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Fractures: Finite-size Scaling and Multifractals

L. J. PYRAK-NOLTE,' L. R. MYER,? and D. D. NOLTE®

Abstract — The distributions of contact area and void space in single fractures in granite rock have
been determined experimentally by making metal casts of the void spaces between the fracture surfaces
under normal loads. The resulting metal casts on 52 cm diameter core samples show a complex geometry
for the flow paths through the fracture. This geometry is analyzed using finite-size scaling. The spanning
probabilities and percolation probabilities of the metal casts are calculted as functions of observation
scale. Under the highest stresses of 33 MPa and 85 MPa there is a significant size-dependence of the
geometric flow properties for observation scales smaller than 2 mm. Based on this data, the macroscopic
percolation properties of the extended fracture can be well represented by relatively small core samples,
even under normal stresses larger than 33 MPa. The metal casts also have rich multifractal structure that
changes with changing stress.

Key words: Fractures, fractals, mullifractals, scaling, percolation, geohydrology, rock mechanics,
permeability.

1. Introduction

A major practical obstacle in studying fluid flow through geologic formations is
the problem of relating laboratory measurements to behavior observed in the field.
Laboratory measurements are performed on relatively small specimens with sizes
from millimeters to many centimeters. Fluid flow through geologic formations, on
the other hand, may occur over tens to thousands of meters. Do the laboratory
measurements relate to the macroscopic behavior observed in the field, or do
different mechanisms dominate on different scales? Can hydraulic measurements
performed in the laboratory on core samples be used to qualitatively predict
behavior in situ?

These are questions of scale effects and size dependence of fluid flow through
fractures. Fractures in geologic formations are often the main conduits along which
fluids move through a rock mass. Relatively few investigators have examined the
effect of the scale of observation on fluid flow through fractures. Experimental
evidence (WITHERSPOON et al., 1979; RAVEN and GALE, 1985) shows opposing
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trends with hydraulic conductivity increasing or decreasing with increasing sample
size. From a numerical investigation, NEuzIiL and TRACEY (1981) concluded that
smaller specimens will have smaller values of conductivity than larger specimens
under the same stress because fewer large flow channels exist. From a theoretical
study of the effect of sample size on the hydraulic and deformation properties of a
single fracture, TSANG and WITHERSPOON (1983) determined that large-scale
roughness of the fracture controls the hydraulic and mechanical properties of the
fracture. They concluded that if the rock specimen is smaller than the characteristic
roughness scale then the fluid flow measurements made on the specimen will not be
representative of the large fracture behavior.

The study of scale effects is an integral part of percolation theory and in
particular the study of finite-size scaling in percolation systems (STAUFFER, 1985).
The flow paths in a fracture represent a complex geometric structure with local
connections and long-range conductivity or permeability. The geometric properties
of the flow paths (including the size dependence) are closely related to the hydraulic
properties. The problem of analyzing such complicated geometric structures is a
standard component of percolation theory. Percolation systems show critical behav-
ior. Below a critical density (the percolation threshold) the pattern is not connected
and no flow occurs. Critical systems are well-known to obey scaling laws, especially
when the system is close to the critical threshold (STANLEY, 1971). In particular, the
probability that a connected path exists across the pattern is a function of the
sample size. The size dependence of this spanning probability can be used to
identify the scaling behavior of the hydraulic properties of the system as the sample
size is increased from laboratory scales to field scales.

The void space geometry in a fracture is not immediately identifiable with
standard percolation models. The void spaces in a fracture are strongly heteroge-
neous and correlated. The void geometry of a fracture will be influenced by the
roughness of the individual surfaces and by the correlations between the surfaces
(SwaN, 1983; BROWN er al., 1986). A natural choice for studying the scale effects
on fluid flow through fractures is to use fractal analysis to study the size effects on
fracture void geometry. BROWN and SCHOLZ (1985) measured surface roughness of
several fractures and determined that surface roughness was scale independent and
fractal within a certain range of sizes. Fracture geometries may not be describable
in terms of a single fractal dimension. Different subsets of the fracture geometry
may have different fractal dimensions. This property is called multiscaling, in which
different components of the structure scale differently with size. Such structures are
called multifractal. Multifractals often arise under conditions of random multiplica-
tive processes (REDNER, 1990), such as cascades, or successive sequences of rupture
or erosion. Therefore the multifractal properties of fracture geometries may be
related to the processes and conditions under which the fracture formed.

In this paper, we discuss the importance of considering the size-dependence of
geometrical properties (such as the spanning probability) for the void spaces within
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a fracture. The experimental apparatus for obtaining metal casts of the fracture is
described in Section 2. In Section 3 we use finite-size scaling theory to determine the
percolation properties of the experimental data to study the scale effects on
percolation through fractures. This analysis yields results on the scale effects of fluid
flow through fractures. We perform multifractal analysis of the contact areas in the
single natural fractures in Section 4.

2. Experimental Data

A metal injection technique was used to determine contact area of two natural
fractures (denoted as E30 and E32) in quartz monzonite (Stripa granite), as a
function of stress. The specimens measured 52 mm in diameter by 77 mm in height
and cach contained a single natural fracture orthogonal to the long axis of the core.
Measurements of void space geometry were made for effective stresses of 3 MPa,
33 MPa, and 85 MPa. The metal used to fill the fracture void spaces is one of a
family of bismuth-lead-tin alloys of which Wood’s metal is the most commonly
recognized. In the liquid phase these metals are nonwetting with an effective
surface tension of 0.282 N/m (YADAV et al., 1984). The nominal composition of
the particular metal used was 0.42 Bi, 0.38 Pb, 0.11 Sn, and 0.08 Cd. The alloy
[Cerrosafe™] used in these experiments has a melting point of 160" to 190°F, a
Young’s modulus of 9.7 GPa, and a density of 9.4 g/cm®. This Wood’s metal
injection technique is similar to mercury porosimetry methods, but has the advan-
tage of yielding metal casts of the void space for the same fracture under different
stress. These casts can then be studied in detail. Wood’s metal injection techniques
have been used by other investigators (DULLIEN, 1981; SWANSON, 1979; YADAV et
al.; 1984; PYRAK-NOLTE ef al, 1987; ZHENG, 1989; PYRAK-NOLTE, 1991) to study
pores, cracks and fractures in rock.

Figure 1 is a diagram of the experimental set-up. The specimen is held in a
triaxial test vessel in the frame of a test machine and an axial load is applied normal
to the fracture surface. The vessel is maintained at a temperature just above the
melting point of the alloy. To perform an injection test, the vessel is evacuated and
molten metal is pumped into the test vessel until the desired pore pressure is
obtained. The uniaxial load and the pore pressure are maintained while the metal
is allowed to solidify. When the specimen is removed [rom the vessel, the two halves
of the specimen are separated to examine the metal casts of the void spaces
corresponding to the effective stress of the test.

The distribution of the metal on the two fracture surfaces was examined using
a scanning electron microscope (SEM). Because some casts of the void spaces
adhere to one surface and some to the other, composite SEM micrographs were
made to determine contact arca and void space distribution. The composite
micrographs were formed by superimposing images of each surface for the same
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Figure 1
Experimental apparatus to obtain the contact areas in the fractured core samples.

location. Figure 2 contains micrographs for specimens E30 showing the distributed
contact area for effective stresses of 3 MPa, 33 MPa, and 85 MPa. The results for
specimen E32 are shown in Figure 3. The white regions represent contact area while
the black regions represent where the metal penetrated.

In order to perform the percolation and multifractal analysis of the experimen-
tal data, the SEM micrographs were digitized using a Macintosh Applescanner. The
micrographs were scanned at a resolution of 200 dots/inch using Appelscan soft-
ware version 1.02. The files were saved as tagged information formatted files
(TTFF). The TIFF files were exported into PostScript format, the line breaks were
removed from the files and the files were saved as text. The data files were read
using a program written in PASCAL. Output from this consisted of a 300 x 300
binary array representing the black and white portions of the micrographs. The
analysis was performed for several different regions of cach micrograph.

3. Finite-size Scaling

A fundamental aspect of percolating systems is the dependence of the percola-
tion properties on the size of the system. Percolation theory is a formalism which
treats the probability that a random system can support flow from one side to the
other. Percolation probabilitics are defined as functions of the pattern occupancy,
p. The occupancy, p, is the fraction of the pattern that can be occupied by a fluid,
for example the void spaces between the surfaces of a fracture. A central feature of
percolation theory is the critical threshold, p,. When the occupancy is smaller than
p. (that is, p —p_<0) then connected paths across the pattern are unlikely to
occur. For occupancies p —p, >0 a connected path is likely to exist, and the
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Experimental micrographs of the contact areas in two fractures in quartz monzonite granite from Stripa, Sweden for varying stresses. Specimen E30 was
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Figure 3
Specimen E32 was subjected to different stresses corresponding to (a) E32 at 3 MPa, (b) E32 at 33 MPa
and (c¢) E32 at 85 MPa.
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pattern is said to percolate. It is convenient for this article to define three different
percolation probabilities: R, P, and X. The probability R is the spanning probabil-
ity. This is the probability that a connected path exists across the fracture. The
probability P is the strength of the percolating cluster. This is the probability that
a site chosen at random belongs to the percolating cluster. The strength of the
percolating cluster is analogous to the order parameter in thermodynamic phase
transitions ( STAUFFER, 1985). Finally, the conductivity X is related to the electrical
conductivity of the pattern.

These three percolation probabilities R, P, and X vary as functions of (p — p,).
For systems that are infinitely large, i.e., the system size L — oo, these probabilities
vary as
UG P

L (B p,) =D

Pec(p—p.Y ()

Zoc(p—p)~

R

The exponents # and u are called critical exponents. In two dimensions it can be
shown that (see STAUFFER, 1985) they have the values

B =5/36=0.14
(2)

My,
Another important parameter in randomly connected systems is the correlation
length ¢. For our rock specimens above threshold, the correlation length is
approximately equal to the average size of the contact areas. Near the percolation
threshold the correlation length varies as

Coc(p—p)~' (3)
where v = 4/3 is the correlation length exponent. From equation (3) it is seen that
in the limit as p — p, the correlation length diverges.

In practice, it is not possible to work with infinitely large systems. Any
experimental random pattern must be a sample of a finite-size. The expressions in
equation (1) are only valid for systems whose linear size L is much greater than the
correlation length L » &. If the correlation length becomes larger than the core
specimen size, then effects of changing specimen size will be important and it
becomes necessary to understand how the percolation properties vary with sample
size. Specifically with respect to fluid flow through single fractures, one would like
to be able to take a relatively small core sample of a fracture and predict what the
macroscopic percolation properties of the fracture would be across meters or more.

Finite-size scaling is an intrinsic part of percolation theory because real percola-
tion systems are finite. The concepts of finite-size scaling fall collectively under the
title of renormalization (PFEUTY et al., 1975; WiLsON, 1975, 1979). Renormaliza-
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Figure 3
Specimen E32 was subjected to different stresses corresponding to (a) E32 at 3 MPa, (b) E32 at 33 MPa
and (c) E32 at 85 MPa.
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pattern is said to percolate. It is convenient for this article to define three different
percolation probabilities: R, P, and X. The probability R is the spanning probabil-
ity. This is the probability that a connected path exists across the fracture. The
probability P is the strength of the percolating cluster. This is the probability that
a site chosen at random belongs to the percolating cluster. The strength of the
percolating cluster is analogous to the order parameter in thermodynamic phase
transitions (STAUFFER, 1985). Finally, the conductivity Z is related to the electrical
conductivity of the pattern.

These three percolation probabilities R, P, and X vary as functions of (p — p_).
For systems that are infinitely large, i.e., the system size L — oo, these probabilities
vary as
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The exponents f# and p are called critical exponents. In two dimensions it can be
shown that (see STAUFFER, 1985) they have the values

Another important parameter in randomly connected systems is the correlation
length ¢. For our rock specimens above threshold, the correlation length is
approximately equal to the average size of the contact areas. Near the percolation
threshold the correlation length varies as

coc{p—p.J-* (3)

where v = 4/3 is the correlation length exponent. From equation (3) it is seen that
in the limit as p — p, the correlation length diverges.

In practice, it is not possible to work with infinitely large systems. Any
experimental random pattern must be a sample of a finite-size. The expressions in
cquation (1) are only valid for systems whose linear size L is much greater than the
correlation length L » &, If the correlation length becomes larger than the core
specimen size, then effects of changing specimen size will be important and it
becomes necessary to understand how the percolation properties vary with sample
size. Specifically with respect to fluid flow through single fractures, one would like
to be able to take a relatively small core sample of a fracture and predict what the
macroscopic percolation properties of the fracture would be across meters or more.

Finite-size scaling is an intrinsic part of percolation theory because real percola-
tion systems are finite. The concepts of finite-size scaling fall collectively under the
title of renormalization (PFEUTY et al., 1975; WILSON, 1975, 1979), Renormaliza-



688 L. J. Pyrak-Nolte et al. PAGEOPH,

tion group theory was developed to study phase transitions and critical phenomena
(WILsON, 1974). At the heart of renormalization is the scaling hypothesis. This
states that a critical probability P that depends on the variables (p — p,, L) has the
scaling form

P=L"“Fl(p—p.)L"] (4)

close to the critical threshold. Equation (4) is a general scaling hypothesis. For
specific systems, such as two-dimensional percolation systems, the exponents A4 and
B differ for the different critical probabilities. The finite-size scaling (L = &) proba-
bilities analogous to those of the infinite system are

R=HI(p —p)L""]
P=L"""G[(p—p)L"] (5)
X =L F[(p —po)L"]

where H((p —p)LY™), G((p —p L") and F((p — p,)L'") are scaling functions
that can be obtained from numerical computation.

The scaling functions in equation (5) remain finite when (p — p.) = 0. Thus, at
the threshold the relationship between sample size and the scaling probabilities
becomes simply

R = const
BleaiDiEtiy (6)
e D

The constant value for the spanning probability R is called the renormalization
fixed point. The spanning probability at the threshold is scale invariant. This also
means that the pattern is scale invariant, or fractal, as & — oo. The cluster strength
P and the conductivity £ both decrease with increasing sample size.

The decrease of the percolation probability and conductivity with increasing size
is a general property that applies as well when p # p.. This is the case for systems
both above and below threshold. For systems far above the threshold, the probabil-
ity P =1. In contrast, the spanning probability R increases with increasing L for
(p — p.) >0 (above the threshold), but decreases with increasing L for (p —p,) <0
(below the threshold). These properties are illustrated in Figure 4 for Stratified
Continuum percolation (NOLTE and PYRAK-NOLTE, 1991) which is an ideal
correlated percolation system. The figure shows that the finite sample size smears
out the sharp percolation threshold, allowing a finite percolation probability for
p = p.. Note that for p > p,, the percolation probabilities do not vary appreciably
with sample size. Though shown here only for purposes of illustration, the Stratified
Continuum percolation model also shares many of the properties of the experimen-
tal system shown in Figures 2 and 3.
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Figure 4
Spanning probability (a) and percolation probability (b) for the stratified percolation model with three
tiers as functions of the area fraction. The fixed point in the spanning probability occurs at the threshold
A, =035

By analyzing the experimental micrographs of Figures 2 and 3 using the ideas of
finite-size scaling, an understanding of the percolation properties of the macro-
scopic parent fractures can be gained. In addition, the proximity of the patterns to
the threshold can be evaluated. This analysis requires the determination of the
occupancy, p, in the figures which is equivalent to the fractional area A covered by
void space. It is important to note that measuring area fractions of a two-dimen-
sional fractal structure is not well-defined. An accurate value for the area can only
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be obtained if the measurement is performed on an image which has a resolution
that is smaller than the lower cut-off scale of the pattern. For the micrographs in
Figures 2 and 3, the resolution size is approximately 10 microns. For our analysis,
we therefore assume that L_;, > 10 microns. This assumption cannot be rigorously
justified, which may introduce systematic error in the measured value of the area
fraction covered by the metal casts of the voids. However, the metal casts consist
of a finite volume of injected Wood’s metal. The largest fraction of the volume is
contained in the largest void areas, with successively smaller fractions contained in
the smaller void clusters. Therefore, the resolution of the micrographs are ex-
pected to provide an accurate estimate of the occupied area fraction.

We have found P(L) and R(L) as functions of the fraction p occupied by the
metal cast and of the size L of the sample regions. Determining the electrical
conductivity Z(L) is beyond the scope of this article. The micrographs have sizes
of approximately 4 mm x 2mm. To evaluate a size dependence, successively
smaller regions of the figures were examined. We chose square cell sizes L of
approximately 2 mm, 1 mm, 0.67 mm, and 0.33 mm. The total fractional void area
of Figures 2 and 3 ranges from a minimum of 62% to a maximum of 95%.

To find the probabilities P(L) and R(L) the digitized sample image is read into
a 300 x 300 array. This array defines a site percolation problem. Pixels that are
black are available; pixels that are white are unavailable. Flow can only occur
between two adjacent pixels (not diagonal). A square cell of side L is said to
percolate if a connected path of available sites spans the cell from one side to the
opposite side. We check for this connected path for each cell using a cluster
numbering algorithm (HosHEN and KOPELMAN, 1976). The tabulation of the
number of cells that are spanned yields the spanning probability R(L) for the cell
size. Once the spanning cluster is identified, the total number of pixels that belong
to that cluster is counted to find the strength of the percolating cluster P(L) for
that cell size. This probability is expressed as the fraction of pixels that belong to
the spanning cluster. The probabilities are obtained from

Y
2, d (L)
A bRl 7
P(L) e (N
B2
_EJ g, (L)
R(L) =5 (8)
where the scale factor b =1, 2, 3, 6. For our patterns, the observation lengths are

approximately L =2mm, 1 mm, 0.67 mm, and 0.33 mm. The value of d, (L) is
equal to the fraction of sites that belong to the spanning cluster of the ith cell of
size L. The variable g;(L) =1 if the ith cell percolates, and g,(L) =0 if it does
not.
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The probabilities for the micrographs in Figures 2 and 3 are shown in Figures
5 and 6 as functions of cell size. The high-stress micrographs show variations as the
cell size is changed from 0.67 mm to 2 mm. The low-stress micrographs, on the
other hand, have relatively weak size dependence. For the spanning probability, the
probabilities increase with increasing cell size. It becomes more likely that the cell
will contain the infinite cluster as its size increases. The strength of the percolating
cluster, on the other hand, decreases with increasing cell size. Some clusters that
span a small cell do not belong to the infinite cluster, and these clusters will not be
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included in the strength of the infinite cluster in the larger cell sizes. Both of these
trends are consistent with the occupied void volume above the percolation
threshold.

An important feature of the data in Figures 5 and 6 is the value at large cell
sizes. From the earlier discussion of finite-size effects, it was shown that a finite size
influences the percolation probabilities only for L < &. For L » £, the pmbhbi]ity is
equal to the average over the cell. The percolation probability for sample E30 at
high stress shows asymptotic behavior, indicating that the fracture is relatively close
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to the percolation threshold. The data for the micrographs of sample E32, on the
other hand, show no significant size dependence, implying that L > . These
conclusions from the percolation strength are corroborated by the spanning proba-
bility. For both E30 and E32, R =1 for L =2 mm, indicating that ¢ <2 mm in all
cases. This result has significant implications for predicting flow properties of the
macroscopic parent fractures. The size of the core samples is larger than ¢ for all
cases considered here. The two-dimensional conductivity Z (related to the perme-
ability) measured for the core sample should therefore be equal to the conductivity
of the macroscopic fracture, with no further scale dependence. Because this holds
even for the highest stress, this suggests that relatively small core samples are valid
probes of the overall percolation properties of the extended fractures, at least for
these fractures in quartz monzonite.

The high stress of 85 MPa is not yet high enough to reach the percolation
threshold. Flow can therefore be expected through the extended fracture even for
these large stresses. However, fractures in more compliant rock may reach the
percolation threshold for lower stresses. In this case the correlation length { may
become quite large and small core samples may no longer give a valid measure of
the hydraulic properties of the original fracture. The key to predictions of scale
effects is the percolation threshold p,, given by the area fraction of the void spaces
for which the fracture just supports flow. The percolation strength and spanning
probabilities are given in Figure 7 as functions of area fraction. The smallest area
fraction is 62% for sample E30 at 85 MPa. This sample is above the critical
threshold and we can conclude that p. < 62%. It is not possible to extrapolate A,
from the data. We know that E30 at 85 MPa is close to threshold, but we cannot
accurately find the threshold itself. However, by modelling the void space geometry
with the Stratified Continuum percolation construction (NOLTE and PYRAK-
NOLTE, 1991) it is possible to make a quantitative estimate of p,.

The percolation strength and spanning probabilities for Stratified percolation
are shown in Figure 4 as functions of area fraction for sample sizes L = 1, IS
1/6. The probabilities were obtained by making 300 stratified percolation simula-
tions for each area fraction. The relative sample sizes were identical to those used
for the data in Figures 5 and 6. The simulations used three tiers with a scale factor
of b =4.27. The critical threshold in these simulations is p, = 0.5. Above threshold
the simulations agree quantitatively with the behavior of the data in Figures 5 and
6. The agreement between the data and simulations is independent of the experi-
mental fracture specimen E30 or E32. This indicates that the area fraction is a
general property that can be used to establish the percolation properties of a
fracture. Accepting p, = 0.5 as the percolation threshold for the data, the explicit
dependence of the correlation length can be determined from the data. For sample
E30 subjected to a stress of 85 MPa, the occupied area is p =0.62, and the
measured correlation length is approximately ¢ ~ 1 mm. Substituting for £, p, and
p. in cquation (3) allows us to find the proportionality constant between ¢ and



694 L. J. Pyrak-Nolte et al. PAGEQOPH,

14 '

1.0 o oo
2
%, Cell Size
€ 08} o (112 3
E .33 mm
8 —e— 0.67 mm
(0]
T —=— 1.0 mm 4
a) —— 2.0 mm
0.6 . 1 I L "
0.6 0.7 0.8 0.9 1.0
Void Space Area Fraction
1.0
z
| o09¢f 1
o
e
L g
i : Cell Size
] |
3 08 | . —e— 0.33 mm |
= [ —e—0.87 mm
e | —=1.0mm |
b) '[ —o— 2.0 mm
e ! et Ly !
0.6 0.7 0.8 0.9 1.0

Void Space Area Fraction

Figure 7
Spanning probability (a) and percolation probability (b) for all six micrographs as functions of the area
fraction covered by the void spaces. Deviations for finite sizes occur only at the highest stress of 85 MPa
for sample E30.

(p —p.) " This yields the explicit relationship
E=64x10 *(p—-05""m (9)

for the correlation length for these fracture specimens. It is important to note that
the correlation exponent v = 4/3 provides only a relatively weak dependence of the
correlation length on the occupied area. Even for p — p. = 0.02, which would occur
only under extreme pressures, the correlation length would only be 1 cm. Therefore,
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the hydraulic properties of the parent fractures are expected to be well represented
by the properties measured on the small core samples.

4. Multifractal Fracture Voids

An important advance in the understanding of complex fractal structures was
made with the recognition that some scaling patterns could be described as unions
of multiple fractal sets, or multifractals. Multifractal patterns are quite common,
arising naturally in patterns that have varying densities. For example, ore bodies
are characterized by the grade of ore. If one considers the distribution of all ore
bodies, independent of grade, the fractal dimension will be significantly different
than the fractal dimension for only the highest grade ore (MANDELBROT, 1989). In
this simple example, the fractal dimension is a function of the ore grade. There is
no longer a single fractal dimension that describes the ore distribution, but a
continuously varying fractal dimension that depends on how one weights the data.
Significant discrepancies can arise when different techniques are used to measure the
fractal dimension of a multifractal pattern or object. Different techniques may
weight the pattern differently. These difficulties are eliminated by applying multi-
fractal analysis. In this analysis, a multifractal is decomposed into its multiple
moments. The set of all moments uniquely defines the object and ambiguity is
removed.

Multifractals were developed to characterize turbulence and strange attractors
of deterministic chaotic systems (Friscu and PARrist 1983; PALADIN and VULPI-
ANI, 1984; BENZI et al., 1984; GRASSBERGER and PrRocAccCIA, 1983, 1984]. Perco-
lation systems were found to consist of multifractal sets (DE ARCANGELIS ef al.,
1985, 1986; RAMMAL et al., 1985, 1986; BHATTI and EssAM, 1986; BLUMENFIELD
et al., 1986) when the bonds are assigned weights proportional to the voltage drops
across the bonds. Other systems also show multifractality, such as aggregation
processes (MEAKIN et al., 1986; HALSEY et al., 1986; AMITRANO et al., 1986). In
these processes, growth sites can be weighted according to their probability for
growth. Sites at the tips have higher probability of growth than internal sites. The
tips form a fractal subset with a lower fractal dimension than the fractal dimension
for the full aggregate structure. In this section, we first described multifractal
analysis, then present the multifractal analysis of the void space geometry in the
fractured rock samples.

A. Multifractal Analysis

The box counting technique is one of the most widely used methods to obtain
the fractal dimension D of a self-similar structure or pattern. One reason for the
success of the box-counting technique is its ease of use. All that is required is to
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count the number of boxes N(L) of side L that are needed to cover the pattern. The
fractal dimension is obtained through the expression

D=—dInN(L)/dInL. (10)

The procedure can be implemented by successively subdividing the pattern in a
regular grid with M cells of size L. A weight w, can be defined for the ith cell such
that w, =1 if the cell contains any part of the pattern, and w; =0 if the cell is
completely empty. The number of boxes of size L covering the pattern is then

M
N(L) = Z w;. (11

=R
The extension of this fractal analysis to include multifractals involves assigning
a weight u, which is equal to the total “‘mass’ enclosed in the ith cell (normalized
to the total mass of the system). In the case of a black and white image, the mass
would be the area covered by black. The mass y, is raised to a power ¢, where ¢
expresses the mass moment of the distribution of masses that define the pattern.

The definition for the weighted number of boxes N(q, L) is

M
Ng, L)= 3 pfocL™™@ (12)
|

where the mass exponent t(g) is given by
1(q) = —d In N(g, L)/d In L. (13)

For the special case ¢ =0 (and only for this special case) the weighted number of
boxes N(g, L) reduces to the number of boxes needed to cover the pattern N(L),
yielding 1(g) = D. For ¢ =1, then 1(g) = 0 because Z,- Wp=ls forii= 1AL

To find the connection between the mass exponent 1(¢) and the fractal dimen-
sion that describes the gth mass moment of the pattern, it is necessary to look more
closely at the definition of a multifractal (FEDER, 1988). A multifractal set S is the
union of fractal subsets S,, S = U S,, characterized by the parameter . The subset
S, consists of points of mass distributed across the pattern. The mass y, in a cell of
size L of the subset S, varies as

Hy o L2, (14)

The parameter « is called the Lipschitz—Halder exponent. The fractal dimension of
the support of this mass distribution is given by f(«) defined through the expression

N(a, L) = p(o)L. 7™ d (15)

in which N(xz, L) is the number of boxes of side L that are needed to cover sets S,
in the range of « to « + dx. The density p(«) dz is the number of sets from S, to
S, . 4 Itis important to note the distinction between a and f(«), even though both
are scaling exponents. The fractal subset S, consists of a distribution of mass. The

Vol. 138, 1992 Fractures: Finite-size Scaling 697

manner in which the mass is distributed in space defines «. The set of points in space
that the support the subset S, has the fractal dimension f(«). The fractal dimension

(%) is always less than the Euclidean dimension, d =2 in our case. The exponent

%, on the other hand, can have values larger than 2. Combining equations (12),
(14), and (15) yields

N(g, L) = deﬂiN(a, L)

oC jd-acp(oc)L SO

ol M (16)
From the final expression one obtains the relationship

fla) =1(q) + g (17)

giving the explicit dependence of f(«) on ©(q). The Lipshitz—Hélder exponent is a
function of ¢, and the relation between 2(q) and ¢ is given by finding the maximum
value of equation (16). This is done by maximizing the exponent ag — f(«) in
equation (16) for a given ¢. Thus,

d . af

= foug — f(0)}4 = const. =4 — foles 0. (18)

and

o

x(q) = —(.;—;}«q). (19)

Equations (17) and (19) make it possible to describe the fractal dimension flag)
for varying ¢ which we will write as f(g), or for varying « which we will write as
f(x), based on the weighted number of boxes given by equation (12). The limiting
behavior of f(x) is given in Table 1 (STAUFFER, 1985).

Table |

Limiting behavior for f(a)

q ©g) « = —du(q)/dq J=0q+1(q)
q—= =0 — pax Emax 0
g=10 b g Soax=D
g—+x = G in Limin

max

where «,,,, corresponds to the subset of smallest masses and «,,, corresponds to the
subset of largest masses.
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The multifractal analysis described in the preceding paragraphs was applied to
the experimental micrographs of Figures 2 and 3 by considering the black areas (the
void spaces) as the multifractal set S. The weighted number of boxes N(g, L) from
equation (12) was calculated for cell sizes L ranging from 0.2 mm to 2 mm. The
dependence of N(g, L) on L is shown in Figure 8 using sample E30 as an example.
The different lines are for different values of the exponent ¢ in equation (12). The
mass exponent t(g) is given by the slopes of the lines on the log-log plot in Figure
8, and 1s shown in Figure 9. The pattern scales, producing power law dependences
over one order of magnitude for sizes between 0.2 mm and 2 mm. The fractal
dimension, f(g), is obtained through equations (17) and (19).

The fractal dimensions f(g) as functions of the mass moment ¢ are shown in
Figure 10. When g is negative, cells with small amounts of mass (void space) are
weighted preferentially over dense regions. In this range of values of ¢, the fractal
subset consists of the edges of the voids or isolated small voids. The fractal
dimensions of these subsets decrease to zero as ¢ — — co. For positive ¢, cells with
large amounts of mass (void space area) are weighted preferentially. The fractal
subsets for positive values of ¢ therefore consist of the large void spaces with little
or no contact areas. Increasing ¢ in the positive direction reduces the fractal
dimension because only the boxes that are fully occupied by void space are
important, and the set of these boxes have smaller fractal dimensions. For ¢ =0,

150 : — ; ; :
100 +- - .. T =)
50—6___‘9"“{}~___(;-_;-_;-"" S =-5
5 s “—Oq__3
& 0 — = — —n — - — &= — —p— — g q =0
= lisp —0 q=5
E (o o —0— O - -~ q= y
-100 - —® = §
| ___F*f_rf q=10
r _—
-150 | o—*
|
-200 [ ! I . 1 . I ._
2.0 3.0 4.0 5.0 6.0 7.0
InL
Figure 8

The weighted box numbers N(g, L) of equation (12) as functions of L for selected values of the exponent
g. These data are from sample E30 at 85 MPa for a region covering 4 square millimeters.
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The mass exponent t(g) derived from the slopes of the data in Figure 8,

f(g) is equal to the fractal dimension of the 2-dimensional pattern. During the box

counting any box that has any amount of metal (void space) is therefore weighted
equally. The fractal dimensions for the micrographs are all close to Dx2. In
the micrographs, even relatively large areas of contact (white) can have small
voids. Therefore, nearly all boxes at all sizes contain void space, producing a
fractal dimension close to the Euclidean dimension E = 2. The fractal dimensions
obtained here are significantly higher than the fractal dimensions described in
NOLTE et al. (1989) for the same samples. This difference reflects a different
weighting during the box counting. In NOLTE et al. (1989), only the largest clusters
of void spaces in a box contributed to the mass enclosed in that box. This criterion
for box counting discounts the small, disconnected clusters. Therefore the fractal
dimensions measured there correspond to the fractal dimension of the spanning
cluster.

The mass moment ¢ does not give a complete description of the structure of the
multifractal, The Lipschitz—Holder exponent o is more closely related to the scaling
properties of the multifractal pattern and can provide a unique description of the
mass distributions in the patterns. The fractal dimensions f(x) of the micrographs
of Figures 2 and 3 are shown in Figure 11 as functions of the parameter a. A
serious question can be raised about the validity of performing a multifractal
analysis on a black and white pattern, as for the micrographs of the metal casts. In
a multifractal, each point in space is assigned a density. Multifractal analysis



700 L. J. Pyrak-Nolte et al. PAGEOPH,

=
a) —=— 3 MPa
0 . 1 1 A | | |
-10 -5 0 5 10 15 20
q
s

—e— 85 MPa
0.4} —e— 33 MPa |
b) —=— 3 MPa
M0 5 0 5 10 15 20
q
Figure 10

Fractal dimension as a function of the mass moment ¢ for (a) specimen E30 and (b) specimen E32. The
results for the three siresses are shown.

reduces the complicated density distribution into subsets of a given density. Each
subset has a specific fractal dimension. In a black and white pattern, however,
density information is lost and values of 1 or 0 are assigned to each point in space.
Even in this case, the multifractal analysis can yield meaningful information,
allowing an interpretation of the f(x) curve. The metal cast of the fracture is
composed of finite clusters. The clusters vary in area from square microns to square
millimeters. Each value of « in the f(«) curve correspond to a subset of clusters of
a given area. The set of smallest clusters (corresponding to « & 3), have a small
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Fractal dimension as a function of the exponent « for (a) specimen E30 and (b) specimen E32. The range
of  increases for increasing stress on the samples as the contact area becomes more inhomogenecous.

fractal dimension because they are widely scattered and scale weakly with box size.
In the other extreme, the largest cluster (corresponding to a =~ 2) homogeneously
covers the micrograph efficiently, given D ~ 2. For x <2, the fractal dimension
drops precipitously because no cluster is larger than the spanning cluster. Based on
this discussion, we find that multifractal analysis can still be interpreted usefully to
apply to complex patterns that do not have a continuously varying density.
There is a clear trend in the f(a) curves as stress is increased on the samples. The
width of the parameter o increases with increasing stress. This effect can be understood
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by considering the range in the values of . The range of « is directly related to the
range in the “masses” occupying the cells. For a homogeneous distribution, the
masses in each cell are approximately equal. A homogeneous mass distribution
therefore produces a delta function at x =2. As the pattern becomes more
inhomogeneous with increasing stress, some cells will have significantly more mass
than others and the range of a broadens. These trends are seen clearly in the data
in Figure 11. For the highest stress of 85 MPa, o, ~ 3.25 and %, ~ 1.80, giving
Ao = 1.45. For the lowest stress of 3 MPa, the pattern is more homogeneous and
Ao =009,

In this section on multifractal analysis the idea of a single fractal dimension for
a pattern has given way to the idea of a continuous spectrum of fractal dimensions.
This may seem to complicate the issue. Part of the beauty of fractals was the
possibility of finding a single value that could describe the pattern. Now there is no
longer a single value, but a function. However, multifractal concepts do simplify the
problem. Most real patterns or structures in nature have varying densities, or
altitudes, or distributions. Trying to apply a single fractal dimension to such
patterns is a crude approximation. The resulting number is dependent on the chosen
cutoffs, and on the weighting of the data. Multifractal analysis produces a unique
description of the pattern. Subtle changes in the patterns (such as changes under
increasing stress) can therefore be tracked accurately.

Relating the multifractal properties of the fracture to other important proper-
ties, such as hydraulic permeability, is not immediately possible. However, the fact
that the void spaces in fractures are multifractal can have important significance. A
multifractal structure is often generated by random multiplicative processes, i.e., by
a succession of random processes. This succession of processes may occur during
the fracture of the rock itself. Or they could have occurred later, caused by
successive processes such as mineral dissolution, deposition, shear displacement, etc.
The geologic history of the fracture may be directly connected with the shape of the
f(2) curve. At this time, these are only speculations. Further work will be necessary
to uncover the connections.

B. Lacunarity

A closely related property to the fractal dimension is lacunarity. The term
“lacunarity” was coined by MANDELBROT (1983) to refer to the magnitude of the
“gaps” in the pattern. It also refers to the prefactor in the number-size relationship.
One common definition of lacunarity A(L) is the mean-square deviation of the
occupied area fractions for a certain size L

_CAXL)) = CAL))?

- 2
Al CA(L))? (20)

where A(L) is the fraction of the area that is occupied in a square of linear size L.
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Figure 12
Lacunarity as a function ol the area fraction covered by the void spaces. The circles are the experimental
data from the micrographs in Figure 2. The solid line is the result from stratified percolation simulations
for two tiers. The lacunarity increases with decreasing void space area fractions.

Various schemes have been proposed to average A(L) over L to obtain the
lacunarity of a pattern (LIN and YANG, 1986; HAO and YANG, 1987; TAGUCHI,
1987). We have altered the approach of Taguchi, by using a logarithmic weighting
of the A(L), rather than a linear weighting. In a continuum system, a linear
weighting would weight more heavily towards the large sizes. The average lacunar-
ity A is
] M 1 21
A= 2 AM2) (21)
for M cells. The factor of 2 is the scale factor between observation scales L, where
L, =2'. This factor of 2 is arbitrary, and is chosen for simplicity.

The experimental lacunarity from the micrographs in Figures 2 and 3 is shown
in Figure 12 as a function of area fraction covered by void space. The data are
compared to simulations of stratified percolation using two tiers. The lacunarity
increases as the “gaps,” or contact areas, increase. The lacunarity diverges as 4 —0
as the denominator of equation (20) vanishes. Lacunarity plays a secondary role in
the description of scaling patterns, but can have effects on such real properties as
fracture specific stiffness. It has been shown (HopkiINs and Cook, 1987, 1990), that
for the same contact area, fractures with different distributions of the contact area
have different fracture stiffnesses. The lacunarity of a fracture gives a measure of
this distribution and should therefore influence the mechanical stiffness of the
fracture under stress.
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5. Concluding Remarks

From this analysis of the percolation properties of single natural fractures,
based on experimental data, we conclude that the miroscopic percolation properties
are representative of the macroscopic percolation behavior of the parent fracture.
This result stems from the observed small correlation lengths of the contact areas
in these fractures for the stresses used.

Several key questions remain open. First, does the correlation length change
with specimen size? In our study, we have used only a single core size of fifty-two
centimeters in diameter. It is imperative that different core sizes be subjected to the
analysis we have described in this paper before any final conclusions can be made.
Second, are the correlation lengths related to the stress history of the fracture? The
correlation length, and also the void space geometry, should be a function of the
shear displacement of the two fracture surfaces. It is necessary to consider erosion
and precipitation that occur when fluids are present over the lifetime of the fracture.
These processes may relate directly to the finite-size and multiscaling properties

of fractures, and ultimately to determining the hydraulic properties of natural
fractures.
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