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Coexisting two-phase flow in correlated two-dimensional percolation

D. D. Nolte
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396

L. J. Pyrak-Nolte
Department of Physics and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907-1396
(Received 10 October 1996

The simultaneous percolation of two immisciljfencrossingphases in correlated two-dimensional perco-
lation has a monotonically decreasing probability for increasing scale, leading to vanishing probability for
infinite systems. However, aincreasingprobability for noncrossing coexistence with increasing observation
size occurs for strongly correlated percolation models. When the correlations obey a tunable long-range power
law that decays with distance BS 2, an abrupt transition between coexistence and noncoexistence is observed
when the criteriommy—d<0 is satisfied[S1063-651X97)07710-9

PACS numbsg(s): 64.60.Ak, 05.70.Jk, 64.60.Fr, 92.40.Kf

The simultaneous flow of two immiscible fluids through ing correlations that decay sufficiently slowly. The condition
the random topology of a single fracture is a key problemthat allows or disallows noncrossing coexistence for infinite
related to the recovery of energy-related hydrocarbons fronwo-dimensional systems is extracted from the two-point
partially saturated reservoifd], to the remediation of con- correlation functiong(L), evaluatecdat threshold When the
taminant plumes in aquifers and ground wa®r and to the  correlations decay with distance as a power law?, long-
successful isolation of toxic or radioactive was{8% The range quenched disorder can modify some of the critical
geometry of a single fracture is topologically two dimen- properties. The extended Harris criteripB9], which is an
sional and is therefore governed by the percolation propertiesxtension of work on the role of fluctuations in critical sys-
of two-dimensional systems. It has commonly been considtems[10—13, states that correlations become relevant when
ered that coexisting percolation of two immiscilfencross- 3, —2<0, for a<d, whered is the dimensionality ana is
ing) phases in two dimensions is prohibited for large systemne correlation length exponent. The extended Harris crite-
sizes. Coexistence is de_fin_e(_j as the simultaneous_spanning_;m;n has been applied to systems with long-range quenched
each phase across an infinite system. Noncrossing Coex'%isorder[g,lzl]. The numerical results shown here suggest

ence immediately implies that both phases must span in the,5; the extended Harris criterion may also determine

nge Q|reclt|on. T?et'refore itatls_tlcall |sotrop.3;_ Ofl Fhe tho'Whether coexisting percolation of noncrossing phases is, or is
Imensional percoiation system 1S also a critical Issue Ornot, allowed in two dimensions for infinite size.

coexistence. For Instance, the nur_nber O.f spanning Clus'gers The case of two-dimensional continuum potentials is con-
can be larger than unity in an anisotropic system, and méidered[lS] In this model a random potential fiekd(x,y)
creases for increasing anisotrojy,5]. : P Y

The requirements for noncrossing coexistence are muchPans the two-dimensionaty plane. The occupancy condi-
more severe than for crossing coexistence. For instance, #P" iS defined by a threshold. A position,f/) is occupied
bond percolation, or in site percolation with next-nearestPY theA phase whe(x,y)<V., and is otherwise occupied
neighbor connections, both phases reach the percolatid® theB phase. Scaling correlations in the continuum poten-
threshold simultaneously and span even infinite realizationial V(X,y) are produced using a hierarchical caschti#l.
of the percolation system. Therefore crossing coexistence ishe cascade originates within a square area oflsid#ithin
firmly established. However, for many real percolation systhis areaN positions §,y); are randomly chosen. Each po-
tems, such as those described in the first paragraph, the tvéfion (x,y); is the starting point for the next iteration in
phases cannot cross each other’s path. The condition for notthich N positions are again chosen randomly within an area
crossing coexistence is satisfied trivially in three dimensions9f sideL/b, whereb is a scale factor greater than or equal to
while noncrossing coexistence is strictly disallowed in oneunity. The construction progresses iteratively. The iterations
dimension. Two dimensions is the critical dimensionality for can be carried to infinity, but in practice are terminated at the
noncrossing coexistence. Noncrossing coexistence is alwaygh tier when the linear sizé/(b") falls below a selected
possible infinite two-dimensional systems when it is sup- cutoff L. A realization of this construction is therefore pa-
ported by fluctuations or by correlations that span the finitgametrized byT, N, andb, whereT is the number of levels
system [6]. However, even in these cases the two-for the cascaddcalled tierg, N is the multiplicity of the
dimensional noncrossing coexistence probability is expectedascade, anH is the scale factor between levels. The poten-
to decreasawith increasing system siZ&], and to vanish for tial V(x,y) is finally defined by the density of sites on the
infinite systems. Tth tier. It has previously been shown that this iterative con-

In this article, we show that the probability for noncross- struction of the correlated potentid{(x,y) produces a mul-
ing coexistencancreaseswith increasing observation size tifractal topology in which the multifractal spectrum is tuned
when two-dimensional percolation contains long-range scalby changingT, N, andb [16]. The singular part of the two-
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point correlation function for this model, at threshold, decays 40

with distance as a power law given lgyL)e«L 2. This hi- ' a)
erarchical percolation construction produces a percolation Short Range
model which has the same correlation length exponesas 30 “Correlation ]
standard percolatiofl.7]. .
To make an especially stringent test of coexistence in the T, 20¢ ]
two-dimensional  continuum, percolation connections
through saddle points are disallowed, which have been 1.0 [ §
shown to strongly control the percolation properties in con- percolation
tinuum percolation modelgL8]. In Monte Carlo simulations 0.0 . @ .
the saddle points are removed by projecting the continuum 046 047 0-4?:, 2-29, 050 051 052
potential onto a discrete square lattice and allowing only ixed Point (¢7)
nearest-neighbor connections; diagonal connections are not 4.0 : : :
allowed, which also ensures that theohase and thB phase Long Range Correlation b)
cannot cross. This procedure forces an underestimation of a0l ]
the coexistence probability, placing a conservative bound on
that probability. The persistence of coexistence under these : ool ...coexisting )
. - .. 0 E percolation
stringent conditions should therefore be a strong indicator. -
In the first study we compare a percolation system having ol ]
long-range scaling correlations with a system that contains ‘
only short-range correlations. The long-range scaling system
was a three-tier pattern witN=46 andb=4.22 projected 00z o8 o4 o5 Toe o7 os
onto a 30X 300 discrete square lattice with a lower cutoff Fixed Point (¢°)

L.=4. The short-range correlated system was a one-tier pat- o o
tern withN= 10 000,b= 75, andL .= 4. This one-tier pattern FIG. 1. Percolation fixed point$* for both phaséA and phase

S . 1 infinite si -
produces a potential with only short-range correlations an? plotted vsL ™ and extrapolated to infinite size f¢g) T=1
therefore serves as a control system. short-range correlationsand (b) T=3 (long-range correlations

Monte Carlo simulations of spanning probabilities were ©of small scales, phagetums on before phas turns off, allow-

o . ing coexisting percolation. For large scales, a percolation gap opens
performed on 3000 reallzgtlons of ea_gh percolation SySten}'o?Tzl in \A?h?ch phaseB turns ogf;f before pha?sé\ turns or?. lli)lop
We calculated thg spanning pmbabmtlad)’l‘) of both percolation gap is apparent for=3, for which coexisting percola-
phases as a function of occupangyand sizel for system . persists up to infinite size.
sizes of 550, 100 100, 150< 150, and 30& 300 [16].
The percolation thresholg* (L) at finite size is defined as forms into a percolation gap, even when extrapolated to in-
the fixed points of the spanning probabilitR(¢*,L)  finite sample sizes, and even with our conservative rule that
=¢* (L) using theMO condition[19] for spanning in at disallows percolation through saddle points.
least one direction. The fixed points obey the scaling rela- While this lack of a percolation gap in a site-percolation
tionship ¢* (L) — ¢* () xL =", wherev=1% is the correla- model with only nearest-neighbor connections is certainly
tion length exponent ang* (My) = ¢ is the critical thresh-  suggestive, we need to find more conclusive evidence that
old for infinite size. When the fixed points are plotted againstcoexistencen the same patterican persist to infinite size.
L~ the data describe a linear relationship that can be extherefore during the Monte Carlo simulations we explicitly
trapolated to infinite siz€16,19. tabulated the cases of coexistence. The coexistence prob-
Finite-size scaling calculations were performed for bothabilities are shown in Fig. 2 for both the short-range and
the long-range and short-range correlated patterns. The résng-range correlated geometries as functions of the occu-
sults are shown in Fig. 1 for both cases. For the smallegpancy for increasing size.
sample sizes, coexisting percolation of thephase with the The comparison shows strong qualitative as well as quan-
B phase occurs for both short-range and long-range correlaitative differences. The most important observation is that
tions. Phas@ begins to span before phaBeceases to span, the coexistence probability in the short-range correlated case
allowing both phases tgstatistically span simultaneously in Fig. 2@ decreases with increasing size, as expected, van-
(although not necessarily within the same patteFor the  ishing for infinite size. In contrast, the coexistence probabil-
larger sample sizes, there is a qualitative difference betweeity for the long-range correlated case in FigbP2shows the
the short-range and the long-range correlation cases. Witbpposite trend, with the probabilifpcreasingwith increas-
only short-range correlations, the spanning probabilitying size. Therefore the probability that two phases simulta-
evolves into a percolation gap with increasing sample size, imeously percolate in this two-dimensional system grows
which neither phase spans the pattern. This gap is a result efronger with increasing size. In addition, the rate of increase
our conservative rule that disallows saddle-point connecef the coexistence probability is also increasing with increas-
tions. In a completely random site percolation model, theing size, showing an acceleration of the effect as the obser-
percolation gap spans from 40% to 60%. In the one-tier patvation size is increased. An extrapolation to infinite size
tern, the short-range correlatiofi20] bring the percolation shows a nonzero coexistence probability. Therefore the cas-
thresholds close together, but the percolation gap remainsaded percolation model presented here is a percolation sys-
On the other hand, for the long-range correlated geometrytem in which coexistence persists from finite to infinite size.
the coexistence region decreases in width, but never trans- As a final step, we were able to quantify the degree to
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FIG. 2. The coexistence probabilities f@ T=1 (short-range ) . )
correlation, N=10 000, ancdb=75; and(b) T=5 (long-range cor- FIG. 3. (a) Coexistence probability at threshold as a function of
relationg, N= 10, andb=2.37 as functions of observation size. The Scale factolb for T=2 cascade patterns showing abrupt crossover
coexistence probability decreases with increasing size for shorf2€arb=1.5 from decreasing to increasing coexistence probability

range correlations, but increases with increasing size for long-rang#ith increasing scaleth) Two-point correlation exponent evaluated
correlations. at threshold for the two-tier pattertdatg, compared with the phe-

nomenological dependence of the exporeisolid line). The cor-

. . . i arris criteriomat 1.5, which co-
which long-range correlation is necessary to allow coexist{€lation exponent crosses the H atl.s,

. - . incides with the crossover behavior observedan
ence by continuously varying the scale paraméten the
stratified percolation model from the short-range limit to the
long-range correlated limit. Crossover behavior is expected
to change the coexistence probability from the usual decreas-
ing function to an increasing function of size. We performed
Monte Carlo simulations on a two-tier cascade geometry in
which the scale parameter is varied continuously from whered=2 is the Euclidean dimensionality afy=1.95 is
=1 to 8.66. A scale factor df=1 produces the geometry the fractal dimension of the hierarchical patterns produced
with short-range correlations only, while a scale factobof by the scale factoby=8.66[16]. The numerical values of
=8.66 produces a long-range correlated geometry with corthe exponents were obtained by measuring the two-point cor-
relations that fall off slowly with distance. The Monte Carlo relation functions of the percolation patterns of the two-tier
coexistence probability is shown in Fig@B for the two-tier  patterns, evaluated for the entire pattern at threshold. The
simulations as a function of scale factor for a family of sizes.crossover from increasing to decreasing coexistence prob-
There is a sudden crossover from the usual decreasing coeability clearly occurs when the exponent approaches the cri-
istence probability with increasing size to an increasing coterion a.~2/v=1.5. The striking behavior we observed in
existence probability with increasing size. The crossover ocFig. 2(b) of increasing coexistence probability with increas-
curs when the scale factor is nday=1.2. ing observation size occurs only when the extended Harris

The strength of the long-range correlations at threshold igriterion av—d<0 is satisfied for long-range correlations

parametrized by the exponeatof the two-point correlation (large scale factorb and slowly decaying correlations
functiong(L)«L 2. The behavior of is shown in Fig. &) Therefore we find that the special significance of the ex-
for comparison to Fig. @). The long-range correlations fall tended Harris criterion for our system pertains to the rel-
off more slowly for increasing scale paramelerThe expo-  evance of long-range order to support coexisting percolation
nenta varies as in two dimensions. It should be noted that in our analysis we

|n(b0)

a=2(d=Do) .

1)
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do not see a crossover in the correlation length expoment  In conclusion, we have identified a two-dimensional per-
from the standard value to a long-range value predicted bgolation model that possesses long-range scaling geometry in
Weinrib [9]. However, the importance of the extended Harriswhich the probability for coexisting percolation of two im-
criterion remains strongly suggestive from Fig. 3. miscible phases increases with increasing size, demonstrat-
To gain physical insight into the ability of long-range cor- ing that therg is coexistence in two—dimensional percolation,
related systems to support coexisting percolation, we inat least within the cascade model discussed here. An impor-
spected many of the patterns that supported coexistence. {@nt extension of this work would be to define a broader class
the cases of coexistence the percolation path of pAase- of scaling geometrles_wh|ch share this property. The agree-
cupying low potential, or wetting phaseelineated the pe- ment of our model with the e>_<ten.ded Harris criterion may
rimeter of phas® (occupying high potential, or non-wetting suggest.that other systems sansfymg the extended Harris cri-
phase. Therefore, under sufficient long-range correlation,tenon will support coexisting flow. Given the prevalence of

) correlations in many natural systems such as fractizé
the two perc_olatlon paths _becc_Jme quked to_ each _other ang?]d in self—organizgd structuréQZ], the results des%trib]sed
copercolate in the same direction, while for insufficient SPaere should find broad applicability.
tial correlations, the two paths become unrelated and cut
each other off, preventing coexistence. One of the surprising D.D.N. acknowledges support from NSF Division of Ma-
results of this work is the abruptness at which this topoterials Research—Presidential Young Investigator Program.
graphic locking between the two phases is initiated regar L.J.P.-N. acknowledges support from NSF Division of Earth

=1.5, as seen in Fig. 3. Sciences—Young Investigator Program.
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