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ABSTRACT   

We exploit the dependence of the electrical conductivity of graphene on a local electric field, which can be abruptly 
changed by charge carriers generated by ionizing radiation in an absorber material, to develop novel high-
performance radiation sensors for detection of photons and other kinds of ionizing radiation. This new detection 
concept is implemented by configuring graphene as a field effect transistor (FET) on a radiation-absorbing undoped 
semiconductor substrate and applying a gate voltage across the sensor to drift charge carriers created by incident 
photons to the neighborhood of graphene, which gives rise to local electric field perturbations that change graphene 
resistance. Promising results have been obtained with CVD graphene FETs fabricated on various semiconductor 
substrates that have different bandgaps and stopping powers to address different application regimes. In particular, 
graphene FETs made on SiC have exhibited a ~200% increase in graphene resistance at a gate voltage of 50 V when 
exposed to room light at room temperature. Systematic studies have proven that the observed response is a field 
effect. 
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1. INTRODUCTION  
Graphene [1] has become a focus of rigorous research both in academia and industry due to its many exceptional 
properties and potential in device applications such as sensors and transistors. The sensitivity of electrical properties 
of graphene to local electric field changes [2] has led to the idea that graphene configured into a field effect 
transistor (FET) can be utilized to detect light photons and other types of ionizing radiation, potentially with 
improved capabilities compared to more conventional radiation detectors, such as high sensitivity and resolution, 
low electronic noise, low power, and operation at room temperature.  The charge carriers induced in the absorber 
substrate by the incident photons can modify the electric field in the vicinity of graphene, causing a change in the 
graphene resistivity. The device structure, detection concept and measurement schematics have been presented 
previously by us and c-workers [3-8] and are depicted in Figure 1. Our prototype graphene FET sensor is made of a 
graphene layer on an electrically gated undoped radiation absorber substrate with an optional insulating layer in 
between.  A gate voltage, VG, is applied across the sensor to generate electric field which is varied to find the 
optimum point on the Dirac curve for a sharp change in graphene resistance.  
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detector concurrently with the turn off of the radiation source.  In this case, graphene resistance has been observed to 
restore its original value before any light exposure much faster as shown in Figure 3. The dependence of response to 
light intensity is illustrated in Figure 4. To control the intensity of light on the detector, initially five cleanroom 
wipers were used between the device and light source, and the number wipers was reduced by one in each 
measurement interval. Figure 4 clearly shows that graphene resistance increases as the light exposure is increased 
(as the number of wipers is decreased), and the amount of increase in resistance is proportional to the intensity 
change. 
 
In addition to Si and SiC, other semiconductor substrates such as GaAs, CdTe, and CdZnTe have been under 
investigation to meet needs for different applications. The room temperature operation requires wide bandgap 
semiconductors such as SiC, while in applications where the main concern is energy resolution, low bandgap 
materials such as InSb are best suited. On the other hand, detectors made using CdTe and CdZnTe crystals exhibit 
high energy resolution and detection efficiency (particularly for gamma ray detection), and are usable at room 
temperature. Although the preliminary results on graphene FETs made on these substrates are encouraging, more 
detailed studies are needed to evaluate their potential for photon detection. 

 

                     
 

Figure 2. Dirac curves of graphene FET on nominally-undoped SiC in dark and under low intensity light exposure. 

Proc. of SPIE Vol. 8373  83730H-3

Downloaded from SPIE Digital Library on 15 Jun 2012 to 128.210.68.204. Terms of Use:  http://spiedl.org/terms



 

 

 
Figure 3. 
turn off of 
value much

 
 

Light response o
f the light is acco
h faster. 

of graphene FET 
mpanied by a sh

on undoped SiC
hort voltage pulse

. Exposure interv
e with opposite si

vals for different 
ign to the gate vo

curves are shown
oltage applied, re

 

n in yellow boxe
esistance returns 

s. When the 
to its initial 

Proc. of SPIE Vol. 8373  83730H-4

Downloaded from SPIE Digital Library on 15 Jun 2012 to 128.210.68.204. Terms of Use:  http://spiedl.org/terms



 

 

                                                                                                          

 
                                                     

Figure 4. Light response of graphene FET on undoped SiC as a function light intensity. The number of cleanroom wipers 
(CW) used to partly block the light are shown in each interval. 

 

3. DEVELOPMENT OF MORE ADVANCED DEVICE ARCHITECTURES 
 

As discussed in the previous section, graphene sensors featuring a simple FET structure suffer from low response 
speed due to the ionized carriers accumulated underneath graphene. We are evaluating more advanced device 
architectures such DEPFET [11-12] in order to clear the ionized charges from the vicinity of graphene and improve 
the detection speed of our graphene FET sensors. DEPFET, a detector developed in high energy physics and 
composed of a field effect transistor incorporated into a fully depleted substrate, provides radiation detection and 
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amplification jointly resulting in a very low noise and high resolution. In fact, our graphene sensors exhibit a similar 
principle of operation to DEPFET in terms of combining detection and amplification, except that, the transistor 
channel is a p-type inversion layer in case of DEPFET while it is graphene in case of graphene FET. However, our 
graphene FET has some missing components such as a p-n junction to deplete the substrate, a potential minimum to 
confine electrons near the transistor channel (graphene), and clear contact to drain the electrons from the potential 
well after readout. When all these components are incorporated into our graphene FETs, we obtain a DEPFET-like 
graphene FET structure as depicted in Figure 5, which is expected to resolve the detection speed issue.   

 
We have performed TCAD simulations to fully understand the electrical and charge detection characteristics of 
DEPFET, and to enhance device performance by improving the design. An n-well is implanted underneath graphene 
to accumulate the electrons in this region for readout. The electrons are then drained by applying a positive voltage 
to the “Clear” contact. Figure 6 shows that the ionized electrons accumulated in the n-well disappear in about 5 
orders of magnitude shorter time when a positive voltage of 150V is applied to the “Clear” contact. All electrons 
generated in the left side of the detector drift to the n-well, while the majority of the electrons generated on the right 
side are lost to the “Clear” contact. In order to prevent this loss, a p-well is implanted under the “Clear” contact. The 
effect of “p-well” is demonstrated in Figure 7. Existence of p-well under the “Clear” contact gives rise to a potential 
barrier which makes the process of clearing more difficult. In order to control this potential barrier and the potential 
of the substrate neighboring the internal gate (n-well), a “Clear-gate” electrode is introduced as seen in Figure 5 
[13]. 

 

 

 

                            
                                                                                             

Figure 5. DEPFET-like graphene FET structure. 
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4. CONCLUSION 
Strong field effect response of gated CVD graphene FETs to photons at room temperature strengthens their 
potential use as a high performance photodetector with a novel detection concept. The speed performance is 
aimed to be significantly enhanced by configuring graphene into a DEPFET architecture instead of the current 
simple FET structure. TCAD simulations have provided us with insights to realize high speed graphene on 
DEPFET devices. 
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