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ABSTRACT

Simulation of elastic-wave propagation in rock requires knowl-
edge of the elastic constants of the medium. The number of
elastic constants required to describe a rock depends on the
symmetry class. For example, isotropic symmetry requires only
two elastic constants, whereas transversely isotropic symmetry
requires five unique elastic constants. The off-diagonal elastic
constant depends on a wave velocity measured along a nonsym-
metry axis. The most difficult barrier when measuring these
elastic constants is the ambiguity between the phase and group
velocity in experimental measurements. Several methods to
eliminate this difficulty have been previously proposed, but they
typically require several samples, difficult machining, or com-
plicated computational analysis. Another approach is to use the
surface (Rayleigh) wave velocity to obtain the off-diagonal
elastic constant. Rayleigh waves propagated along symmetry

axes have phase and group velocities that are equal for materials
with no frequency dispersion, thereby eliminating the ambigu-
ity. Using a theoretical secular equation that relates the Rayleigh
velocity to the elastic constants enable determination of the off-
diagonal elastic constant. Laboratory measurements of the elastic
constants in isotropic and anisotropic materials were made using
ultrasonic transducers (central frequency of 1 MHz) for the
Rayleigh-wave method and a wavefront-imaging method. The
two methods indicated agreement within 1% and 3% for iso-
tropic and transversely isotropic samples, respectively, demon-
strating the ability of the Rayleigh-wave method to measure the
off-diagonal elastic constant. The surface-wave approach elim-
inates the need for multiple samples, expensive computational
calculations, and most importantly, it removes the ambiguity
between the phase and group velocity in the measured data
for materials with no frequency dispersion because all measure-
ments are made along symmetry axes.

INTRODUCTION

Anisotropy was originally studied for applications to light propa-
gation in an elastic ether by Lord Kelvin and others, and the work
was later expanded to more diverse fields such as geophysics (Hel-
big, 1994; Schoenberg and Sayers, 1995; for a review, Helbig and
Thomsen, 2005), metals (Aussel and Monchalin, 1989; Kohlhauser
and Hellmich, 2012), crystals (Wang, 1995; Wolfe, 1998; Jakata
and Every, 2008), wood (Bucur and Archer, 1984; Najafi et al.,
2005), and even industrial applications such as musical instruments
and brake pads (Bucur, 2006; Sanders and Yuhas, 2007). Measuring
the elastic constants of a material evolved from static methods to
resonance methods, ultrasound laser methods, and more commonly,
wave transmission methods (Aussel and Monchalin, 1989; Jakata
and Every, 2008). Several nice reviews of these methods can be
found in the references (Every, 1994; Wolfe, 1998).

The wave-transmission method was applied to materials
using a wide range of frequencies, but it traditionally required many
measurements and many samples to be prepared. For example,
Bucur and Archer (1984) measured the elastic constants of
several wood species by preparing samples that were cut at 0°,
15°, 30°, and 45° to the symmetry axis. Christensen and Ramana-
nantoandro (1971) performed a similar measurement on dunite but
used samples cut from 0° to 90° in 15° increments. These samples,
although from the same type of material, might have exhibited
internal differences in structure, composition, symmetry, or den-
sities. These differences between samples might lead to spurious
values for the measured elastic constants and may result in artifacts
in the analysis of the main sample under consideration. A more
ideal approach would measure all of the elastic constants on the
same sample.
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The general symmetry classes of anisotropic elastic media are
well defined and can be found in any introductory book on aniso-
tropy (e.g., Bucur and Archer, 1984; Mavko et al., 1998). Each sym-
metry class is defined based upon the number of terms that are
unique to the elastic stiffness tensor. For isotropic media, there are
two unique elastic constants, commonly referred to as the Lamé
parameters. For vertically transversely isotropic (VTI) media, there
are five unique elastic constants, and for orthotropic media, there are
nine. These constants can be written in a matrix notation (see the
“Results and Analysis” section) and are symmetric about the diago-
nal. The difficulty in measuring all of the elastic constants in the
same sample arises from the need to obtain the off-diagonal terms.
For isotropic samples, the P- and S-wave velocities are the same

in all directions (e.g., C11 ¼ C22 ¼ C33, C44 ¼ C55 ¼ C66), leading
to spherical wavefronts propagating through the material. For aniso-
tropic materials, the velocities are no longer the same in every
direction, giving rise to nonspherical wavefronts (Wolfe, 1998).
The phase and group angles are no longer equal because the wave-
fronts are not spherical in shape. The angle between the normal to
the wavefront and the unique axis is the phase angle, θ; the angle
between the normal to the source plane and the direct line from the
source to the receiver location is the group angle, ϕ (see Figure 1)

(Thomsen, 1986). For VTI media, P-wave velocities are the same in
two orthogonal directions and are different in the third. The direc-
tion in which the wave velocities differ from the other two orthogo-
nal axes is the unique axis (e.g., the z-axis in Figure 2a). The shape
of the wavefront must be known to determine the phase angle θ in
nonorthogonal directions to the symmetry axes. The phase angle is
then used to calculate the phase velocity (Thomsen, 1986), and thus
not knowing the shape of the wavefront can lead to a misinterpre-
tation of the phase angle, phase velocity, and, therefore, the elastic
constants.
The group angle ϕ of the wavefront surface is used to

determine the group velocity. The relationship between the group
and phase velocities (or angles) is difficult to calculate without
taking measurements at several angles, due to the derivative of the
phase velocity with respect to phase angle (see equation 4) (Berry-
man, 1979; Thomsen, 1986; Tsvankin, 1996, 1997). In addition,
difficulty arises in determining which velocity (group or phase) is
actually measured with the type of transducer used (Every and
Sachse, 1990; Dellinger and Vernik, 1994; Vestrum, 1994; Wolfe,
1998). A rule of thumb set forth by Dellinger and Vernik (1994) is
that the ratio of the propagation path length to transducer illumina-
tion width needs to be ≥20 to measure the group velocity, and ≤3 to
measure the phase velocity. If the ratio falls between or near these
values, great care must be taken to determine which value is actually
measured.
Numerical techniques have also been developed to calculate the

off-diagonal elastic constants using these velocity measurements.
Although these approaches were typically very robust and intensive
(i.e., large computational programs were required to extract the elas-
tic constants), they required more information than was available for
cube-shaped samples (Castagnede et al., 1990; Wang, 1995). To
determine all 21 independent elastic constants, 21 measurements,
along different directions, must be made for each sample. This leads
to difficulty in determining how to cut the sample(s). The best op-
tion would be to cut the sample into a sphere and make the required
measurements. However, this approach requires complicated ma-
chining, and the measurement of shear waves through spheres can
be difficult to obtain depending on the sample size and wavelengths
used (Helbig, 1994). In this paper, we demonstrate that the off-
diagonal elastic constants can be determined from measurements on
cubic samples that do not require complicated sample preparation.
Recently, surface and interface waves have been used to deter-

mine elastic constants. Dahmen et al. (2010) used air-coupled trans-
ducers and the velocity of Lamb waves to determine the elastic
constants of anisotropic media. Others (Deresiewicz and Mindlin,
1957; Bucur and Rocaboy, 1988) used the bicubic equation for sur-
face acoustic waves to invert and obtain the elastic constants. The
drawbacks to this technique are that it requires three types of trans-
ducers, two for bulk wave measurements (S and P) and one for sur-
face acoustic waves, and it requires a sample cut at 45° to the
symmetry axis. Shao and Pyrak-Nolte (2013) used the results from
the interface wave to determine the C13 parameter, but the approach
was not explicitly verified. Work has also been done to develop
transducers that transmit waves at oblique angles to a surface,
avoiding the need for a specialized cut; this approach again requires
the use of three types of transducers (Sharf-Aldin et al., 2013).
This paper describes a method to determine the off-diagonal elas-

tic constants (e.g., C13) for media with no frequency dispersion
using the Rayleigh-wave velocity. Abell and Pyrak-Nolte (2013)

Figure 1. Pictorial representation of the difference between the
phase and group angles for a nonspherical wavefront. The wave-
front (dashed line) originates from a point source, typically outside
of the sample surface (solid line), and spreads throughout the sam-
ple. At the measurement location, the phase angle, θ, is defined as
the angle made with the normal to the wavefront (k) and the plane of
the point source. The group angle, ϕ, is defined by the angle made
with the straight (ray) path from the source to the receiver, as shown.

x x

y y

z z
a) b)

Figure 2. (a) Phenolic G10 sample and (b) acrylic sample geom-
etry. The dashed lines, which are not drawn to scale, represent
the layering.
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recently use this technique to determine C13 in an aluminum sam-
ple, but they did not verified or explicitly explained the technique.
Although the Rayleigh wave was predicted more than 125 years ago
by Lord Rayleigh (1885), explicit solutions for the isotropic Ray-
leigh velocity as a function of the bulk velocities, as opposed to the
secular equation, were only recently derived (Rahman and Barber,
1995; Mechkour, 2002). This solution was later analyzed by several
authors to develop an even simpler approximate expression for
the velocity in isotropic and anisotropic media using various math-
ematical techniques (Vinh and Ogden, 2004b; Li, 2006; Rahman
and Michelitsch, 2006; Nkemzi, 2008).
Among the explicit solutions derived for the Rayleigh-wave

velocity, Vinh and Ogden (2004a) obtained a simple expression
for the Rayleigh velocity in orthotropic media as a function of the
elastic constants (see equation 3.28 in Vinh and Ogden, 2004a). The
expression is easily extended from orthotropic to higher symmetries
following the formulation of Chadwick (1976). This expression,
discussed in the “Analysis” section of this paper, allows the C13

(or C12) value to be easily calculated from the Rayleigh velocity
and bulk waves that travel through the sample.
The Rayleigh-wave method has the advantage of only requiring

two contact transducers (shear [S] and compressional [P]), one sam-
ple aligned with the symmetry axes, and one simple equation to
solve for the elastic constants. In this study, the method was applied
to an isotropic acrylic sample to verify that the technique works
on isotropic media, and to an anisotropic sample. To verify the mea-
sured results, a wavefront-imaging (WFI) method was performed
on the same samples to obtain a value of C13 using the anisotropic
techniques first put forth by Thomsen (1986). In this paper, it is
demonstrated that the two techniques are equivalent but that the
Rayleigh technique has many experimental and theoretical benefits.

EXPERIMENTAL APPROACH

Sample description

A WFI method and a Rayleigh velocity method were used to
determine the elastic constants of both an isotropic and an aniso-
tropic sample. The isotropic sample was an acrylic (Lucite) cube
with smooth, milled surfaces. The anisotropic sample was phenolic
G10, an epoxy glass laminate with layer spacing on the order
of 500 μm, that was also machined to obtain smooth surfaces. See
Table 1 for the dimensions and physical parameters of the two
materials and Figure 2 for the alignment of the samples with the
coordinate system.
Phenolic G10 was chosen for the anisotropic sample because of

its high-quality synthetic layering (i.e., good transverse anisotropy)
without significant background effects from heterogeneous distribu-
tions of small-scale minerals typically found in rocks.

Acoustic wavefront imaging method

In the acoustic WFI experiment, two spherically focused water-
coupled piezoelectric transducers (Panametrics V303-SU) with a
central frequency of 1 MHz, a nominal element size of approxi-
mately 13 mm, and a focal point of 2 mm were used. As stated in
the “Introduction” section, the ratio of the sample height to the
transducer illumination size is important in determining which
velocity is being measured. For the isotropic and anisotropic sam-
ples, this ratio was 50.8 and 50.9, respectively, indicating that the

velocities measured were well within the group velocity regime
(i.e., ≥20 based on the rule of thumb set forth by Dellinger and
Vernik, 1994).
The source transducer was located at a fixed position, and the

receiver transducer was scanned over a 2D region to capture the
arriving wavefront. The receiver position was controlled by two
computer-controlled (Newport ESP300) linear actuators (Newport
Model 850B). A pulse generator (Panametrics model 5077PR) sent
an excitation pulse (400 V square pulse) to the source transducer.
The pulse width was 0.3 μs with a repetition rate of 100 Hz. Re-
ceived signals were collected through a 14-bit digitizer (National
Instruments USB-5133) and stored on a computer.
For testing, a sealed sample was placed in a water tank (Figure 3)

and held with a nominal load (≤0.5 kN) to ensure that the sample
did not move during scanning. The sample was sealed using 3M
3765 clear label protection tape applied to each face of the sample
with all of the air bubbles removed. The corners of the sample were
sealed using Coghlan’s 8880 Airstop, a commercial liquid sealant.
The sample was submerged because water-coupled transducers
were used to ensure uniform coupling between the transducers and
the sample for all measured positions. The surfaces of the source,
the sample, and the scanning plane of the receiver were aligned

Table 1. Sample dimensions for the directions shown in
Figure 2. All sizes have an uncertainty of �0.03 mm, and
the density has an uncertainty of �1.0 kg∕m3.

Direction Isotropic acrylic Anisotropic phenolic G10

x (m) 0.09975 0.10170

y (m) 0.10150 0.10170

z (m) 0.09982 0.10170

Density (kg∕m3) 1184.0 1936.6

Figure 3. Experimental setup for the WFI experiment. Note that the
sample and transducers are submerged in water and only the
receiver transducer translates.
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parallel by minimizing the reflection times from the surface of a
sample. The distance between the source/receiver and the sample
surface was set to the focal length of the transducer (∼18.2 mm)
to ensure that the transducer was focused on the surface. The
receiver was translated in 1 mm increments to scan the sample from
the center line (when the source and receiver were aligned) to a
distance 50–60 mm away from the center line (Figure 4). For these

distances, the maximum group angle with respect to the symmetry
axis was 30° (ϕ in Figure 4) for the sample sizes used in this study.
Figure 5 shows the shift in arrival time of the P-wave signals for

the acrylic sample (Figure 5a) and the G10 sample (Figure 5b) when
the receiver was translated away from the source (i.e., center line).
As the distance between the source and receiver increased (as well
as the wave travel path), the transmitted signals arrived later. An

S-wave is also required to calculate the elastic
constants in the WFI technique. The same S-
wave used to calculate C44 in the Rayleigh-wave
technique was used in the WFI analysis below.

Rayleigh-wave method

For the Rayleigh-wave technique, P- and S-
waves were sent and received using piezoelectric
contact transducers (Olympus-Panametrics V103
and V153) that have a central frequency of 1 MHz
and an element size of 13 mm. Honey, with 8.75%
(by weight) of the water removed through convec-
tion heating at 90°C for ∼120 minutes, was used
as a couplant between the sample and transducer.
A square-wave pulse of 400 V, with a 1 kHz
repetition rate from an Olympus 5077PR pulse
generator, was used to excite the source transduc-
ers. The received signals were recorded using
a 14-bit digitizer 100 MSamples∕s oscilloscope
(National Instruments USB-5133) and stored on
a computer for later analysis.
Only four measurements (Figure 6) are neces-

sary to determine the off-diagonal elastic stiff-
ness value (C13); however, for thoroughness,
measurements of the P-, S-, and Rayleigh waves

Figure 4. WFI experimental setup for the phenolic G10 sample. Note that the source
transducer is fixed (left) and the receiver transducer (right) translates to measure the
wavefront over the entire surface of the sample. The vertical dashed lines represent
the orientation of the layering in the phenolic G10, and the curved dashed lines represent
the wavefront.
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Figure 5. The received signals from the WFI tests for: (a) the acrylic sample and (b) the phenolic G10 sample (propagated through the layers)
when the receiver was deviated from the aligned position with the source. Note that the source and receiver were aligned at 0 mm.
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for each direction and in each polarization were measured for the
isotropic and anisotropic samples (see Tables 1–3 and Figures 7
and 8).
For the acrylic sample, the P- and S-waves were determined to be

the same in all directions (Figure 7, Table 2) as expected for an
isotropic sample. For the G10 phenolic sample, the P- and S-waves
were the same along the x- and y-directions (which are parallel to
the layering), but differed along the z-direction (which is perpen-
dicular to the layering), indicating a VTI sample (Figure 8). How-
ever, the S-wave propagating in the x-direction (see Figure 2 for
directions) acquired some energy from the y polarization, indicating
that the transducer was not purely polarized (middle S-wave of
Figure 8). This was also observed for waves propagating in the
y-direction and polarized in the x-direction.
A Morlet wavelet analysis was performed, only on the first

arrival, to calculate the group velocity (Pyrak-Nolte and Nolte,
1995; Nolte et al., 2000). The group velocities were obtained for
a frequency of 0.5 MHz and are listed in Tables 2 and 3. In the
Rayleigh-wave method, the phase and group velocities were equiv-
alent because all measurements were taken along symmetry axes.

RESULTS AND ANALYSIS

Wavefront imaging

In the acoustic WFI experiment, the group angle ϕ was equal to
zero at the central point of the wavefront when the receiver trans-
ducer was aligned with the source transducer (Figure 4). When
the receiver was translated horizontally N mm away from the center,
the transmitted signal corresponded to a nonzero group angle
ϕ ¼ tan−1ðN∕lÞ, where l is the length of the sample, in millimeters
(see Table 1).
From these measurements, the elastic stiffness constants Cij were

calculated using two relationships: the relationship between the
group and phase angle and the relationship between the group and
phase velocity (equation 4). VTI media (Figure 2a) have five inde-
pendent elastic stiffness components (C11; C33; C44; C66, and C13)

in contrast to an isotropic medium (Figure 2b) that has only two
independent elastic components (one corresponding to the body P-
wave (C11) and the other corresponding to the body S-wave (C66)
(Helbig, 1994; Bucur, 2006). The elastic stiffness tensor of a VTI
medium, with its unique axis aligned with the z-direction, can be
written in matrix form as

C ¼

0
BBBBBB@

C11 C11 − 2C66 C13 0 0 0

C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

1
CCCCCCA
:

(1)

The elastic stiffness tensor relates stress to strain

σij ¼ Cijklϵkl; (2)

where σ are the stresses and ϵ are the strains and summations are
suppressed (Mavko et al., 1998). For the subscripts in equations 1
and 2, the Voigt notation (e.g., 1232 ¼ 64) has been applied to
simplify the tensor notation into a 6 × 6 matrix. The subscripts

Figure 6. Rayleigh-wave method experimental setup. The circles
with arrows indicate the orientation of the S-wave transducers,
and the circles with P indicate the orientation of the P-wave trans-
ducers for measurements made on the phenolic G10 sample.

Table 3. Measured isotropic acrylic and anisotropic phenolic
G10 Rayleigh velocities. The first parenthesis is the
propagation direction, the second is the polarization, and the
third is the unit. All listed uncertainties are one standard
deviation from the measurements made in each direction at
different positions on the sample.

Parameter
Isotropic
acrylic

Anisotropic
phenolic G10

Rayleigh-wave wavelet
velocity (z) (x) (m∕s)

1257.6� 1.0 1435.0� 0.8

Rayleigh-wave wavelet
velocity (z) (y) (m∕s)

1263.6� 1.0 1435.0� 0.8

Table 2. Measured isotropic acrylic and anisotropic phenolic
G10 wavelet velocities, for a frequency of 0.5 MHz. The first
parenthesis is the propagation direction, the second is the
polarization, and the third is the unit.

Parameter
Isotropic
acrylic

Anisotropic
phenolic G10

P-wave velocity (x) (any) (m∕s) 2646.7� 0.8 3571.5� 0.8

P-wave velocity (y) (any) (m∕s) 2651.9� 1.0 3617.6� 0.8

P-wave velocity (z) (any) (m∕s) 2651.2� 0.8 2850.0� 0.8

S-wave velocity (x) (y) (m∕s) 1358.4� 0.5 1713.8� 1.0

S-wave velocity (x) (z) (m∕s) 1358.9� 0.5 1491.0� 0.4

S-wave velocity (y) (x) (m∕s) 1362.6� 0.5 1705.4� 0.9

S-wave velocity (y) (z) (m∕s) 1362.8� 0.5 1496.6� 0.4

S-wave velocity (z) (x) (m∕s) 1362.1� 0.5 1481.5� 0.4

S-wave velocity (z) (y) (m∕s) 1361.7� 0.5 1493.9� 0.4
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represent the propagation and polarization directions, where
i ¼ 1; 2; 3 represents the x-, y-, and z-directions, respectively.
In equation 1, C11, C33, C44, and C66 are the diagonal compo-

nents, which can be obtained directly by measuring body-wave
velocities along the coordinate axes and the density of the VTI sam-
ple (Bucur, 2006). The terms C11 and C33 depend on the density and
P-wave velocity, whereas C44 and C66 depend on the density and
S-wave velocity. The off-diagonal term C13 is affected by the wave

velocities of P- and S-waves, propagating at an angle other than 0°
or 90° with respect to the symmetry axis. Equation 3 gives the form
of the directionally dependent phase velocity as a function of phase
angle θ, in a VTI medium with no frequency dispersion and was
used to obtain C13 (Thomsen, 1986):

ρv2PðθÞ¼
1

2
½C33þC44þðC11−C33Þsin2θþDðθÞ�;

ρv2SVðθÞ¼
1

2
½C33þC44þðC11−C33Þsin2θ−DðθÞ�;

ρv2SHðθÞ¼C66sin
2θþC44cos

2θ;

DðθÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðC33−C44Þcos2θ−ðC11−C44Þsin2θ�2þðC13þC44Þ2sin2ð2θÞ

q
;

(3)

where ρ is the material density and θ is the phase angle. The terms
vSV and vSH refer to the S-wave phase velocity propagating with a
component in the unique direction (z-axis in Figure 2a) and with no
component in the unique direction, respectively. The off-diagonal
P- and SV-wave velocities (vP and vSV) depend on C13 through
the DðθÞ term.
It is important to again clarify the distinction between the phase

angle, θ, and the group angle, ϕ. The phase angle is measured be-
tween the symmetry axis and the wavefront-normal direction k,
whereas the group angle indicates the ray angle from the source to
the wavefront receiver location (Figure 1) (Thomsen, 1986; Helbig,
1994). In isotropic media (Figure 2b), where the wavefronts are
spherical, the group angle is always equal to the phase angle (i.e.,
ϕ ¼ θ); in anisotropic media (Figure 2a), where the wavefronts are
distorted or may be ellipsoidal in shape, the group angle does not
equal the phase angle, except along symmetry directions.
The relationships between the phase angle, θ, and group angle, ϕ,

in a VTI medium, as well as that between the phase velocity, v, and
group velocity, V 0, were derived by Thomsen (1986) as

tanðϕÞ ¼ ðv sin θ þ dv
dθ cos θÞ

ðv cos θ − dv
dθ sin θÞ ;

V 0ðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðθÞ þ

�
dv
dθ

�
2

s
: (4)

The difference between the phase and group angles are difficult
to separate in experimental measurements of the off-diagonal elastic
components (C13 in this case). Acoustic WFI techniques provide a
noninvasive way to address this issue. Using a combination of fo-
cused, water-coupled ultrasonic transducers and precise motion
steppers, the signals for waves propagated along different travel
paths through a VTI medium can be obtained (see Figures 3 and 4).
To calculate C13 in a VTI medium using a WFI method, the

following steps are required: (1) a transformation between the
phase angle, θ, and group angle, ϕ, using the value of C13 assumed
in equation 3; (2) using equation 3 to calculate the phase velocity, v,
corresponding to a specific phase angle, θ; (3) calculating the theo-
retical group velocity, V 0, using equation 4; and then (4) comparing
it to the experimentally measured group velocity, V, for verification.
Geometrically, group angles can be obtained as ϕ1 and ϕ2, shown

in Figure 4, and the traveltimes through different paths in the
sample can be obtained from a first-break analysis, or by applying
a Morlet wavelet-analysis (Pyrak-Nolte and Nolte, 1995; Nolte et al.,
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Figure 7. Signals transmitted through the acrylic sample from the
Rayleigh technique. The bulk P-, bulk S-, and Rayleigh waves are
all shown for reference. Measurements from all orthogonal direc-
tions yielded the same arrival times, within the uncertainties listed
in Tables 2 and 3. Note that the amplitudes have been normalized.
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2000) to the transmitted signals. Using the peak from the wavelet as
the traveltime, instead of the signal’s first-break point, when using
focused water-coupled transducers is verified in the following section
for the isotropic sample. As long as the distance between the source
focal point and the receiver focal point is known, group velocities that
correspond to a certain group angle can be calculated.
The WFI technique generates a data set from which experimental

group velocities as a function of group angles can be extracted. A
least-squares fit procedure was applied to compare the squared sum
of the difference between the experimental and theoretical group
velocities that were obtained by changing the C13 values (Figure 9)
in equations 1–4. The experimentally measured C13 value of the
VTI sample corresponds to the “best-fit” C13, which matches the
least-squares fit procedure.
Wavefronts from the acrylic sample and the phenolic G10 sample

using theWFI method are shown in Figure 10. The acrylic sample is
isotropic (i.e., no preferred direction), and the wavefront is observed
to be circular in shape (Figure 10a). Wavefronts were also recorded
for two orientations of the phenolic G10 sample relative to the
source: (1) wave propagation parallel to the layers (Figure 10b) and
(2) wave propagation normal to the layers (Figure 10c). The phe-
nolic G10 sample is a tight laminate with a unique direction (normal
to the layering), which is expected for a VTI media. The wavefronts
in Figure 10b from the phenolic G10 sample are elliptical because
the P-wave propagates faster parallel to the layers than perpen-
dicular to the layers. The wavefronts in Figure 10c are nearly cir-
cular, similar to an isotropic sample, because the waves propagated
along the sample’s unique axis and had nearly identical velocities in
the two directions parallel to the layering.
In this study, group time delays were obtained through a wavelet

transformation of the ultrasonic signals from the experimental mea-

surements (Pyrak-Nolte and Nolte, 1995; Nolte et al., 2000). Using
a wavelet transformation, the group arrival time of the maximum
amplitude at the dominant frequency was determined. The group
arrival time was then used to calculate the group velocity. For a
transmitted signal, the group time delay is always different from
the first-break/onset delay (Möllhoff et al., 2010). First break indi-
cates the first recorded transmitted signal attributed to the energy
generated by the source, and group delay refers to the delay of the
wave packet. In WFI, it was hypothesized that the group delay bet-
ter represented the travel path than the first-break delay for a trans-

Figure 9. Best fit of C13 to a theoretical curve based on the WFI
analysis. The solid lines represent theoretical curves, using different
C13 values, and the x symbols represent a possible data set. This
example shows our fitting approach. The sample data set is to dem-
onstrate the concept and does not correspond to the measured data
in this paper.

Figure 10. Two-dimensional snapshots (60 × 60 mm) of arriving wavefronts for (a) the acrylic sample, (b) the phenolic G10 sample when
waves were propagated parallel to the layering, and (c) the phenolic G10 sample when waves were propagated perpendicular to the layering.
The colors in the 2D snapshots represent the normalized amplitude of the signals: Dark colors correspond to high amplitude, and vice versa.
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mitted acoustic signal from the focal point of the source transducer
to the focal point of the receiver transducer. These group delays
were compared to the first-break delays and to the theoretical re-
quirements for group velocities to determine which method gave
the true group velocity.
For the acrylic sample, the first-break velocities were measured

by picking the onset time of the received signal (Figure 5a). Because
the acrylic sample is essentially isotropic (Table 2), the first-break
velocity should, theoretically, be independent of the group angle.
However, the first-break velocity was found to increase as the group
angle increased (circles in Figure 11). The contradiction between
the experimental results and theoretical prediction indicated that
picking the first-break points of the transmitted signals was not suit-
able to compute correctly the wave velocities. Figure 11 also shows
that the wavelet velocities (squares in Figure 11), obtained from
Morlet wavelet analysis, were independent of angle. Thus, the
wavelet velocity was used as the group velocity for the acoustic
WFI experiment.
The diagonal elastic constant components were calculated using

equation 3 (and the elastic constants listed in Table 4) and were used
to generate a curve to best fit the experimental data (solid line in
Figure 11). Using this technique, the value of the off-diagonal
term, C13, in the acrylic sample was measured to be 4.03�
0.05ð�1.2%Þ GPa.

The group velocity, V, in the phenolic G10 cube depends on the
group angle, ϕ. In a VTI medium, with no frequency dispersion,
when the group angle, ϕ, equals zero, the P-wave propagates
perpendicularly to the layers, which corresponds to the lowest
wave speed. However, when the receiver deviates from the center
(Figures 4 and 5), the group velocity increases as ϕ increases
(Figure 12). This again verified that the wavelet analysis correctly
measured the group velocity.
The procedure used to compute C13 in the acrylic sample was

then applied to the data from the phenolic G10 cube. The calculated
value of C13 in the phenolic G10 sample, using this method, was
8.0� 0.3ð3.8%Þ GPa.

Rayleigh-wave method

Equation 2 must be combined with the equation of motion for a
continuum to calculate the elastic constants from the Rayleigh-wave
method. The relationship between the elastic constants, Cijkl, and
phase velocity, v, for waves propagated in a particular direction are
summarized by the Christoffel equations (Bucur, 2006):

Γik ¼ Cijklnjnl; (5)

and

ðΓik − δikρv2ÞPm ¼ 0; (6)

where Γ represents the Christoffel tensor, ρ is the density, ni are the
direction cosines, δik is the Kronecker delta function, Pm is the com-
ponent of the unit vector in the displacement direction, and Cijkl are
the elastic constants. For a full derivation, see Bucur (2006).
These relationships can be written out, explicitly, for each term in

the elastic stiffness tensor (Cijkl) to determine their values based on
the phase velocity of the waves propagated in a particular direction.
For the C13 term, the full expression is

Figure 11. Theoretical best fit to C13 for data from the acrylic sam-
ple. Also shown are the first-break velocity and group velocity as a
function of group angle.

Table 4. Elastic constants calculated from the wavelet values
in Tables 1 and 2. The units are listed in the parenthesis.
Errors were calculated using standard error techniques (see
Appendix A).

Parameter Isotropic acrylic Anisotropic phenolic G10

C11 (GPa) 8.294� 0.009 24.703� 0.016

C33 (GPa) 8.322� 0.009 15.730� 0.0012

C55 (GPa) 2.186� 0.002 4.305� 0.003

Figure 12. A comparison of the best-fit theoretical group velocity
as a function of group angle and the experimentally measured group
velocity. Error bars show the range of values from repeated mea-
surements.
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v13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ρ

�
ðΓ11 þ Γ33Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΓ11 − Γ33Þ2 þ 4Γ2

13�
q �s

;

(7)

and for a 45° propagation direction with respect to the symmetric
axis, equation 7 can be expanded as

v13¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ρ

�
C55

2
þC33þC11

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðC33−C11Þ2þ4ðC13þC55Þ2�

p
4

�s
;

(8)

where v13 is the P-wave velocity propagated at 45° with respect to
the x − z-plane (quasi-P). Equation 8 can be easily manipulated to
obtain C13 as a function of the phase velocity. The difficulty, as
discussed in the “Introduction,” is in obtaining the correct phase
velocity at a known phase angle (e.g., 45° here).
To avoid the ambiguity in determining the correct cophasal sur-

face, this paper presents a method to determine the off-diagonal
stiffness value from the Rayleigh velocity measured on a sample
with no frequency dispersion. The benefits of using a Rayleigh
wave are as follows: only one sample is required, the same S-wave
transducer used on the bulk can be used to measure the surface
wave, and the propagation direction is aligned with one of the sym-
metry axes (and thus the phase and group velocities are equal)
removing any uncertainty as to which velocity is measured. The
relationship between the elastic constants of an orthotropic medium
and the Rayleigh-wave velocity has been recently obtained by Vinh
and Ogden (2004a). The Rayleigh velocity, Vray, in an orthotropic
medium is expressed as

Vray¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C55

ffiffiffi
α

p
σΔ

ρ

� ffiffiffi
α

p ðσΔþ2Þ
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffi
D

p3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R−

ffiffiffiffi
D

p3

q �−1s
; (9)

where

α ¼ C33

C11

; Δ ¼ 1 −
C2
13

C11C33

; σ ¼ C11

C55

;

a0 ¼ −
ffiffiffi
α

p ð1 − ΔÞ; a2 ¼
ffiffiffi
α

p ð1 − σΔÞ;

R ¼ −
1

54
ð2a32 þ 9a2 þ 27a0Þ;

D ¼ R2 þ
�
−
�
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 3

q �
2
�
3

; (10)

where Cij are the elastic constants (written in Voigt notation) and ρ
is the density. Recall that only four measurements must be made:
two P-waves along symmetry axes, one S-wave, and the Rayleigh
wave. From these four measurements, C11; C33; C55 and a value of
C13 can be easily determined from equations 6, 9, and 10.
The expression for the Rayleigh velocity (equation 9) was ob-

tained for general orthotropic (orthorhombic) symmetry and agrees
with the previously derived secular equation for the Rayleigh veloc-
ity found by Chadwick (1976). Vinh and Ogden (2004a) also veri-
fied that this result reverts to the isotropic equation when the correct
material parameters are used, indicating the usefulness of equation 9
for any symmetry classes from isotropic to orthotropic.

An important transformation for other material symmetries was
briefly mentioned by Vinh and Ogden (2004a), but the importance
needs to be further emphasized here. For symmetries in the trans-
versely isotropic domain, a substitution of variables depends on
the orientation of the symmetry axes (Chadwick, 1976). When
the material possesses higher symmetry than orthotropic, e.g.,
VTI, the symmetry of the problem increases allowing pure surface
modes to exist in all directions. Along the symmetry directions,
these surface modes should be identical and can be verified using
the positive definiteness of the strain energy (for a full description,
see Chadwick, 1976).
The measured Rayleigh- and bulk-wave velocities, for the iso-

tropic and anisotropic samples, were used to calculate values of
C11; C33, and C55 (see Table 4) using the aforementioned Rayleigh
velocity method. These values were then applied to equation 9 to
obtain the theoretical curves that relate C13 to the Rayleigh velocity
(Figures 13 and 14). From these theoretical curves, the values of
the Rayleigh velocity, measured on both samples (see Table 3), were
used to estimate the value of C13.
For the isotropic case, the value of C13ðC12Þ was found to be in

good agreement with the theoretical value for C13 in isotropic me-
dia, which can be derived from the following relation (Helbig, 1994;
Mavko et al., 1998; Bucur, 2006):

C13 ¼ C11 − 2C55: (11)

Using equation 11, the theoretical value for the isotropic acrylic sam-
ple is Ctheory

13 ¼ 3.92� 0.01ð�0.25%Þ GPa. This value is in agree-
ment with the estimated value from the Rayleigh velocity method,
using the curve in Figure 13 (C13 ¼ 4.06� 0.19ð�4.6%Þ GPa),
and the WFI method (4.03� 0.05ð�1.2%Þ GPa) as shown in
Table 5. The difference between the two experimental methods
was 0.03� 0.20 GPa, indicating a good agreement between the C13

values obtained by the two techniques; thus verifying the applicabil-
ity of the Rayleigh velocity method for isotropic media.

3
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Figure 13. Rayleigh velocity as a function of C13, from equation 9,
using the acrylic parameters in Tables 1–3. The error bars in the
theory were calculated using the elastic constant error bars in Table 4
(see Appendix A). The Rayleigh wave and WFI C13 results are
shown and indicate agreement.

Elastic constants in anisotropic media D357

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.2

11
.1

68
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



In the anisotropic phenolic G10 sample, the Rayleigh-wave tech-
nique (Figure 14) yields a value of C13 ¼ 7.7� 0.7ð�9%Þ GPa.
The value obtained using the WFI method is 8.0� 0.3

ð�3.8%Þ GPa. The absolute difference between these two values
is 0.3� 0.8 GPa, again indicating a good agreement. These results
are summarized in Table 5.

DISCUSSION

Wavefront imaging

Two experimental methods were used to determine C13 for an
isotropic and anisotropic medium with no frequency dispersion.
Both methods are based on measuring group velocities but differ
in the complexity of the experiments and analysis. However, the
WFI method and the Rayleigh-wave method yielded similar values
of C13 to within 0.3� 0.8 GPa for an anisotropic medium.
The WFI approach uses the relationship between the phase and

group angles, as well as the phase and group velocity in a trans-
versely isotropic media, to determine the off-diagonal elastic
component. From the experimental results presented here for the

acrylic and phenolic G10 samples, the WFI technique produced
smaller uncertainties when compared with the Rayleigh-wave
method, and it was highly repeatable. Some advantages of using
this method include: the ability to image surfaces that are not
smooth and having a full view of the wavefront surface throughout
the sample.
There are major disadvantages to using the WFI method, includ-

ing the measurement time, theoretical analysis, and sealing of
the sample. Typical measurements are >0.5 hours, whereas the
Rayleigh-wave method requires <1 minute. Analysis of the WFI
method requires careful consideration of the subtle differences in
group and phase angles, as discussed above. In addition, the WFI
method only applies for symmetries up to VTI symmetry, whereas
the theory for the Rayleigh-wave method exists up to orthorhombic
symmetry. The sample must be waterproofed (i.e., sealed) to be sub-
merged in water, and the size of the sample must be small enough to
fit in the experimental setup, but not so small that reflections from
the edges are measured. All of these disadvantages are circum-
vented using the Rayleigh-wave method.

Uncertainty in the Rayleigh-wave method

For the Rayleigh-wave method, the experimental uncertainties
arose from the sample size, point-to-point variations, traveltime,
and calculated velocity from the wavelet; therefore, uncertainties
in the diagonal elastic constants were all from inherent experimental
uncertainties in the setup and design.
The sample size is within the machining tolerances usually

expected for samples (i.e., 25 μm tolerances). The measurement
time was limited by the sampling rate of the USB 5133 NI digitizer.
The sampling rate for this experiment was set to 100MSteps∕s for
10,000 steps. This leaves each bin with a sampling size of 0.01 μs.
The obtained waveforms were analyzed using Morlet wavelets with
8192 increments over the 10,000 steps. This left the calculated
wavelet time step at 0.012 μs∕step, which is twice the time uncer-
tainty in the experiment.
Applying these uncertainties in time and distance yields an

uncertainty in velocity, purely from experimental limitations, on the
order of �0.8 m∕s for P-waves and �0.4 m∕s for S- and Rayleigh
waves in the isotropic and anisotropic samples measured in this
study. These uncertainties are small (i.e., ∼0.1%) and are of the
same order as the standard deviation from repeated measurements
at the same position. The larger of the two values is listed in
Tables 2 and 3.
These velocity uncertainties were used to calculate the uncertain-

ties in the elastic constants (Appendix A and Table 4), which were
again small (i.e., ∼0.03%). The uncertainties were then used to
calculate an uncertainty in the estimated Rayleigh velocity from
equation 9 (see Appendix A). Normal error propagation techniques
were used to calculate these uncertainties (Taylor, 1997). The
results are shown as the error bars in the Rayleigh velocity plots
in Figures 13 and 14.

Applications to rock

Material parameters from the literature were analyzed to deter-
mine if the Rayleigh-wave method would apply to rock. Elastic
constants from the literature (Musgrave, 1970; Thomsen, 1986;
Christensen, 1989; Martinez and Schmitt, 2013) were used in the
Rayleigh-wave method (equations 6–10) to determine a possible

Table 5. The C13 values, fit from the theoretical curves in
Figures 12 and 13, using the Rayleigh-wave technique, and
measured using the WFI technique. The difference indicates
that these two measurements are in agreement, where a
value of 0 indicates perfect agreement.

Parameter
Isotropic
acrylic

Anisotropic
phenolic G10

C13 (GPa) Rayleigh method 4.06� 0.19 7.7� 0.7

C13 (GPa) WFI method 4.03� 0.05 8.0� 0.3

Absolute difference |Rayleigh – WFI| 0.03� 0.20 0.3� 0.8
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Figure 14. Rayleigh velocity as a function of C13 from equation 9
using the phenolic G10 parameters in Tables 1–3. The error bars in
the theory were calculated using the elastic constant error bars in
Table 4 (see Appendix A). The Rayleigh-wave and WFI C13 results
are shown.
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Rayleigh-wave velocity based on the measured elastic constants.
Theoretical curves using these material properties are shown for
three common materials (shale, dolomite, and sandstone) in Fig-
ure 15. The circles in Figure 15 represent the experimentally mea-
sured values for these three samples from the literature. For all three
samples, the theoretical curves reach an asymptote at low C13 val-
ues. If the measured Rayleigh velocity falls within 1% of the asymp-
totic value, the estimated C13 has an uncertainty too great to have
any physical significance. If the measured value is below 1% of this
asymptotic line, then the uncertainty in the measurement is accept-
able, and the method can be applied.
To determine whether the Rayleigh-wave method could be ap-

plied to the materials in the literature, the Rayleigh-wave velocity
was normalized by the maximum, such that a percentage of the
maximum theoretical Rayleigh-wave velocity could be determined
as a function of C13 for the materials under study. The results are
shown in Figure 16 for different types of rock and natural materials.
The resulting Rayleigh-wave velocities from the literature analy-

sis (Figure 16) indicate that for some samples this technique would
apply well (points below the dashed line in Figure 16) and for others
it would not (points above the dashed line in Figure 16). In order for
this technique to apply, the Rayleigh-wave velocity percentage of
the max must be below 0.99 in Figure 16, such that if the Rayleigh
velocity were measured with 1% uncertainty, the value of C13 from
the theory would fall below the asymptotic values, as shown in
Figure 15, for low C13 values.
The materials listed by Thomsen (1986) were given as a function

of pressure and were used to explore the relationship between the
theoretical Rayleigh-wave velocity percentage and applied pressure.
The results are shown in Figure 17, and they demonstrate that an
increase in pressure resulted in an increase in the Rayleigh-wave
velocity percentage, indicating that the samples may have contained
microcracks or other stress-sensitive structures. The data indicated
that as the pressure was increased, the velocities changed such that
the Rayleigh velocity, based upon the measured S-wave velocity

and elastic constants, increased with the pressure (Figure 17). Thus,
at high pressures, the Rayleigh-wave technique would yield C13

values with large uncertainties. In addition, the presence of micro-
cracks and fractures can result in frequency dispersion that would
cause the group and phase velocity to differ even along the sym-
metry axes. Additional research is needed to examine the role of
crack-induced frequency dispersion on the laboratory Rayleigh-
wave method.
Laboratory measurements of the Rayleigh wave and bulk waves

can be performed under pressure on cubic or core samples, but to
the authors’ best knowledge, this has not be done for this technique.
For core samples, the length of the core needs to be sufficiently long
to have a measurable difference in arrival time between the Rayleigh
wave and the bulk S-wave. A rule of thumb, for a core length, l,
based on the period, T, is

l ≥ ðTFÞ
�

VshearVRayleigh

Vshear − VRayleigh

�
; (12)

where F is a factor of separation between the wave packet of the
Rayleigh wave and bulk S-wave, VRayleigh is the Rayleigh velocity
and Vshear is the S-wave velocity. As an example, F ¼ 1 means that
the wave packets are completely separated, F ¼ 0 means that the
wave packets occur simultaneously in time, and are indistinguish-
able, and F ¼ 0.5 means that the Rayleigh wave begins exactly
halfway through the wave packet of the bulk S-wave.
Although the two wave speeds only need to be separated by a

small amount (e.g., 1%), it is best if the two wave packets are at
least separated by 50%, resulting in a value of F ¼ 0.5 for the core.
For the isotropic sample velocities, at a frequency of 0.5 MHz, the
resulting core length from equation 12 would be l ≥ 0.017 m. The
sample used was 0.099 m; the wave packets were well separated.
Similarly for the phenolic G10 sample (along the z-direction), using
a value of F ¼ 0.5, equation 12 would yield a core length of
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Figure 15. Comparison of the predicted Rayleigh-wave velocities
for three rocks from the literature to theoretical curves of the
Rayleigh velocity as a function of C13. The circles represent the
theoretical value of the Rayleigh velocity for the measured values
of C13 from Thomsen (1986) and Martinez and Schmitt (2013).
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measured C13 for rocks from the literature (Musgrave, 1970; Thom-
sen, 1986; Christensen, 1989; Martinez and Schmitt, 2013). The
dashed line represents the value above which this method would
yield large uncertainties.
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l ≥ 0.046 m, again much smaller than the sample size used
here (0.101 m).

CONCLUSIONS

The elastic constants of rock are often needed to simulate and
understand wave propagation data from the Earth’s subsurface
and to obtain other rock properties of interest. The number of elastic
constants required depends on the degree of symmetry in a rock.
The Rayleigh-wave method for determining the off-diagonal elastic
constant was demonstrated on laboratory samples with VTI. Esti-
mates of C13 from measurements made with the Rayleigh method
were within the uncertainties of C13 determined from the more time
and computationally intensive WFI method. The benefits of using
the Rayleigh-wave technique for determining the off-diagonal elas-
tic constants of a VTI medium are (1) only one sample is needed,
(2) only two contact transducers (P- and S-) are required, (3) the
analysis technique does not require complicated calculations of
wavefronts or angles, (4) only four measurements are required
(three bulk waves and one surface wave, all along symmetry axes)
to obtain an estimate of C13, and (5) the method can be applied to
symmetries from isotropic to orthotropic media. Although cubic
samples were used in this study, the Rayleigh-wave technique
can be adapted for use on cylindrical cores. The technique can
easily be performed on samples under uniaxial, biaxial, and true
triaxial loading conditions. However, additional theoretical and ex-
perimental research is needed to adapt the Rayleigh-wave technique
for testing in pressure vessels and to determine the effect of fre-
quency dispersion from cracks on the interpretation.
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APPENDIX A

UNCERTAINTY CALCULATION

This appendix discusses the calculation of uncertainty in the
experimental Rayleigh-wave method measurements. When two val-
ues (x and y), each with an uncertainty (δx and δy), are added or
subtracted, the uncertainty of the result is calculated from (Taylor,
1997)

q ¼ ðx� δxÞ � ðy� δyÞ; δq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδxÞ2 þ ðδyÞ2

q
: (A-1)

Similarly, the uncertainty of a product or quotient of these two
values (x and y) is calculated from

q ¼ ðx� δxÞðy� δyÞ; or q ¼ x� δx
y� δy

δq ¼ jqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δx
x

�
2

þ
�
δy
y

�
2

s
; (A-2)

and for values raised to the power n, the uncertainty is calculated by

q ¼ ðx� δxÞn δq ¼ jqjjnj δxjxj : (A-3)

Using the identities in equations A-1, A-2, and A-3 applied to the
measurements of the variables in equation 10, the uncertainty is cal-
culated from

δα¼jαj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δC33

C33

�
2

þ
�
δC11

C11

�
2

s
;

δΔ¼
���� C2

13

C11C33

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δC33

C33

�
2

þ
�
δC11
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�
2

s
;

δσ¼jσj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δC55

C55

�
2

þ
�
δC11

C11

�
2

s
;

δa0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
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The above results were used to calculate the uncertainty in the
Rayleigh velocity as
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Figure 17. Theoretical Rayleigh velocity, as a percentage of the
maximum theoretical Rayleigh velocity, shown as a function of
the applied pressure. The data in this figure are from Thomsen
(1986).
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δVRayleigh ¼
1

2
jVRayleighj

×
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(A-5)

where
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(A-6)
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3
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D

p
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�
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jR −
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D

p j : (A-9)

The uncertainty in the Rayleigh velocity (equation A-5) is used to
obtain the range of uncertainty in the estimated C13 value in
this study.
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