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We report on the observation of gate-tunable proximity-induced superconductivity and multiple

Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon

(TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical

current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as

430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage

(Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc¼Vn¼ 2DNb/en, where DNb

is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic

order, n, exhibits a Vg-dependence and reaches n¼ 13 for Vg¼ 40 V, indicating the high transpar-

ency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities

of using TINR in topologically protected devices that may host exotic physics such as Majorana

fermions. Published by AIP Publishing. https://doi.org/10.1063/1.5008746

Three-dimensional topological insulators (TIs) are a

new class of quantum matter with insulating bulk and con-

ducting surface states, topologically protected against time-

reversal-invariant perturbations (scattering by non-magnetic

impurities such as crystalline defects and surface rough-

ness).1,2 Topological superconductors (TSCs) are another

important class of quantum matter and are analogous to TIs,

where the superconducting gap and Majorana fermions of

TSCs replace the bulk bandgap and Dirac fermion surface

states of the TI, respectively.2 Controlling the Majorana

modes is considered one of the important approaches for

developing topologically protected quantum computers.

Three-dimensional (3D) TIs in proximity to s-wave super-

conductors have been proposed as one of the promising plat-

forms to realize topological superconductivity and Majorana

fermions.3 In this context, it has been pointed out that TI

nanowires (TINWs) possess various appealing features for

such studies.4–8 However, the first important step is to under-

stand how TI nanowires, including nanoribbons (TINRs),

behave in contact with superconducting leads.

Superconductor-normal-superconductor (SNS) Josephson

junctions (JJs), with topological insulators as the normal

material, have been experimentally realized on 3D-TIs.9–22

However, TI materials used in many of the previous experi-

ments have notable bulk conduction, making it challenging to

distinguish from the contribution of the topological surface

states. In this letter, we study S-TINR-S Josephson junctions,

where S¼Niobium (Nb) and the TINRs are mechanically

exfoliated from bulk BiSbTeSe2 (BSTS) TI crystals. Our

BSTS is among the most bulk-insulating TIs with surface

state dominated conduction and chemical potential located

close to the surface state Dirac point in the bulk bandgap.23,24

Therefore, our study enables us to investigate the proximity

effects and induced superconductivity in such “intrinsic”

(bulk-insulating) and gate-tunable TINRs with both electron

(n) and hole (p) dominated surface transport. Moreover, we

are able to investigate the transparency of our superconduct-

ing contacts to TINRs both in n- and p-dominated transport

regimes through the observation of multiple Andreev reflec-

tions (MARs).

High-quality single crystals of BSTS were grown by the

Bridgman technique as described elsewhere.23,24 Devices

fabricated on the exfoliated flakes from these crystals exhibit

surface dominated conduction with ambipolar field effects,

half-integer quantum hall effects, and p Berry’s phase.23,24

We obtain BSTS nanoribbons using a standard mechanical

exfoliation technique and transfer them onto a 500-lm thick

highly doped Si substrate (used as the back gate) covered

with 300-nm SiO2 on top. We locate BSTS nanoribbons,

which are randomly dispersed on the substrate, using an opti-

cal microscope. An atomic force microscopy (AFM) image

of a representative JJ is shown in Fig. 1(a). Multiple electro-

des, with electrode separation L< 100 nm between the adja-

cent electrodes, are defined by e-beam lithography for each

TINR. We then deposit 30-nm thick Nb contacts by a DC

sputtering system. A short (�5 s) in situ Ar ion milling prior

to the metal deposition is used to remove any residues left

from the lithography step and native oxides on the TINR sur-

face. Our results presented here are taken from a TINR
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sample with a thickness of �20 nm, a width of �250 nm,

and an electrode separation of �60 nm.

Figure 1(b) depicts R vs. the back-gate voltage (Vg) at

T¼ 10 K (above the critical temperature of our deposited

superconductor, TNb
C � 6:5 K). The charge neutrality-point

voltage (VCNP) is �4 V for this device. The electron- and

hole-dominated regimes can be easily observed in Fig. 1(b)

as we tune Vg away from VCNP. Using BCS theory, we esti-

mate the T¼ 0 K superconducting gap as DNb ¼ 1:76kBTNb
C

� 975 leV.

When the sample is cooled down below TNb
C , the elec-

tronic transport in the junction is strongly affected by the

superconducting proximity effect. The evidences of this

effect manifest themselves as the flow of a supercurrent in

the junction and the appearance of multiple Andreev reflec-

tions (MARs).25,26 Figure 2(a) shows the colormap of the

differential resistance (dV/dI) vs. Vg and Idc at T¼ 30 mK.

The DC voltage vs. current (Vdc vs. Idc) characteristic of

the junction at T¼ 30 mK for a few different Vg’s is also pre-

sented in Fig. 2(b). As we increase Idc from zero, the junction

is in its superconducting state and its resistance is zero.

However, once Idc is increased above a critical value [IC,

marked by an arrow in Fig. 2(b)], the junction transitions

from the superconducting state to a normal state with a

non-zero resistance. The junction critical current, IC, is

highlighted by a white curve in Fig. 2(a). First, we observe

that IC is gate tunable, with larger IC for Vg>VCNP.

However, when Vg is tuned near the charge neutrality point

(VCNP � 4 V), IC decreases and eventually saturates for more

negative Vg’s as previously observed in Bi2Se3 flakes27 and

graphene.28,29 One possible explanation for the saturation of

IC for Vg below VCNP is that the Nb electrodes electron-dope

the underlying material (TINR). Therefore, when Vg<VCNP,

a p-n junction is formed in the TINR. This p-n junction can

weaken and eventually break the induced superconductivity

as was shown in graphene.30 Furthermore, despite that the

total charge of the system is neutral close to the CNP, the top

and bottom surfaces may be oppositely charged due to the

difference in their coupling to the back gate. This charge

inhomogeneity may also contribute to the saturation of IC for

Vg�VCNP. Another plausible explanation may be the poor

injection of the holes into TINRs by Nb, as will be demon-

strated from the low transparency of the contacts for

Vg<VCNP from our analysis of MARs (Fig. 3). The inset of

Fig. 2(b) shows the dependence of IC on the Fermi momen-

tum (kF), where kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pCoxðVg � VCNPÞ=e

p
and Cox is the

parallel plate capacitance per unit area of 300-nm SiO2

(�12 nF/cm2). For kF> 0.4 nm�1, we observe that IC varies

linearly with kF, as experimentally demonstrated in ballistic

graphene Josephson junctions.31 The measured mean free

path of BSTS flakes is �100 nm.23,24 Given the channel

length L � 60 nm, we believe our junctions to be in the bal-

listic limit, corroborating the linear dependence of IC with

kF. We also observe that the junction critical temperature

(TC, the temperature below which the junction resistance

goes to zero and supercurrent starts to flow in the junction)

changes with Vg from TC¼ 1.6 K for Vg¼ 40 V to TC¼ 0.7 K

for Vg¼ 10 V. Using BCS theory, we extract the induced

superconducting gap (D) in the TINR as D¼ 1.76kBTC¼ 242

leV and 106 leV for Vg¼ 40 V and Vg¼ 10 V, respectively.

The superconducting coherence length ðn ¼ �hvF=pDÞ varies

from 600 nm to 260 nm for Vg¼ 10 and 40 V, respectively.

We note that the resistance (dV/dI) of the junction does not

change as we increase Vdc above DNb/e (�975 lV) and even

slightly beyond 2DNb/e as will be discussed later. As a result,

the normal resistance (RN) in our junctions is obtained at Vdc

slightly above DNb/e. We obtain ICRN � 304 lV and 266 lV

for Vg¼ 40 V and 10 V, respectively. Such large ICRN prod-

ucts (compared to D) again point towards the ballistic nature

of superconducting transport in our sample as recently

reported in other TI junctions.32

Figure 3(a) displays dI/dV vs. Vdc for Vg¼ 40 V at

T¼ 30 mK. Several peaks (within the Nb superconducting

gap) in dI/dV are observed at Vdc¼Vn¼ 2DNb/en (where

n¼ 2, 3, 4, 5, 6, 9, and 13) as marked by the arrows in

FIG. 1. (a) Atomic force microscopy (AFM) image of a 250-nm wide and

20-nm thick TINR multi-terminal device with Nb electrodes (electrode sepa-

ration L � 60 nm). (b) Two-terminal resistance (R) vs. the back-gate voltage

(Vg), measured at T¼ 10 K, above the critical temperature ðTNb
C Þ of the Nb

electrodes.

FIG. 2. (a) Color map of dV/dI vs. Vg

and bias current Idc for T¼ 30 mK.

Critical current (IC) is represented by a

white trace on the colormap. (b) DC

voltage (Vdc) vs. DC current (Idc) char-

acteristic of the device for different

Vg’s at T¼ 30 mK. Inset: IC vs. kF

(Fermi momentum). The blue curve is

a linear fit for kF> 0.4 nm�1. Data in

(a) and (b) were measured with sweep-

ing Idc from �1 lA to 1 lA.
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Fig. 3(a). These dI/dV peaks are consistent with MARs.25

We note that these peaks are symmetric around Vdc¼ 0 V,

and thus, below we focus only on the positive peaks. No

feature in dI/dV vs. Vdc is identified for n¼ 1, and RN is

achieved for V>DNb/e instead of V> 2DNb/e. The absence

of the first (n¼ 1) MAR peak has been noted in some SNS

junctions20,26 and may be related to the presence of mid-gap

zero-energy states as described elsewhere.33,34 From the lin-

ear fit of dI/dV peaks vs. 1/n, we obtain DNb� 900 leV,

which is in excellent agreement with DNb obtained from the

BCS theory and TNb
C � 6:5 K. Moreover, the observed dI/dV

peaks are reproducible and independent of the Vdc sweep

direction. While we do not observe any dI/dV peaks corre-

sponding to n¼ 7 and 8, higher-order peaks (n¼ 9 and 13)

are present, a feature that has been previously observed26

and requires further investigation. The observation of the

high-order MAR peaks is an indication of high transparency

of contacts in our junction.

Figure 3(b) depicts the differential conductance (dI/dV,

normalized by 1/RN) vs. (positive) Vdc for T¼ 30 mK at

three different Vg’s. First, we observe that the position of the

dI/dV peaks remains relatively constant with Vg, in contrast

to the oscillatory behavior of dI/dV peaks around a resonant

level in a quantum dot.35,36 This suggests the absence of

localized states in our TINR devices. The high-order dI/dV

peaks observed for Vg>VCNP further indicate that the con-

tacts are highly transparent. Even though the large ICRN

product and the linear dependence of IC vs. kF point towards

the ballistic nature of transport, the small amplitude of MAR

peaks [as shown in Fig. 3(b)] has been previously attributed

to a diffusive transport regime in graphene JJs.37 Such

discrepancies require further investigations. For Vg<VCNP,

the amplitude of the dI/dV peaks decreases with more nega-

tive Vg, e.g., with vanishing peak amplitudes for n¼ 3, 4, 5,

6, and 9 at Vg¼�40 V. The vanishing of dI/dV peaks for

Vg<VCNP may be related to the pinning of the Fermi level

to the electron-doped regime under the Nb electrodes and

hence the formation of p-n junctions for Vg<VDP, where

VDP is the Dirac point voltage, as has been observed in gra-

phene JJs.28,29

Figure 4(a) depicts the T-dependence of dI/dV (normalized

by 1/RN) vs. Vdc for Vg¼ 40 V, exhibiting a reduction of the Nb

superconducting gap with increasing T. Dashed lines are guides

to the eye corresponding to the expected T-dependence of

dI/dV peak positions (Vn) from BCS theory. We observe a

nearly flat and featureless dI/dV vs. Vdc for T¼ 6.6 K (slightly

above TNb
C � 6:5 K). We also observe that while dI/dV peaks

are noticeable up to high temperatures (�5.2 K), the amplitude

of the peaks reduces with increasing T, and some of the peaks

merge together at higher T (e.g., peaks for n¼ 3 and 4 merge at

T¼ 3.5 K). Figure 4(b) shows the T-dependence of Vn for

n¼ 2, 3, 4, and 6. Using the BCS theory to fit Vn vs. T, we

extract TC � 6 K, in fair agreement with TNb
C � 6:5 K. Figure

4(c) displays the T-dependence of DNb extracted from each

dI/dV peak (for n¼ 2, 3, 4, and 6), where DNb¼ neVn(T)/2,

together with the fit of DNb vs. T obtained from the BCS theory,

which is seen to describe the data well.

We demonstrated Josephson junctions based on mechan-

ically exfoliated bulk-insulating 3D topological insulator

nanoribbons in proximity to superconducting Nb electrodes.

We observe high-order (n¼ 13) multiple Andreev reflections,

demonstrating that charge transport in the TINR channel is

coherent. Furthermore, the critical current exhibits gate

effects and can be gate-tuned around one order of magnitude

from �50 nA to �430 nA at 30 mK. Our measurements of

supercurrent in Josephson junctions based on TINRs help to

better understand the nature of induced superconductivity in

these junctions and pave the way toward exploration of the

envisioned topologically protected devices based on super-

conductor-TINR-superconductor junctions.
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