equation (22) defines the relationship between the displace-

ments and stresses at the interface (x2 ¼ 0, Fig. 1). G con-

tains the full set of elastic constants, Ca; b; l; � .

C. Boundary conditions

Previous theoretical work on CWWs assumed a welded

contact between the two media.25–28 In this study, the inter-

face is assumed to be non-welded, i.e., continuity in stress

and a discontinuity in displacement. The discontinuity in

displacement is assumed to be proportional to stress and

inversely proportional to the specific stiffness of the

interface.30–33 The boundary conditions across the interface

(x1 � 0; x2 ¼ 0; x3 � 0) are

~U
ð1Þ
a � ~U

ð2Þ
a ¼

~T
ð1Þ
a; 2

ja
; a ¼ 1; 2; 3 ; (23)

and

sðb; 1Þ ¼ sðb; 2Þ; b ¼ 1; 2; 3 ; (24)

where ja is the specific stiffness in the a direction. The spe-

cific stiffness of an interface, or fracture, depends on the

amount and spatial distribution of contact area between two

surfaces and is a function of stress.34,35 In the following sec-

tion, these boundary conditions were used to derive the
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velocity for CWWs that propagate along the edge of a non-

welded interface (Fig. 1).

D. Application of the boundary conditions

Applying the stress boundary condition [Eq. (24)] to

Eq. (22) produces

G�1ða; b; 1Þ Uða; 1Þ þG�1ða; b; 2Þ Uða; 2Þ ¼ 0 ; (25)

where G�1 is the inverse of G. The displacement discontinu-

ity boundary condition [Eq. (23)] is multiplied by /lðkx3Þ
and integrated over the quarter-space, with the use of Eqs.

(13), (19), and (20) yielding

1

k
½Uða; 1Þn � Uða; 2Þn � ¼ 1

ja
sða; 1Þn : (26)

Solving Eq. (26) for Un and substituting into Eq. (25) leads

to

�G�1ða; b; 1Þ k

ka
sða; 2Þn þ Uða; 2Þn

� �
¼ G

�1ða; b; 2Þ
Uða; 2Þn ; (27)

G�1ða;b;1ÞG�1ða;b;2Þ k

ka
þG�1ða;b;1ÞþG�1ða;b;2Þ

� �
Uða;2Þn ¼0:

(28)

Equation (28) yields an eigenvalue problem that has solu-

tions when

det G�1ða;b;1ÞG�1ða;b;2Þ k

ka
þG�1ða;b;1Þ þG�1ða;b;2Þ

� �
¼ 0:

(29)

Equation (29) is a secular equation relating the stress, fre-

quency, velocity, and elastic constants to each other for the

problem geometry (Fig. 1) using the boundary conditions in

the previous section. The secular equation [Eq. (29)] is a

function of frequency and stiffness as expected for problems

using displacement discontinuity boundary conditions.30–32

E. Conditions for specific stiffness

When ja !1 ða ¼ 1; 2; 3Þ the solution for CWWs

reverts to the RS wave, as long as the material parameters

are within the region of existence for RS waves,28 as is

required for welded interfaces. When ja ! 0 ða ¼ 1; 2; 3Þ
which is a free surface boundary condition, G�1 ða; b; 1Þ ! 0

while 1=ja !1 canceling the first and second terms in

Eq. (29). This leaves the determinant det½G�1 ða; b; 2Þ� ¼ 0

which is the equation for a WW.1

The solution for a CWW depends on the specific stiff-

nesses: jx; jy; jz of the contact plane. Previous studies on

the ratio of shear to normal stiffness have been performed in

the lab and in the field.36,37 Theoretically, it has been

hypothesized to be 1. In this study, for simplicity, ja was

assumed to be equal in the a ¼ 1; 2 directions. Due to the

presence of a free surface in the x̂3 direction, the stiffness

term in that direction (i.e., k=j3) is multiplied by zero stress,

and so the stiffness is set to j3 ¼ 1 to be consistent with the

free surface. Previous work showed that the displacement

should decay exponentially in the x3 direction as a function

of wavelength.2 Other surface waves, such as Rayleigh,

Stoneley, and Scholte waves, have been shown to decay har-

monically [see Ref. 38 and references within].

III. NUMERICAL ANALYSIS

A. Isotropic case

A numerical study was performed to determine the range

of existence and velocity of CWW modes as a function of

specific stiffness and frequency when the material properties

of medium 1 and medium 2 are equal. The transformation

û1 ¼ i~u1; û2 ¼ ~u2; û3 ¼ ~u3; (30)

was used to make the M and G matrices [in Eqs. (17) and

(A1)] real, as was first used in the derivation of WWs by

Maradudin1 and based on the proof set forth by Ludwig

et al.39 This transformation changes the operator D1ðkÞ in

Eq. (6) such that D1ðkÞ ¼ �k. Note that only the a ¼ 1

terms are affected by the transformation in Eq. (30) and thus

only terms M12; M13; M21 and M31 are altered. That is

M12 ! iM12;

M13 ! iM13;

M21 ! �iM21;

M31 ! �iM31: (31)

The physical parameters used to solve Eq. (29) are listed

in Tables I and II and are based on the properties of the iso-

tropic aluminum cubes used in the experiments (see Sec. IV).

Theoretical velocities for the CWW were found for a range of

specific stiffnesses and a range of frequencies using

nmax ¼ mmax ¼ 15, which defined the number of Laguerre

polynomials used in the expansion of the displacement.

Figure 2 shows the numerical results of normalized

CWW phase velocity as a function of normalized frequency.

The CWW velocity is normalized by the Rayleigh wave ve-

locity, while the frequency is normalized by the ratio of the

specific stiffness, j to the seismic impedance, Z.

When the fracture stiffness on the interface is small

(xZ=j > 1e4 in Fig. 2) the velocity is that of a single wedge

wave. As the fracture stiffness on the interface approaches

zero, the contact area between the surfaces decreases and the

WWs are no longer coupled, thus leaving the velocity of a sin-

gle wedge wave. As the stiffness increases, the wedges couple

through points of contact. The CWW velocity increases contin-

ually as the stiffness increases until the interface is in welded

TABLE I. Sample dimensions for directions as shown in Figure 1. All sizes

have an uncertainty of 60:3 mm.

Direction Isotropic Aluminum Anisotropic Aluminum

X1 (m) 0.3025 0.2978

X2 (m) 0.3025 0.0762

X3 (m) 0.3025 0.0762
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contact. At that stiffness (xZ=j < 1 in Fig. 2), the two media

form a half space, that gives rise to a Rayleigh wave.40

Whether or not the interface appears welded will depend on the

frequency of the signal. For a given stiffness, low frequency

components of a CWW signal will propagate with a greater ve-

locity than high frequency components.

B. Anisotropic case

When the materials under observation are anisotropic,

assumption of isotropy in velocity will lead to a miscalcula-

tion of the velocity as a function of stiffness. To show this

effect, the velocities for two different directions in the aniso-

tropic aluminum (Table II) were used in the isotropic theory,

separately, and compared to the anisotropic analysis (Fig. 3).

The shear and compressional wave velocities from the x1

direction were applied to the isotropic CWW theory

(Appendix A). If the anisotropic parameters only from the x1

direction of the anisotropic medium were used in the isotropic

theory, then a velocity range slightly lower than the wedge ve-

locity was obtained (partially dashed line in Fig. 3). If only the

x2 direction parameters (dashed line Fig. 3) were used instead,

then the velocity range is even lower than the correct range

based on anisotropic theory. When the fully anisotropic theory

is applied (Appendix B), the velocity range is in the expected

range for CWWs (solid line in Fig. 3). Note that the error bars

in Fig. 3 are the range of velocities measured for all the aniso-

tropic sample surfaces and wedges, respectively.

The observed difference between the isotropic and aniso-

tropic theory is significant because not accounting for a sample

anisotropy of only 4% resulted in a predicted theoretical veloc-

ity that did not match the data. This comparison indicates the

high sensitivity of CWWs to the anisotropy of the sample.

IV. EXPERIMENTAL SETUP

Experiments were performed on two isotropic aluminum

cubes and two anisotropic aluminum bars. The sample

dimensions are listed in Table I. Long samples were used to

separate the wedge and Rayleigh waves which propagate at

velocities within 	2% of each other for wedges of 908.1 All

the samples were machined smooth on all sides to a rough-

ness of 625 lm.

Piezoelectric contact transducers (Olympus-Panametrics

V103 and V153) with a central frequency of 1 MHz were used

to send and receive compressional (P) and shear (S) waves.

Transducer arrays were held in a platen for mounting on the

sample. Honey (with 8:75% of the water removed through

heating at 90 8C for 	120 min) was used as a couplant

between the transducer and the sample. The array contained

(a) two S-wave transducers that were used to sample the free

surface, (b) two S-wave transducers transducers to sample the

bulk, (c) one S-wave transducer to sample the interface, and

(d) one S-wave transducer to sample the wedge region.

The source transducers were excited with a square wave

pulse of 400 V with a repetition rate of 1 kHz from an

Olympus 5077PR pulse generator. After propagating through

FIG. 2. (Color online) Phase velocity of the coupled wedge mode normalized

by the Rayleigh velocity as a function of x=Zj, where x ¼ 2p f , Z ¼ vshearq
and j is stiffness. This result is for jx1

¼ jx2
and jx3

¼ 1.

FIG. 3. (Color online) Comparison of isotropic and anisotropic theory. The

x1 and x2 velocities (see Table II) were applied to the isotropic theory, sepa-

rately. For all curves jx1
¼ jx2

, jx3
¼ 1.

TABLE II. Measured isotropic and anisotropic aluminum parameters used

in the numerical analysis. The first parenthesis is the direction the velocity

was measured in, the second is the unit.

Parameter Isotropic AluminumAnisotropic Aluminum

q ðkg=m3Þ 2700 2717

C11 (Pa) 1.0332 � 1011 8.8750 � 1010

C12 (Pa) 5.1960 � 1010 4.1460 � 1010

C13 (Pa) 5.1960 � 1010 3.7000 � 1010

C33 (Pa) 1.0332 � 1011 1.0545 � 1011

C44 (Pa) 2.5680 � 1010 2.5607 � 1010

C66 (Pa) 2.5680 � 1010 2.3645 � 1010

nmax ¼ mmax 15 15

Shear Velocity (x1) ðm=sÞ 3084:5 6 2:5 3070:0 6 2:5

Shear Velocity (x2; x3) ðm=sÞ 3084:5 6 2:5 2950:0 6 2:5

Rayleigh Velocity (x1) ðm=sÞ 2890:0 6 10:0 2900:0 6 1:0

Rayleigh Velocity (x2; x3) ðm=sÞ 2890:0 6 10:0 2780:0 6 1:0

Wedge Velocity ðm=sÞ 2815:0 6 5:0 2840:0 6 10:0

P- Velocity (x1) ðm=sÞ 6185:6 6 2:5 6230:0 6 2:5

P- Velocity (x2; x3) ðm=sÞ 6185:6 6 2:5 5715:3 6 2:5
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the sample, the signals were received by the receiver trans-

ducers and recorded using a National Instrument PXI-1042

controller with a PXI-5122 digitizer and stored on a com-

puter for later analysis. The V153 and V103 transducers

were used to measure the bulk S-waves and bulk P-waves

through each sample, respectively. The bulk, Rayleigh, and

wedge wave velocities are listed in Table II.

As discovered previously by DeBilly et al.,6 the ability to

sense a wedge wave depends on the polarization of the

S-wave transducer. When the transducer is polarized perpen-

dicularly to the line bisecting the wedge (i.e., h ¼ 458 for me-

dium 2 in Fig. 1), the signal has the largest amplitude (wedge

in Fig. 4). The smallest amplitude was observed when the

wave polarization was parallel (i.e., h ¼ 1358 for medium 2

in Fig. 1) to the bisecting line (non-wedge in Fig. 4). The

Rayleigh and bulk S-wave are also shown in Fig. 4 for

comparison.

The polarization used to measure the coupled wedge

mode was h ¼ 08 from the horizontal as shown in Fig. 1.

This angle was chosen based upon the displacement ampli-

tudes extracted from the isotropic theory for coupled wedge

waves.

A single axis Instron 444 kN load frame was used to

apply a normal load to the fracture, i.e., along the x2 direc-

tion, to change the contact area between the two blocks and

thus the specific stiffness of the interface. An Instron Model

59-R8100BTE controlled by Bluehill 3 software was used to

control and continuously monitor the load. The applied load

ranged from 0 to 400.3 kN and was evenly distributed by

placing spacers above the sample. For each 2.22 kN incre-

ment in load, the load was held constant while 30 signals

were acquired and averaged at each transducer location.

V. RESULTS AND DISCUSSION

Signals were recorded on the bulk, the wedge, and sur-

face of each sample. For isotropic aluminum, the signals

were independent of the cube face used and determined to be

the same in each block. For the anisotropic aluminum, the

waveforms varied in each sample and in each direction due

to the anisotropy. CWWs were observed and found to

decrease in arrival time as the load was increased for both

the isotropic and anisotropic samples. The CWW waveforms

are shown in Figs. 5 and 6 for low (0–22 kN), medium

(111.2–222.4 kN), and high (400.3 kN) applied loads on both

the isotropic and anisotropic samples. Rayleigh and wedge

waves are also shown for reference in the same figures. Note

that the CWW is similar to the WW at 0 kN and approaches

the Rayleigh wave at 400.3 kN.

Wavelet analysis41 was performed to determine the

group arrival time for a given frequency. From this analysis,

FIG. 4. (Color online) Received waveforms from isotropic aluminum show-

ing the bulk, Rayleigh, wedge, and non-wedge polarization waves.

FIG. 5. (Color online) Waveforms from the isotropic aluminum sample for

the coupled wedge (0 kN to 400.3 kN), the single wedge and Rayleigh

mode.

FIG. 6. (Color online) Waveforms from the anisotropic aluminum sample

for the coupled wedge (0 kN to 400.3 kN), the single wedge and Rayleigh

mode.
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a frequency of 0.3 MHz was used to calculate the group ve-

locity. Group velocities for both the isotropic and anisotropic

samples were calculated and are shown in Fig. 7 as a func-

tion of applied load. The same method was used to calculate

the group wedge and group Rayleigh wave velocity, which

are also shown in Fig. 7 by the dashed lines. As the normal

load increased, the coupling between the wedges increased,

resulting in an increase in velocity from the single wedge

wave velocity towards the Rayleigh wave velocity. The

uncertainties in velocity are within the size of the symbols

for the experimental data. The error bars on the wedge and

Rayleigh velocities of Fig. 7 give the range of values for all

sample surfaces and wedges (see Table II).

As discussed in Sec. II E, the ratio of shear to normal

stiffness is assumed to be 1. However, from experimental

studies, this can vary and affect the interpretation of the spe-

cific stiffness. To show the variation in the predicted velocity,

stiffness, and frequency, the isotropic CWW theory was

explored for different shear to normal stiffness ratios. Figure 8

shows the velocity as a function of normalized frequency for

different shear ðjx1Þ to normal ðjx2Þ stiffness ratios. Since the

horizontal axis has been normalized, the shift in the velocity

curves is purely from the stiffness ratio. For smooth fractures,

as in the experimental section of this paper, the assumption of

the stiffness ratio equaling 1 is a good approximation. For

more complicated fracture planes and other rock fractures,

this ratio will need to be explored further and carefully meas-

ured to ensure a good estimate of the specific stiffness for the

interface where the wedges are coupled.

The group velocities in Fig. 7 were used in both the iso-

tropic and anisotropic theory (Figs. 2 and 9) to obtain an esti-

mate for the specific stiffness of the surface fracture,

assuming a shear to normal stiffness ratio of 1. The esti-

mated stiffness for a frequency of 0.3 MHz is shown in

Fig. 10 as a function of applied load. The range of stiffness

FIG. 7. (Color online) Experimental group velocities at 0.3 MHz for both

the isotropic and anisotropic aluminum samples.

FIG. 8. (Color online) Theoretical phase velocities, for different shear to

normal stiffness ratios, as a function of normalized stiffness. Here x is the

frequency, Z is the impedance, and j is the specific stiffness jx1
.

FIG. 9. (Color online) Phase velocity of the anisotropic coupled wedge

mode as a function of stiffness. The error bars on the wedge and Rayleigh

velocity are the range of values for the anisotropic samples used in this

experiment (see Table II). This result is for jx1
¼ jx2

and jx3
¼ 1.

FIG. 10. The group velocities from Fig. 7 were used to estimate the specific

stiffness along the interface for both the isotropic and anisotropic samples at

0.3 MHz.
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values obtained is in the previously observed range for alu-

minum samples measured using interface waves at high

frequency.42

VI. CONCLUSION

This study investigated the existence of coupled wedge

waves (CWWs), both theoretically and experimentally.

These elastic waves propagate along the intersection of two

quarter-spaces, each supporting a WW mode, coupled

through displacement discontinuity boundary conditions.

The velocity of the CWW ranges continuously from the

WW velocity to the Rayleigh wave velocity and depends on

the interface stiffness and frequency. For any surface frac-

ture, the two wedge waves, one from each medium, can

exist independently, when there is no contact between the

wedges, i.e., for uncoupled wedges. When stress is applied

to the media, causing the two wedges to come into partial

contact, the wedges couple to form the CWW. It can exist

whether the material properties of the two quarter-spaces

are the same or different, unlike a Rayleigh–Stoneley wave

which can only exist when the two media are different. This

broadens the applicability of the CWW to applications on

the lab and field scale such as surface fractures in rock.

CWWs were shown to exist by using a Laguerre

polynomial expansion in displacement, applying displace-

ment discontinuity boundary conditions, and using a nu-

merical approximation to calculate the CWW velocity

region. Numerical analysis demonstrated that at low stiff-

ness the coupled wedge wave should propagate at the

WW velocity and for high stiffness at the Rayleigh veloc-

ity. Both the isotropic and anisotropic cases were ana-

lyzed and equations were derived for each. The

theoretical derivation is independent of size and can be

expanded to the field scale for a wide range of frequen-

cies, making the CWW more applicable.

The experimental study was performed on aluminum

cubes and bars with orthogonal wedges. The isotropic theory

was found to be in good agreement with the experimental

isotropic sample but was unable to predict the velocity range

in the anisotropic sample, even with 4% anisotropy. When

the anisotropic theory was then applied, the theoretical ve-

locity range was found to predict the experimentally

observed velocity range exactly, indicating a theoretical

model that is highly sensitive to anisotropy. The dispersive

behavior of CWW enabled the stiffness of the interface to be

estimated and was found to be in good agreement with previ-

ous work performed on aluminum at high frequency. These

results indicate that the CWW does exist along the contact

between two quarter-spaces in contact and is sensitive to the

load. The experimental study verified that the waveforms

observed were in fact load dependent and indicated that at

the wedge tips, the bond was not welded but was in the dis-

placement discontinuity regime.
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APPENDIX A: ISOTROPIC THEORY

Although the mathematical formulation from the theory

section in this paper is based on the work done by Sokolova

et al.,28 there are several equations which were not explicitly

shown in their theory section which aid greatly in solving for

the velocity of CWWs. For the isotropic case, using the

transformation described in Sec. III [Eq. (30)], the matrix M

is necessary to the solution but can be difficult to formulate

without the following relationships.

The definition of M, which is size ðmmax þ 1Þ2
�ðmmax þ 1Þ2, is28

Mða; l; 1=2Þ
pq;mn ¼ 6

X3

b;v¼1

ð1
0

ð61

0

½DbðkÞ/pð6kx2Þ/qðkx3Þ��

�C
ð1=2Þ
ablv ½DvðkÞ/mð6kx2Þ/nðkx3Þ�dx2dx3:

(A1)

To solve Eq. (A1), there are three possible integrals involv-

ing the Laguerre polynomials, /, that need to be imple-

mented. The three integrals are Eq. (10),

ð61

0

/að6kxÞ @
@x

/bð6kxÞdx¼�Hðb�aÞþdab

2
�wa;b;

(A2)

where H is a step function defined by

Hðf Þ ¼ 0 if f < 0

1 if f � 0;

�
(A3)

and

ð61

0

@

@x
½/að6kxÞ� @

@x
½/bð6kxÞ�dx

¼ 6k minða; bÞ þ 1

2
� dab

4

� �
� 6kCa; b: (A4)

Using the above relationships, and the Voigt notation (e.g.,

1232¼ 64), the matrix elements of M for an isotropic solid

are found to be

Mð1;1;1=2Þ
pq;mn ¼ C

ð1=2Þ
11 dpmdqn þ C

ð1=2Þ
66 fdqnCp;m þ dpmCq;ng;

(A5)

Mð1;2;1=2Þ
pq;mn ¼ 6½Cð1=2Þ

12 dqnwp;m � C
ð1=2Þ
66 dqnwm;p�; (A6)

Mð1;3;1=2Þ
pq;mn ¼ C

ð1=2Þ
12 dpmwq;n � C

ð1=2Þ
66 @pmwn;q; (A7)

Mð2;1;1=2Þ
pq;mn ¼ 7½Cð1=2Þ

66 dqnwp;m � C
ð1=2Þ
12 dqnwm;p�; (A8)

Mð2;2;1=2Þ
pq;mn ¼C

ð1=2Þ
66 dpmdqnþC

ð1=2Þ
11 dqnCm;pþC

ð1=2Þ
66 dpmCq;n;

(A9)
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Mð2; 3; 1=2Þ
pq;mn ¼ 6½Cð1=2Þ

12 wm; pwq; n þ C
ð1=2Þ
66 wp;mwn; q�;

(A10)

Mð3;1;1=2Þ
pq;mn ¼ �C

ð1=2Þ
66 dpmwq;n þ C

ð1=2Þ
12 dpmwn;q; (A11)

Mð3;2;1=2Þ
pq;mn ¼6½Cð1=2Þ

66 wm;pwq;nþC
ð1=2Þ
12 wp;mwn;q�; (A12)

Mð3;3;1=2Þ
pq;mn ¼C

ð1=2Þ
66 dpmdqnþC

ð1=2Þ
66 dqnCm;pþC

ð1=2Þ
11 dpmCn;q:

(A13)

When Eqs. (A5)–(A13) are used to form matrix M, the result

is a Hermitian (M ¼M†) matrix independent of k. As a nu-

merical example, if the isotropic parameters in Table II are

used in the above theory, the velocity of the CWW ranges

from 2820 m=s to 2978 m=s.

APPENDIX B: ANISOTROPIC THEORY

For anisotropic materials, a similar approach for solving

M [Eq. (A1)] is applied, but with a general anisotropic elas-

tic stiffness tensor. For a general orthorhombic medium, the

elastic stiffness tensor can be expressed as

C
ð1=2Þ
abl� ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

0
BBBBBB@

1
CCCCCCA
; (B1)

where the Voigt notation has again been utilized.

Substituting Eq. (B1) into Eq. (A1) the following matrix

terms are found

Mð1;1;1=2Þ
pq;mn ¼C

ð1=2Þ
11 dpmdqnþC

ð1=2Þ
66 dqnCm;pþC

ð1=2Þ
55 dpmCn;q;

(B2)

Mð1; 2; 1=2Þ
pq;mn ¼ 6½Cð1=2Þ

12 dqnwp;m � C
ð1=2Þ
66 dqnwm; p�; (B3)

Mð1; 3; 1=2Þ
pq;mn ¼ C

ð1=2Þ
13 dpmwq; n � C

ð1=2Þ
55 dpmwn; q; (B4)

Mð2; 1; 1=2Þ
pq;mn ¼ 7½Cð1=2Þ

66 dqnwp;m � C
ð1=2Þ
12 dqnwm; p�; (B5)

Mð2;2;1=2Þ
pq;mn ¼C

ð1=2Þ
66 dpmdqnþC

ð1=2Þ
22 dqnCm;pþC

ð1=2Þ
44 dpmCq;n;

(B6)

Mð2; 3; 1=2Þ
pq;mn ¼ 6½Cð1=2Þ

23 wm; pwq; n þ C
ð1=2Þ
44 wp;mwn; q�;

(B7)

Mð3; 1; 1=2Þ
pq;mn ¼ �C

ð1=2Þ
55 dpmwq; n þ C

ð1=2Þ
13 dpmwn; q; (B8)

Mð3; 2; 1=2Þ
pq;mn ¼ 6½Cð1=2Þ

44 wm; pwq; n þ C
ð1=2Þ
23 wn; qwp;m�;

(B9)

Mð3;3;1=2Þ
pq;mn ¼C

ð1=2Þ
55 dpmdqnþC

ð1=2Þ
44 dqnCm;pþC

ð1=2Þ
33 dpmCn;q:

(B10)

Here again, M is Hermitian and independent of k. If the terms

in the elastic stiffness tensor [Eq. (B1)] are made to be iso-

tropic, the matrix elements revert back to the isotropic case

derived in Appendix A. This is written for general anisotropy

and can be rotated or simplified for different anisotropies.

As an example, if transversely isotropic media were

under study, Eq. (B1) would simplify to

C
ð1=2Þ
abl� ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

0
BBBBBB@

1
CCCCCCA
:

(B11)

The elastic stiffness terms in Eq. (B11) can be measured

experimentally from the S- and P-wave velocities in the three

orthogonal directions aligned with the symmetry axis, except

for the C13 term. This term is a function of the off diagonal

compressional velocity, which is difficult to measure. To get

an estimate for this term, the Rayleigh velocity, propagating

along the same direction as the coupled wedge wave (i.e., x1

direction in Fig. 1), can be used. Based on the analytic expres-

sion put forth by Vinh and Ogden,43 the Rayleigh velocity, for

any anisotropic media, can be written in terms of the

C11; C33; C13 and C55 terms. Vinh and Ogden explicitly

worked through expressions for orthotropic media, but a simple

substitution based on symmetries set forth by Chadwick,44

leads to other symmetries such as transversely isotropic media.

1A. A. Maradudin, R. F. Wallis, D. L. Mills, and R. L. Ballard, “Vibrational

edge modes in finite crystals,” Phys. Rev. B 6(4), 1106–1111 (1972).
2P. E. Lagasse, “Analysis of a dispersion free guide for elastic waves,”

Electron. Lett. 8, 372–373 (1972).
3S. L. Moss, A. A. Maradudin, and S. L. Cunningham, “Vibrational edge

modes for wedges with arbitrary interior angles,” Phys. Rev. B 8,

2999–3008 (1973).
4M. DeBilly, A. C. Hladky-Hennion, and R. Bossut, “On the localization of

the antisymmetric flexural edge waves for obtuse angles,” Ultrason. 36,

995–1001 (1998).
5M. DeBilly, A. C. Hladky-Hennion, and R. Bossut, “The effect of imper-

fections on acoustic wave propagation along a wedge waveguide,”

Ultrason. 37, 413–416 (1999).
6M. Debilly, “Acoustic technique applied to the measurement of the free

edge wave velocity” Ultrason. 34, 611–619 (1996).
7X. Jia and M. DeBilly, “Observation of the dispersion behavior of surface

acoustic waves in a wedge waveguide by laser ultrasonics,” Appl. Phys.

Lett. 61, 2970–2972 (1992).
8R. Adler, M. Hoskins, S. Datta, and B. Hunsinger, “Unusual parametric

effects on line acoustic waves,” IEEE Trans. Sonics Ultrason. 26, 345–347

(1979).
9A. A. Maradudin, “Edge modes,” Jpn. J. Appl. Phys. Suppl. 2, 871–878 (1974).

10A. A. Oliner, “Waveguides for acoustic surface waves: A review,” Proc.

IEEE 64, 615–627 (1976).
11A. A. Maradudin, “Surface waves,” Feskorperprobleme 12, 1–116 (1981).
12E. Sokolova, A. Kovalev, R. Timler, and A. Mayer, “On the dispersion of

wedge acoustic waves,” Wave Motion 50, 233–245 (2013).
13J. McKenna, G. D. Boyd, and R. N. Thurston, “Plate theory solutions for

guided flexural acoustic waves along the tip of a wedge,” IEEE Trans.

Sonics Ultrason. 3, 178–186 (1974).
14V. V. Krylov, “Distinctive characteristics of guided surface-wave propaga-

tion in complex topographic structures,” Sov. Phys. Acoust. 33, 407–411

(1987).
15A. A. Maradudin and K. R. Subbaswamy, “Edge localized vibration

modes on a rectangular ridge,” J. Appl. Phys. 48, 3410–3414 (1977).

J. Acoust. Soc. Am., Vol. 134, No. 5, November 2013 B. C. Abell and L. J. Pyrak-Nolte: Coupled wedge waves 3559

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.210.68.52 On: Sat, 04 Jan 2014 21:45:53



16Z. L. Li, I. Achenbach, J. D. Komsky, and Y. C. Lee, “Reflection and

transmission of obliquely incident surface waves by an edge of a quarter

space: Theory and experiment,” J. Appl. Mech. 59, 349–355 (1992).
17A. A. Krushynska, “Flexural edge waves in semi-infinite elastic plates,”

J. Sound Vib. 330, 1964–1976 (2011).
18V. V. Krylov and A. V. Shanin, “Influence of elastic anisotropy on the

velocities of acoustic wedge modes,” Sov. Phys. Acoust. 37, 65–67 (1991).
19A. L. Shuvalov and V. V. Krylov, “Localized vibration modes in free ani-

sotropic wedges,” J. Acoust. Soc. Am. 107, 657–660 (2000).
20A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis,

“Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical

solution,” Phys. Rev. B 32, 6045–6047 (1985).
21A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a para-

bolic wedge,” Phys. Rev. B 14, 5526–5528 (1976).
22M. Debilly, “On the influence of loading on the velocity of guided acoustic

waves propagating in linear elastic wedges,” J. Acoust. Soc. Am. 100,

659–662 (1996).
23V. V. Krylov, “On the velocities of localized vibration modes in immersed

solid wedges,” J. Acoust. Soc. Am. 103, 767–770 (1998).
24C. Yang and I. Liu, “Optical visualization of acoustic wave propagating

along the wedge tip,” Proc. SPIE 8321, 83211W (2011).
25D. Bogy, “Edge-bonded dissimilar orthogonal elastic wedges under nor-

mal and shear loading,” J. Appl. Mech. 35, 460–466 (1968).
26D. Bogy, “Two edge-bonded elastic wedges of different materials and

wedge angles under surface tractions,” J. Appl. Mech. 38, 377–386 (1971).
27B. V. Budaev and D. B. Bogy, “Scattering of Rayleigh and Stoneley waves

by two adhering elastic wedges,” Wave Motion 33, 321–337 (2001).
28E. Sokolova, A. Kovalev, A. Maznev, and A. Mayer, “Acoustic waves

guided by the intersection of a surface and an interface of two elastic

media,” Wave Motion 49, 388–393 (2012).
29R. Stoneley, “Elastic waves at the surface of separation of two solids,”

Proc. R. Soc. London 106, 416–428 (1924).
30G. S. Murty, “Theoretical model for attenuation and dispersion of

Stoneley waves at loosely bonded interface of elastic half spaces,” Phys.

Earth Planet. Int. 11, 65–79 (1975).

31M. Schoenberg, “Elastic wave behavior across linear slip interfaces,”

J. Acoust. Soc. Am. 68, 1516–1521 (1980).
32L. J. Pyrak-Nolte, L. Myer, and N. G. W. Cook, “Transmission of seismic

waves across single natural fractures,” J. Geophys. Res. 95(B6),

8617–8638, doi:10.1029/JB095iB06p08617 (1990).
33S. Shao and L. J. Pyrak-Nolte, “Interface waves along fractures in aniso-

tropic media,” Geophys. 78(4), T99–T112 (2013).
34D. L. Hopkins, “The implications of joint deformation in analyzing

the properties and behavior of fractured rock masses, underground

excavations and faults,” Int. J. Rock Mech. Min. Sci. 37, 175–202

(2000).
35C. Petrovitch, D. Nolte, and L. J. Pyrak-Nolte, “Scaling of fluid flow ver-

sus fracture stiffness,” Geophys. Res. Lett. 40, 2076–2080, doi:10.1002/

grl.50479 (2013).
36R. Lubbe, J. Sothcott, M. H. Worthington and C. McCann, “Laboratory

estimates of normal and shear fracture compliance,” Geophys. Prospect.

56, 239–247 (2008).
37C. Hobday and M. H. Worthington, “Field measurements of normal and

shear fracture compliance,” Geophys. Prospect. 60, 488–499 (2012).
38D. Prikazchikov, “Rayleigh waves of arbitrary profile in anisotropic

media,” Mech. Res. Comm. 50, 83–86 (2013).
39W. Ludwig and B. Lengeler, “Surface waves and rotational invariance in

lattice theory,” Solid State Commun. 2, 83–86 (1964).
40Lord Rayleigh, “On waves propagated along the plane surface of an elastic

solid,” Proc. R. Soc. London A 17, 4–11 (1885).
41L. J. Pyrak-Nolte and D. D. Nolte, “Wavelet analysis of velocity disper-

sion of elastic interface waves propagating along a fracture,” Geophys.

Res. Lett. 22(11), 1329–1332, doi:10.1029/95GL01323 (1995).
42L. J. Pyrak-Nolte, J. Xu, and G. Haley, “Elastic interface waves propagat-

ing in a fracture,” Phys. Rev. Lett. 68(24), 3650–3653 (1992).
43P. Vinh and R. W. Ogden, “On formulas for the Rayleigh wave speed,”

Wave Motion 39, 191–197 (2004).
44P. Chadwick, “The existence of pure surface modes in elastic mate-

rials with orthorhombic symmetry,” J. Sound Vib. 47(1), 39–52

(1976).

3560 J. Acoust. Soc. Am., Vol. 134, No. 5, November 2013 B. C. Abell and L. J. Pyrak-Nolte: Coupled wedge waves

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.210.68.52 On: Sat, 04 Jan 2014 21:45:53


	s1
	s2
	n1
	s2A
	s2B
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	f1
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	s2C
	d23
	d24
	s2D
	d25
	d26
	d27
	d28
	d29
	s2E
	s3
	s3A
	d30
	d31
	t1
	s3B
	s4
	f2
	f3
	t2
	s5
	f4
	f5
	f6
	f7
	f8
	f9
	f10
	s6
	xA
	dA1
	dA2
	dA3
	dA4
	dA5
	dA6
	dA7
	dA8
	dA9
	dA10
	dA11
	dA12
	dA13
	xB
	dB1
	dB2
	dB3
	dB4
	dB5
	dB6
	dB7
	dB8
	dB9
	dB10
	dB11
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44

