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Coexisting two-phase flow in correlated two-dimensional percolation
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The simultaneous percolation of two immiscible~noncrossing! phases in correlated two-dimensional perco-
lation has a monotonically decreasing probability for increasing scale, leading to vanishing probability for
infinite systems. However, anincreasingprobability for noncrossing coexistence with increasing observation
size occurs for strongly correlated percolation models. When the correlations obey a tunable long-range power
law that decays with distance asL2a, an abrupt transition between coexistence and noncoexistence is observed
when the criterionan2d,0 is satisfied.@S1063-651X~97!07710-6#

PACS number~s!: 64.60.Ak, 05.70.Jk, 64.60.Fr, 92.40.Kf
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The simultaneous flow of two immiscible fluids throug
the random topology of a single fracture is a key probl
related to the recovery of energy-related hydrocarbons f
partially saturated reservoirs@1#, to the remediation of con
taminant plumes in aquifers and ground water@2#, and to the
successful isolation of toxic or radioactive wastes@3#. The
geometry of a single fracture is topologically two dime
sional and is therefore governed by the percolation prope
of two-dimensional systems. It has commonly been con
ered that coexisting percolation of two immiscible~noncross-
ing! phases in two dimensions is prohibited for large syst
sizes. Coexistence is defined as the simultaneous spanni
each phase across an infinite system. Noncrossing coe
ence immediately implies that both phases must span in
same direction. Therefore statistical isotropy of the tw
dimensional percolation system is also a critical issue
coexistence. For instance, the number of spanning clus
can be larger than unity in an anisotropic system, and
creases for increasing anisotropy@4,5#.

The requirements for noncrossing coexistence are m
more severe than for crossing coexistence. For instanc
bond percolation, or in site percolation with next-neare
neighbor connections, both phases reach the percola
threshold simultaneously and span even infinite realizati
of the percolation system. Therefore crossing coexistenc
firmly established. However, for many real percolation s
tems, such as those described in the first paragraph, the
phases cannot cross each other’s path. The condition for
crossing coexistence is satisfied trivially in three dimensio
while noncrossing coexistence is strictly disallowed in o
dimension. Two dimensions is the critical dimensionality f
noncrossing coexistence. Noncrossing coexistence is alw
possible infinite two-dimensional systems when it is su
ported by fluctuations or by correlations that span the fin
system @6#. However, even in these cases the tw
dimensional noncrossing coexistence probability is expec
to decreasewith increasing system size@7#, and to vanish for
infinite systems.

In this article, we show that the probability for noncros
ing coexistenceincreaseswith increasing observation siz
when two-dimensional percolation contains long-range s
561063-651X/97/56~5!/5009~4!/$10.00
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ing correlations that decay sufficiently slowly. The conditio
that allows or disallows noncrossing coexistence for infin
two-dimensional systems is extracted from the two-po
correlation functiong(L), evaluatedat threshold. When the
correlations decay with distance as a power lawL2a, long-
range quenched disorder can modify some of the crit
properties. The extended Harris criterion@8,9#, which is an
extension of work on the role of fluctuations in critical sy
tems@10–13#, states that correlations become relevant wh
an22,0, for a,d, whered is the dimensionality andn is
the correlation length exponent. The extended Harris cr
rion has been applied to systems with long-range quenc
disorder @9,14#. The numerical results shown here sugg
that the extended Harris criterion may also determ
whether coexisting percolation of noncrossing phases is, o
not, allowed in two dimensions for infinite size.

The case of two-dimensional continuum potentials is c
sidered@15#. In this model a random potential fieldV(x,y)
spans the two-dimensionalx-y plane. The occupancy cond
tion is defined by a threshold. A position (x,y) is occupied
by theA phase whenV(x,y),Vc , and is otherwise occupied
by theB phase. Scaling correlations in the continuum pote
tial V(x,y) are produced using a hierarchical cascade@16#.
The cascade originates within a square area of sideL. Within
this area,N positions (x,y) i are randomly chosen. Each po
sition (x,y) i is the starting point for the next iteration i
which N positions are again chosen randomly within an a
of sideL/b, whereb is a scale factor greater than or equal
unity. The construction progresses iteratively. The iteratio
can be carried to infinity, but in practice are terminated at
Tth tier when the linear sizeL/(bT) falls below a selected
cutoff Lc . A realization of this construction is therefore p
rametrized byT, N, andb, whereT is the number of levels
for the cascade~called tiers!, N is the multiplicity of the
cascade, andb is the scale factor between levels. The pote
tial V(x,y) is finally defined by the density of sites on th
Tth tier. It has previously been shown that this iterative co
struction of the correlated potentialV(x,y) produces a mul-
tifractal topology in which the multifractal spectrum is tune
by changingT, N, andb @16#. The singular part of the two-
5009 © 1997 The American Physical Society
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point correlation function for this model, at threshold, deca
with distance as a power law given byg(L)}L2a. This hi-
erarchical percolation construction produces a percola
model which has the same correlation length exponentn as
standard percolation@17#.

To make an especially stringent test of coexistence in
two-dimensional continuum, percolation connectio
through saddle points are disallowed, which have b
shown to strongly control the percolation properties in co
tinuum percolation models@18#. In Monte Carlo simulations
the saddle points are removed by projecting the continu
potential onto a discrete square lattice and allowing o
nearest-neighbor connections; diagonal connections are
allowed, which also ensures that theA phase and theB phase
cannot cross. This procedure forces an underestimatio
the coexistence probability, placing a conservative bound
that probability. The persistence of coexistence under th
stringent conditions should therefore be a strong indicato

In the first study we compare a percolation system hav
long-range scaling correlations with a system that conta
only short-range correlations. The long-range scaling sys
was a three-tier pattern withN546 andb54.22 projected
onto a 3003300 discrete square lattice with a lower cuto
Lc54. The short-range correlated system was a one-tier
tern withN510 000,b575, andLc54. This one-tier pattern
produces a potential with only short-range correlations
therefore serves as a control system.

Monte Carlo simulations of spanning probabilities we
performed on 3000 realizations of each percolation syst
We calculated the spanning probabilitiesR(f,L) of both
phases as a function of occupancyf and sizeL for system
sizes of 50350, 1003100, 1503150, and 3003300 @16#.
The percolation thresholdf* (L) at finite size is defined a
the fixed points of the spanning probabilityR(f* ,L)
5f* (L) using theM0 condition @19# for spanning in at
least one direction. The fixed points obey the scaling re
tionshipf* (L)2f* (`)}L21/n, wheren5 4

3 is the correla-
tion length exponent andf* (My)5fc is the critical thresh-
old for infinite size. When the fixed points are plotted agai
L21/n the data describe a linear relationship that can be
trapolated to infinite size@16,19#.

Finite-size scaling calculations were performed for bo
the long-range and short-range correlated patterns. The
sults are shown in Fig. 1 for both cases. For the smal
sample sizes, coexisting percolation of theA phase with the
B phase occurs for both short-range and long-range corr
tions. PhaseA begins to span before phaseB ceases to span
allowing both phases to~statistically! span simultaneously
~although not necessarily within the same pattern!. For the
larger sample sizes, there is a qualitative difference betw
the short-range and the long-range correlation cases. W
only short-range correlations, the spanning probabi
evolves into a percolation gap with increasing sample size
which neither phase spans the pattern. This gap is a resu
our conservative rule that disallows saddle-point conn
tions. In a completely random site percolation model,
percolation gap spans from 40% to 60%. In the one-tier p
tern, the short-range correlations@20# bring the percolation
thresholds close together, but the percolation gap rema
On the other hand, for the long-range correlated geome
the coexistence region decreases in width, but never tr
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forms into a percolation gap, even when extrapolated to
finite sample sizes, and even with our conservative rule
disallows percolation through saddle points.

While this lack of a percolation gap in a site-percolati
model with only nearest-neighbor connections is certai
suggestive, we need to find more conclusive evidence
coexistencein the same patterncan persist to infinite size
Therefore during the Monte Carlo simulations we explici
tabulated the cases of coexistence. The coexistence p
abilities are shown in Fig. 2 for both the short-range a
long-range correlated geometries as functions of the oc
pancy for increasing size.

The comparison shows strong qualitative as well as qu
titative differences. The most important observation is t
the coexistence probability in the short-range correlated c
in Fig. 2~a! decreases with increasing size, as expected, v
ishing for infinite size. In contrast, the coexistence proba
ity for the long-range correlated case in Fig. 2~b! shows the
opposite trend, with the probabilityincreasingwith increas-
ing size. Therefore the probability that two phases simu
neously percolate in this two-dimensional system gro
stronger with increasing size. In addition, the rate of incre
of the coexistence probability is also increasing with incre
ing size, showing an acceleration of the effect as the ob
vation size is increased. An extrapolation to infinite si
shows a nonzero coexistence probability. Therefore the
caded percolation model presented here is a percolation
tem in which coexistence persists from finite to infinite siz

As a final step, we were able to quantify the degree

FIG. 1. Percolation fixed pointsf* for both phaseA and phase
B plotted vsL21/n and extrapolated to infinite size for~a! T51
~short-range correlations! and ~b! T53 ~long-range correlations!.
For small scales, phaseA turns on before phaseB turns off, allow-
ing coexisting percolation. For large scales, a percolation gap op
for T51 in which phaseB turns off before phaseA turns on. No
percolation gap is apparent forT53, for which coexisting percola-
tion persists up to infinite size.
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56 5011COEXISTING TWO-PHASE FLOW . . .
which long-range correlation is necessary to allow coex
ence by continuously varying the scale parameterb in the
stratified percolation model from the short-range limit to t
long-range correlated limit. Crossover behavior is expec
to change the coexistence probability from the usual decr
ing function to an increasing function of size. We perform
Monte Carlo simulations on a two-tier cascade geometry
which the scale parameter is varied continuously fromb
51 to 8.66. A scale factor ofb51 produces the geometr
with short-range correlations only, while a scale factor ob
58.66 produces a long-range correlated geometry with c
relations that fall off slowly with distance. The Monte Car
coexistence probability is shown in Fig. 3~a! for the two-tier
simulations as a function of scale factor for a family of siz
There is a sudden crossover from the usual decreasing c
istence probability with increasing size to an increasing
existence probability with increasing size. The crossover
curs when the scale factor is nearbc51.2.

The strength of the long-range correlations at threshol
parametrized by the exponenta of the two-point correlation
functiong(L)}L2a. The behavior ofa is shown in Fig. 3~b!
for comparison to Fig. 3~a!. The long-range correlations fa
off more slowly for increasing scale parameterb. The expo-
nenta varies as

FIG. 2. The coexistence probabilities for~a! T51 ~short-range
correlations!, N510 000, andb575; and~b! T55 ~long-range cor-
relations!, N510, andb52.37 as functions of observation size. Th
coexistence probability decreases with increasing size for sh
range correlations, but increases with increasing size for long-ra
correlations.
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a52~d2D0!
ln~b0!

ln b
, ~1!

whered52 is the Euclidean dimensionality andD051.95 is
the fractal dimension of the hierarchical patterns produ
by the scale factorb058.66 @16#. The numerical values o
the exponents were obtained by measuring the two-point
relation functions of the percolation patterns of the two-t
patterns, evaluated for the entire pattern at threshold.
crossover from increasing to decreasing coexistence p
ability clearly occurs when the exponent approaches the
terion ac'2/n51.5. The striking behavior we observed
Fig. 2~b! of increasing coexistence probability with increa
ing observation size occurs only when the extended Ha
criterion an2d,0 is satisfied for long-range correlation
~large scale factorb and slowly decaying correlations!.
Therefore we find that the special significance of the
tended Harris criterion for our system pertains to the r
evance of long-range order to support coexisting percola
in two dimensions. It should be noted that in our analysis

rt-
ge

FIG. 3. ~a! Coexistence probability at threshold as a function
scale factorb for T52 cascade patterns showing abrupt crosso
nearb51.5 from decreasing to increasing coexistence probab
with increasing scale.~b! Two-point correlation exponent evaluate
at threshold for the two-tier patterns~data!, compared with the phe-
nomenological dependence of the exponenta ~solid line!. The cor-
relation exponent crosses the Harris criterion atac'1.5, which co-
incides with the crossover behavior observed in~a!.
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5012 56D. D. NOLTE AND L. J. PYRAK-NOLTE
do not see a crossover in the correlation length exponen
from the standard value to a long-range value predicted
Weinrib @9#. However, the importance of the extended Har
criterion remains strongly suggestive from Fig. 3.

To gain physical insight into the ability of long-range co
related systems to support coexisting percolation, we
spected many of the patterns that supported coexistenc
the cases of coexistence the percolation path of phaseA ~oc-
cupying low potential, or wetting phase! delineated the pe
rimeter of phaseB ~occupying high potential, or non-wettin
phase!. Therefore, under sufficient long-range correlatio
the two percolation paths become locked to each other
copercolate in the same direction, while for insufficient sp
tial correlations, the two paths become unrelated and
each other off, preventing coexistence. One of the surpris
results of this work is the abruptness at which this top
graphic locking between the two phases is initiated nearac
51.5, as seen in Fig. 3.
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In conclusion, we have identified a two-dimensional p
colation model that possesses long-range scaling geomet
which the probability for coexisting percolation of two im
miscible phases increases with increasing size, demons
ing that there is coexistence in two-dimensional percolati
at least within the cascade model discussed here. An im
tant extension of this work would be to define a broader cl
of scaling geometries which share this property. The agr
ment of our model with the extended Harris criterion m
suggest that other systems satisfying the extended Harris
terion will support coexisting flow. Given the prevalence
correlations in many natural systems such as fractures@21#,
and in self-organized structures@22#, the results described
here should find broad applicability.
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