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Spin current generation and relaxation in a
quenched spin-orbit-coupled Bose-Einstein
condensate
Chuan-Hsun Li1, Chunlei Qu 2,3,4, Robert J. Niffenegger 5,8, Su-Ju Wang 5,9, Mingyuan He 6,

David B. Blasing5, Abraham J. Olson5, Chris H. Greene5,7, Yuli Lyanda-Geller5,7, Qi Zhou5,7,

Chuanwei Zhang2 & Yong P. Chen1,5,7

Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin

transport is important in condensed matter physics and spintronics. This topic has been

intensively studied for spin carriers such as electrons but barely explored for charge-neutral

bosonic quasiparticles (including their condensates), which hold promises for coherent spin

transport over macroscopic distances. Here, we explore the effects of synthetic SOC

(induced by optical Raman coupling) and atomic interactions on the spin transport in an

atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by

quenching the Raman coupling) of two interacting spin components constitutes an alter-

nating spin current. We experimentally observe that SOC significantly enhances the SDM

damping while reducing the thermalization (the reduction of the condensate fraction). We

also observe generation of BEC collective excitations such as shape oscillations. Our theory

reveals that the SOC-modified interference, immiscibility, and interaction between the spin

components can play crucial roles in spin transport.
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Spin, an internal quantum degree of freedom of particles, is
central to many condensed matter phenomena such as
topological insulators and superconductors1,2 and techno-

logical applications such as spintronics3 and spin-based quantum
computation4. Recently, neutral bosonic quasiparticles (such as
exciton-polaritons and magnons) or their condensates5–7 have
attracted great interest for coherent manipulation of the spin
information. For example, spin currents have been generated
using exciton-polarions8 and excitons9 in semiconductors and
magnons10,11 in a magnetic insulator. In spin-based devices, SOC
and many-body interactions are key factors for spin current
manipulations. SOC can play a particularly crucial role as it may
provide a mechanism (such as spin Hall effect) to control the
spin, however, it can also cause spin (current) relaxation, leading
to loss of spin information. Studying the effects of SOC and
many-body interactions on spin relaxation is thus of great
importance but also challenging due to uncontrolled disorders
and the lack of experimental flexibility in solid state systems.

Cold atomic gases provide a clean and highly-controllable12

platform for simulating and exploring many condensed matter
phenomena12–16. For example, the generation of synthetic elec-
tric17 and magnetic18 fields allows neutral atoms to behave like
charged particles. The synthetic magnetic and spin-dependent
magnetic fields have been realized to demonstrate respectively the
superfluid Hall19 and spin Hall effects20 in BECs. The creation of
synthetic SOC in bosonic21–25 and fermionic26–29 atoms further
paves the way to explore diverse phenomena such as topological
states30 and exotic condensates and superfluids16,31–35. Here, we
study the effects of one-dimensional (1D) synthetic SOC on the
spin relaxation in a disorder-free atomic BEC using a condensate
collider, in which the SDM36 of two BECs of different (pseudo)
spin states constitute an alternating (AC) spin current. The SDM
is initiated by applying a spin-dependent synthetic electric field to
the BEC via quenching the Raman coupling that generates the
spin-orbit-coupled (SO-coupled) band structure. Similar quan-
tum gas collider systems (without SOC37–41) have been used to
study physics that are difficult to access in other systems.

Charge or mass currents are typically unaffected by interac-
tions between particles because the currents are associated with
the total momentum that is unaffected by interactions. In

contrast, spin currents can be intrinsically damped due to the
friction resulting from the interactions between different spin
components. In electronic systems, such a friction has been
referred to as the spin Coulomb drag42,43. In atomic systems,
previous studies have shown that a similar spin drag44,45 also
exists. Even in the absence of SOC, the relaxation of spin currents
can be nontrivial due to, for example, interactions36,39,46–49 and
quantum statistical effects45,50. In one previous experiment20,
bosonic spin currents have been generated in a SO-coupled BEC
using the spin Hall effect. However, how the spin currents may
relax in the presence of SOC and interactions has not been
explored. Here, we observe that SOC can significantly enhance
the relaxation of a coherent spin current in a BEC while reducing
the thermalization during our experiment. Moreover, our theory,
consistent with the observations, discloses that the interference,
immiscibility, and interaction between the two colliding spin
components can be notably modified by SOC and play an
important role in spin transport.

Results
Experimental setup. In our experiments, we create 3D 87Rb
BECs in the F= 1 hyperfine state in an optical dipole trap with
condensate fraction fc > 0.6 containing condensate atom number
Nc ~ 1–2 × 104. As shown in Fig. 1a, counter-propagating Raman
lasers with an angular frequency difference ΔωR couple bare spin
and momentum states j#; �hðqy þ krÞi and j"; �hðqy � krÞi to create
synthetic 1D SOC (so called equal Rashba–Dresselhaus SOC)
along ŷ24, where the bare spin states #j i ¼ mF ¼ �1j i and "j i ¼
mF ¼ 0j i are Zeeman split by ħωZ ≈ ħΔωR using a bias magnetic
field B ¼ Bẑ. Here, ħk↓= ħ(qy+ kr) (ħk↑= ħ(qy− kr)) is the
mechanical momentum in the y direction of the bare spin com-
ponent #j i "j ið Þ, where ħqy is the quasimomentum. The photon
recoil momentum ħkr= 2πħ/λ and recoil energy Er ¼ �h2k2r=ð2mÞ
are set by the Raman laser at the “magic” wavelength λ ~ 790
nm51, where ħ is the reduced Planck constant and m is the atomic
mass of 87Rb. The mF ¼ þ1j i state can be neglected in a first-
order approximation due to the quadratic Zeeman shift (see
Methods). The single-particle SOC Hamiltonian, HSOC, can be
written in the basis of bare spin and momentum states
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Fig. 1 Experimental setup and timing diagram used for the spin-dipole mode (SDM) experiments. a Linearly polarized Raman beams with orthogonal
polarizations (indicated by the double-headed arrows along ẑ and x̂) counter-propagating along ŷ couple mF hyperfine sublevels (bare spin states) of 87Rb
atoms. The sublevels are Zeeman split by ħωZ≈ ħΔωR= h × (3.5MHz) using a bias magnetic field B ¼ Bẑ, which controls the Raman detuning δR= ħ
(ΔωR−ωZ). b Experimental timing diagram: Raman coupling Ω (with an experimental uncertainty of <10%) is slowly ramped up in 80ms to an initial value
ΩI and held for 100ms to prepare the BEC around the single minimum of the ground band at ΩI as shown in c. Then, Ω is quickly lowered to a final coupling
ΩF in time tE and held for some time thold, during which we study the dynamics of the BEC in the dipole trap. Subsequently, the atoms are released for
absorption imaging after a 15 ms time of flight (TOF), at the beginning of which a Stern–Gerlach process is performed for 9ms to separate atoms of
different bare spin states. c The ground band (solid lines) of synthetic SOC is calculated for a few representative Ω at δR= 0. A higher band calculated for
Ω= 1.3 Er is shown as dashed lines. The colors indicate the spin compositions, with red for #j i and blue for "j i. The ground band minima in
quasimomentum marked by dots are identified with spin-dependent vector potentials (Aσ), which shift in opposite directions as Ω is lowered into the
double minima regime during tE. This generates spin-dependent synthetic electric fields Eσ and thus excites the SDM and an AC spin current along the SOC
direction in a trapped BEC. The upper (lower) dashed circle represents the region around qy= 0 in the double minima band at an exemplary ΩF= 0 (ΩF=
1.3 Er), from which the two (dressed) spin components of the BEC roll down towards the corresponding band minima in response to the application of Eσ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08119-4

2 NATURE COMMUNICATIONS |          (2019) 10:375 | https://doi.org/10.1038/s41467-018-08119-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


#; �h qy þ kr
� ���� E

; "; �h qy � kr
� ���� En o

as21:

HSOC ¼
�h2

2m qy þ kr
� �2

�δR
Ω
2

Ω
2

�h2

2m qy � kr
� �2

0
B@

1
CA ð1Þ

where Ω is the Raman coupling (tunable by the Raman laser
intensity), δR= ħ(ΔωR− ωZ) is the Raman detuning (tunable by
B) and is zero in our main measurements (see Methods). A
dressed state is an eigenstate of Eq. (1), labeled by qy, and is a
superposition of bare spin and momentum states. The qy-
dependent eigenvalues of (1) define the ground and excited
energy bands. When Ω is below a critical Ωc, the ground band
exhibits double wells, which we associate with the dressed spin up
" ′j i and down # ′j i states. The double minima at quasimo-
mentum ħqσ min can be identified with the light-induced spin-
dependent vector potentials Aσ ¼ Aσ ŷ (controllable by Ω), where
σ labels " ′j i or # ′j i20 (see Methods). The double minima merge
into a single minimum as Ω increases beyond Ωc, as shown in the
dashed line trajectories in Fig. 1c.

We prepare a BEC around the single minimum of the ground
dressed band at ΩI (= 5.2 Er for this work) and δR= 0 by ramping
on Ω slowly in 80ms and holding it for 100ms (Fig. 1b, c, see
Methods for details). Then, we quickly lower Ω from ΩI to a final
value ΩF into the “double minima” regime in time tE. The tE= 1ms
used in this work is slow enough to avoid higher band excitations
but is fast compared to the trap frequencies. The dotted lines in
Fig. 1c trace the opposite trajectories of A"′ and A#′ during tE. This
quench process drives the system across the single minimum to
double minima phase transition and generates spin-dependent
synthetic electric fields Eσ ¼ Eσ ŷ=� ∂Aσ=∂tð Þŷ � � ΔAσ=tEð Þŷ.
Consequently, atoms in different dressed spin components move off
in opposite directions from the trap center (or from the region
around qy= 0 in the quasimomentum space as shown in Fig. 1c as
dashed circles for two representative ΩF= 0,1.3 Er) and
then undergo out-of-phase oscillations, thus exciting the SDM
and an AC spin current. Approximately equal populations in the
two dressed (or bare) spin components are maintained by keeping

δR= 0 as Ω is changed from ΩI to ΩF (see Methods). After the
application of Eσ, the Raman coupling is maintained at ΩF during
the hold time (thold). We then abruptly turn off both the Raman
lasers and the dipole trap for time of flight (TOF) absorption
imaging, measuring the bare spin and momentum composition of
the atoms (Fig. 1b). Experiments are performed at various thold to
map out the time evolution in the trap.

Measurements of the spin-dipole mode (SDM) and its damp-
ing. Figure 2 presents SDM measurements for a bare BEC (at
ΩF= 0) and a dressed (or SO-coupled) BEC (at ΩF= 1.3 Er), with
select TOF images taken after representative thold in the trap. Two
TOF images labeled by thold=−1 ms are taken right before the
application of Eσ. In the bare case (Fig. 2a), the images taken at
increasing thold show several cycles of relative oscillations (SDM)
between the two spin components in the momentum space,
accompanied by a notable reduction in the BEC fraction. We
refer to the reduction of condensate fraction in this paper as
thermalization. In the dressed case at ΩF= 1.3 Er (Fig. 2b),
despite the fact that Aσ are nearly the same as that for the bare
case, the SDM is now strongly damped without completing
one period. Besides, we observe higher BEC fraction remaining at
the end of the measurement compared with the bare case. This
can be seen in the narrower momentum distribution of thermal
atoms with a more prominent condensate peak in Fig. 2b. From
the TOF images, we fit the atomic cloud of each bare spin
component (or dominant bare spin component of a dressed spin
component) to a 2D bimodal distribution to extract the center-of-
mass (CoM) momentum ħk↑(↓) or other (dressed) spin-dependent
quantities (see Methods). The relative mechanical momentum
between the two spin components in the SDM is then determined
by ħkspin= ħ(k↑− k↓).

Figure 3a–e presents measurements of ħkspin versus thold at
various ΩF. We see that the initial amplitude (2ħkr) of ħkspin is
larger than the width of the atomic momentum distribution
(<ħkr), and ħkspin damps to around zero at later times. The
observed ħkspin as a function of thold is fitted to a damped sinusoid
A0e

�thold=τdamp cos ωthold þ θ0ð Þ þ B0 (see Methods) to extract the
decay time constant τdamp. The SDM damping is then quantified
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Fig. 2 SDM of a bare or a dressed BEC. Select TOF images showing the bare spin and momentum compositions of atoms taken after applying spin-
dependent synthetic electric fields Eσ with ΩF= 0 (bare BEC) in a and ΩF= 1.3 Er (SO-coupled BEC) in b, followed by various hold times (thold) in the dipole
trap. The TOF images labeled by thold=−1 ms are taken right before the application of Eσ. The bare spin components (labeled by mF, with #j i in red and "j i
in blue) are separated along the horizontal axis. The vertical axis shows the atoms’ mechanical momentum ħk along the SOC direction ŷð Þ. The color scale
reflects the measured optical density (OD, see Methods). The total condensate atom number of the initial state at ΩI is Nc ~ (1–2) × 104 with trap
frequencies ωz ~ 2π × (37 ± 5) Hz and ωx ~ωy ~ 2π × (205 ± 15) Hz. The TOF images (and associated analyzed quantities presented later) are typically the
average of a few repetitive measurements
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by the inverse quality factor 1/Q= ttrap/(πτdamp), where 1/ttrap is
the trap frequency along ŷ taking into account of the effective
mass for the dressed case (see Methods). We observe that the
damping (1/Q) is higher for larger ΩF, summarized by the purple
data in Fig. 3f. Additionally, we have performed two control
experiments, which suggest that SOC alone cannot cause
momentum damping and thermalization if there are no collisions
between the two dressed spin components. Only when there is
SDM would notable thermalization be observed within the time
of measurement. First, we measure the dipole oscillations17,22 of a
SO-coupled BEC with a single dressed spin component prepared
in # ′j i at various ΩF. This gives a spin current as well as a net
mass current. We observe (e.g., Supplementary Fig. 1 in
Supplementary Note 1) that these single-component cases exhibit
very small damping (1/Q < 0.05, summarized by the red square
data in Fig. 3f) and negligible thermalization. In another control
experiment, we generate only an AC mass current without a spin
current by exciting in-phase dipole oscillations of two dressed
spin components of a SO-coupled BEC without relative collisions
(SDM). This experiment also reveals very small damping and
negligible thermalization (see Supplementary Fig. 2 in Supple-
mentary Note 1).

Thermalization and spin current. We now turn our attention to
the thermalization, i.e., the reduction of condensate fraction due
to collisions between the two spin components. To quantitatively
describe the observed thermalization, the integrated optical
density of the atomic cloud in each spin component is fitted to a
1D bimodal distribution to extract the total condensate fraction
fc=Nc/N (see Methods) with N being the total atom number and
Nc the total condensate atom number (including both spin states).
The time (thold) evolution of the measured fc is plotted for the
bare (ΩF= 0) and dressed (ΩF= 1.3 Er and 2.1 Er) cases in
Fig. 4a. In all the cases, we observe that fc first decreases with time
before it no longer changes substantially (within the experimental
uncertainty) after some characteristic thermalization time

(τtherm). To capture the overall behavior of the thermalization, we
fit the smoothed thold-dependent data of fc to a shifted expo-
nential decay fc(thold)= fs+ (fi− fs)exp(−thold/τtherm), where
τtherm represents the time constant for the saturation of the
decreasing condensate fraction and fs the saturation condensate
fraction (see Methods). We obtain τtherm= 3.8(4) ms, 2.4(3) ms,
and 0.4(1) ms for ΩF= 0, 1.3 Er, and 2.1 Er, respectively. Besides,
a notably larger condensate fraction (fs) is left for a larger ΩF,
where fs ~ 0.2, 0.3, and 0.4 for ΩF= 0, 1.3 Er, and 2.1 Er,
respectively. Since thermalization during our measurement time
is induced by the SDM, the observation that a larger ΩF gives rise
to a smaller τtherm and a larger fs (Fig. 4b) thus less thermalization
is understood as due to the stronger SDM damping (smaller
τdamp) at larger ΩF, stopping the relative collision between the two
spin components thus the collision-induced thermalization
earlier.

The coherent spin current is phenomenologically defined as
Is= I↑− I↓ (see Methods), where Iσ=↑,↓ is given by:

Iσ ¼
Nσ
c

Lσ
vσ ¼ f σc v

σ N
σ

Lσ
ð2Þ

Here, σ labels the physical quantities associated with the spin
component σ, Lσ is the in situ BEC size along the current
direction, and vσ= ħkσ/m. We exclude the contribution from the
thermal atoms as only the condensate atoms participate in the
coherent spin transport. In our experiments, N↑/L↑ ≈N↓/L↓ is not
observed to decrease significantly with thold, and f "c � f #c � fc,
thus the relaxation of Is is mainly controlled by that of
f "c v

" � f #c v
# � fc v" � v#

� �
. Therefore, the SDM damping (reduc-

tion of v↑− v↓) and thermalization (reduction of fc) provide the
two main mechanisms for the relaxation of coherent spin current.

Figure 4c shows the normalized Is as a function of thold
extracted (see Methods) for ΩF= 0 and 1.3 Er. In the bare case,
the spin current oscillates around and decays to zero. In the
dressed case, the spin current relaxes much faster to zero without
completing one oscillation. Fitting Is versus thold to a damped
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sinusoidal function for ΩF= 0 or to an exponential decay for
ΩF= 1.3 Er (with no observable Is oscillations) allows us to
extract the spin current decay time constant τspin, which is 5.1(8)
ms and 0.5(0) ms, respectively. In the dressed case Is decays much
faster compared to the bare case because both τdamp and τtherm are
much smaller due to stronger SDM damping. In the bare case, the
thermalization plays a more important role in the relaxation of Is
due to the larger reduction of condensate fraction (fi− fs)
compared to the dressed case.

Observation of deformed atomic clouds and BEC shape oscil-
lations. In addition to the SDM damping and thermalization, the
atomic clouds can exhibit other rich dynamics after the applica-
tion of Eσ. We observe deformation of atomic clouds at early
stages of the SDM, as shown in Fig. 5a–d. Figure 5b, d shows the
observation of an elongated atomic cloud at thold= 0.5 ms in the
dressed case at ΩF= 2.1 Er, in comparison with the atomic cloud

at thold= 0.5 ms in the bare case shown in Fig. 5a, c. Figure 5c, d
shows the integrated optical density (denoted by ODy) of the
atomic cloud versus the y direction, obtained by integrating the
measured optical density over the horizontal direction in TOF
images. The momentum distribution of the atoms at ΩF= 2.1 Er
has lower ODy and is more elongated without a sharp peak along
the SOC direction, in comparison with the bare case that has
higher ODy and a more prominent peak momentum. Further-
more, we observe that the relaxation of the spin current is
accompanied by BEC shape oscillations52–54 (Fig. 5e, f), which
remain even after the spin current is fully damped. These addi-
tional experimental observations are closely related to the spin
current relaxation, as discussed below.

GPE simulations and interpretations. We have performed
numerical simulations for the SDM based on the 3D time-
dependent Gross-Pitaevskii equation (GPE), using similar
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function of thold for ΩF= 0 and 1.3 Er. The solid curves are fits (see text)

–1

0

mF

O
D

y

O
D

y

Measurement #1
Measurement #2
Measurement #3

fea

c d

b

01
0

2

4

6

0

2

4

6

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0.00.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0 5 10 15 20 25 300 5 10 15 20 25 30

–1

0

1

–1

1

OD

0.3

0

ΩF = 0 Er ΩF = 0.9 Er
ΩF = 1.3 Er
ΩF = 2.1 Er

A
sp

ec
t r

at
io

 W
y 

/ W
z'

Hold time thold (ms) Hold time thold (ms)

A
sp

ec
t r

at
io

 W
y 

/ W
z'

−1
hk (hkr)

hk
 (

hk
r)

hk
 (

hk
r)

0–1 1
hk (hkr)

ΩF = 0 Er

ΩF = 0 Er

ΩF = 2.1 Er

ΩF = 2.1 Er
thold = 0.5 ms thold = 0.5 ms

0 –1
mF

0

Fig. 5 Observation of deformed atomic clouds and BEC shape oscillations. a–d Observation of deformed atomic clouds at early stages of the SDM. a, b TOF
images for ΩF= 0 and ΩF= 2.1 Er at thold= 0.5 ms are shown for comparison. The corresponding integrated optical density (ODy) versus the momentum in
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parameters as in the experiments. The ΩF-dependent 1/Q
extracted from the GPE-simulated SDM (Fig. 6a–c) shows qua-
litative agreement with the experimental measurements
(Fig. 6d, e). Quantitatively, we notice that the GPE simulation
generally underestimates the momentum damping compared to
the experimental observation (Fig. 6e), especially at low ΩF

(including the bare case). This is possibly related to the fact that
our GPE simulation cannot treat thermalization (which is more
prominent at low ΩF) and effects of thermal atoms. Nonetheless,
the in situ (real space) spin-dependent density profiles (Fig. 6f–j)
of the BECs calculated from the GPE simulations have provided

important insights to understand why SOC can significantly
enhance the SDM damping. Figure 6f shows that the initial BEC
(just before applying Eσ) in the trap is in an equal superposition of
bare spin up and down states. Figure 6g–j shows the density
profiles of the BECs at thold= 1.5 ms (after applying Eσ) in the
trap with four different ΩF (see Supplementary Movies 2, 4 and 5
in Supplementary Note 3). For the bare case, the two spin com-
ponents fully separate in the real space within the trap. As ΩF

becomes larger, we observe that only a smaller portion of atoms
in each spin component is well separated, as marked by the white
arrows. Concomitantly, a larger portion of atoms appears to get
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ρσ(ky) is obtained by integrating the 3D momentum density along kx and kz, i.e., ρσ ky

� � ¼ R ρσ kx; ky; kz
� �

dkxdkz. Then, these integrated 1D atomic
momentum densities for sequential hold times (thold) are combined to show the atomic density in momentum space along the SOC direction versus thold.
c GPE simulations of the SDM damping versus thold at various ΩF. The violet lines are the ħkspin (defined as the difference between the CoM momenta of
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from Fig. 3f. e Replotting of d with 1/Q shown in logarithmic scale. f–j In situ (real space) atomic densities calculated from GPE simulations. f Initial in situ
2D density at Ω=ΩI (right before applying spin-dependent electric fields Eσ). g–j In situ 2D density at thold= 1.5 ms (after the application of Eσ) for ΩF= 0,
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spin populations). The 2D densities ρσ(x, y) in f–j are obtained by integrating the 3D atomic density along z, i.e., ρσðx; yÞ ¼

R
ρσðx; y; zÞdz. In this figure, the

simulations used the following parameters representative of our experiment: ΩI= 5.2 Er, δR= 0, Nc= 1.6 × 104, ωz= 2π × 37 Hz, ωx=ωy= 2π × 205 Hz,
tE= 1.0 ms
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stuck around the trap center and form a prominent standing
wave pattern, which we interpret as density modulations arising
from the interference between the BEC wavefunctions of the two
dressed spin components when " ′j i and # ′j i are no longer
orthogonal in the presence of SOC (see Fig. 7a)21,55–58. Com-
pared to the bare case, the formation of density modulations in
the dressed case can lead to more deformed clouds in both the
real and momentum spaces at early stages in the SDM, as
revealed by the GPE simulations (Fig. 6a, b, f–j; Supplementary
Movies 2, 4 and 5 in Supplementary Note 3). This is consistent
with our experimental observation of a highly elongated
momentum distribution of the atomic cloud along the SOC
direction ŷð Þ at early instants in the SDM of a SO-coupled BEC
(Fig. 5b, d).

In addition to density modulations, our GPE simulation also
reveals complex spatial modulation in the phase of the BEC
wavefunctions (see Supplementary Fig. 9 and Supplementary
Movies 3 and 6 in Supplementary Note 3). Such distortions of
BEC wavefunctions in the amplitude (which determines the
density) and the phase contribute to quantum pressure59 and
local current kinetic energy (see Methods) respectively, two forms
of the kinetic energy that do not contribute to the global

translational motion (or CoM kinetic energy) of each spin
component. The sum of the CoM kinetic energy, quantum
pressure, and local current kinetic energy is the total kinetic
energy (see Methods). We have used GPE to calculate the time
evolution of these different parts of kinetic energy for the dressed
case, showing that the damping of the CoM kinetic energy (which
decays to zero at later times) is accompanied by (thus likely
related to) prominent increase of the quantum pressure and the
local current kinetic energy (both remain at some notable finite
values at later times) (see Fig. 8e–h). The increasing quantum
pressure and local current kinetic energy may reflect the
emergence of excitations that do not have the CoM kinetic
energy. This is consistent with the experimentally observed
generation of BEC shape oscillations (Fig. 5e, f), whose kinetic
energy can be accounted for by the quantum pressure and the
local current kinetic energy. Note that the excitation of BEC
shape oscillations may also be understood by the observation of
deformed clouds at early stages of the SDM (Fig. 5a–d), because
the deformed shape of the BEC is no longer in equilibrium with
the trap and thus initiates the shape oscillations. The observed
BEC shape oscillations remain even after the SDM is completely
damped in both bare and dressed cases. This indicates that the
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and # ′j i located respectively at ħqy and −ħqy. a When Ω= 0, the nonorthogonality is zero because the two bare spin components are orthogonal. When
Ω≠ 0, either increasing Ω or decreasing qy would increase 〈↑′|↓′〉, giving rise to stronger interference and more significant density modulations in the
spatially overlapped region of the two dressed spin components. b, c Effective interspecies (g↑′↓′) and intraspecies (g↑′↑′, g↓′↓′) interaction parameters
versus quasimomentum at Ω= 0.1 Er and 1.26 Er, respectively. When Ω increases or qy decreases, g↑′↓′ increases while g↑′↑′ and g↓′↓′ almost remain at the
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� �
=g2"" in Eq. (13) (see Methods) versus ħqy corresponding to b. η < 0 means miscible, and

η > 0 means immiscible. Over the range of plotted ħqy, d can be miscible or immiscible depending on ħqy. The inset of d zooms in to focus on the sign
change of η. The vertical dotted line in (b–d) indicates ħqσ min corresponding to the Ω in each case. The calculations are performed in the two-state picture
described by Eq. (1) with δR= 0. e, f Immiscibility metric η versus Ω for various qy. In e, as Ω becomes larger or qy becomes smaller, the two dressed spin
components can become more immiscible until η reaches the maximum value set by the upper bound of g↑′↓′ (see also b, c). f Zoom-in of e showing the
miscible to immiscible transition (indicated by the gray dashed line at η= 0) as a function of Ω for various qy. The red dot-dashed line corresponds to two
dressed spin components located respectively at the band minima qσ min, showing the well-known miscible to immiscible transition around 0.2 Er for a
stationary SO-coupled BEC. In the dynamical case studied here, BECs can be located away from the band minima and approach qy= 0, becoming
immiscible even when Ω < 0.2 Er for small enough qy
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BECs are still excited even after the CoM relaxes to the single-
particle band minima within the time of measurement.

Discussion
Previous studies in stationary SO-coupled BECs (located at
ground dressed band minima) have found that increasing Ω
drives a miscible to immiscible phase transition at Ω ~ 0.2 Er due
to the increased effective interspecies interaction (characterized
by the interaction parameter g↑′↓′)21,55–57,60. In the miscible
phase, the two dressed spin components have substantial spatial
overlap, where density modulations form. It is important to note
that the effective interactions, immiscibility and interference
between the two dressed spin components depend on the qua-
simomentum (ħqy) and ΩF (Fig. 7, see Methods for details).
Therefore, in the dynamical case studied here, these properties
vary with time and can be notably different from those in the
stationary case. During the SDM, the two dressed spin compo-
nents are forced to collide due to Eσ. This can give rise to
interference-induced density modulations in their spatially
overlapped region even when they are immiscible. In addition,
the BECs during the SDM can be located away from the band
minima and approach qy= 0. For the two dressed spin compo-
nents with quasimomenta ±ħqy, either increasing ΩF or
decreasing |qy| (towards 0) would increase 〈↑′|↓′〉 (Fig. 7a),
giving rise to stronger interference and more significant
density modulations. Such increased non-orthogonality
between the two dressed spin states also notably increases the
effective interspecies interaction (g↑′↓′) to become even larger than
the effective intraspecies interactions (g↑′↑′ ≈ g↓′↓′) (Fig. 7b, c),

enhancing further the immiscibility (Fig. 7d–f). For example,
Fig. 7d shows the calculated immiscibility metric (see Methods),
η ¼ ðg2"′#′ � g"′"′g#′#′Þ=g2"", versus ħqy corresponding to Fig. 7b.
Notice that when Ω is large enough, " ′j i and # ′j i can become
immiscible in the whole range of quasimomentum that a BEC can
access during the SDM. Figure 7e shows η versus Ω at various
ħqy. We see that as Ω becomes larger or qy becomes smaller, the
two dressed spin components can become more immiscible (i.e.,
η becomes more positive) until η reaches the maximum value set
by the upper bound of g↑′↓′. Figure 7f zooms in the region of small
Ω in Fig. 7e to focus on the sign change of η from negative to
positive, which indicates the miscible to immiscible transition.
Note that the red dot-dashed line (for qy= qσ min) corresponds to
two dressed spin components located respectively at the band
minima qσ min, showing the well-known miscible to immiscible
transition around 0.2 Er for a stationary SO-coupled BEC. In the
dynamical case studied here, BECs can be located away from the
band minima and approach qy= 0, becoming immiscible even
when Ω < 0.2 Er for small enough qy.

We have performed several additional control GPE simula-
tions, showing that the presence or the enhancement of any of
these three factors can increase the damping of the relative
motion between two colliding BECs: (1) interference (Supple-
mentary Fig. 5 and Supplementary Movie 1 in Supplementary
Note 3), (2) immiscibility (Supplementary Fig. 4 and Supple-
mentary Table 1 in Supplementary Note 3), and (3) interactions
(Supplementary Figs. 4, 6, 7 and 8 and Supplementary Table 1 in
Supplementary Note 3), presumably by distorting the BEC
wavefunctions (see Supplementary Movies 1–6 in Supplementary
Note 3) irreversibly in the presence of interactions to decrease the
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CoM kinetic energy while increasing the quantum pressure and
the local current kinetic energy. Therefore, enhanced immisci-
bility, interference, and interactions can all increase the damping
of the SDM. For simulations in the absence of interactions, we do
not observe irreversible damping within the simulation time of
100 ms (Supplementary Figs. 6–8 in Supplementary Note 3),
suggesting that the interactions play an essential role for the
damping mechanisms.

The physical mechanisms and processes revealed in our work
may provide insights to understand spin transport in interacting
SO-coupled systems. Our experiment also provides an exemplary
study of the evolution of a quantum many-body system, includ-
ing the generation and decay of collective excitations, following a
non-adiabatic parameter change (quench). Such quench
dynamics has been of great interest to study many outstanding
questions in many-body quantum systems. For example, how
such a system, initially prepared in the ground state but driven
out of equilibrium due to a parameter quench that drives the
system across a quantum phase transition, would evolve to the
new ground state or thermalize has attracted great interests (see,
e.g., a recent study where coherent inflationary dynamics has
been observed for BECs crossing a ferromagnetic quantum cri-
tical point61). In our case, the sudden reduction of Ω in the
Hamiltonian Eq. (1) excites the coherent spin current, whose
relaxation is strongly affected by SOC and is related to the SDM
damping as well as thermalization. Besides, the relaxation may be
accompanied by the generation of other collective excitations
such as BEC shape oscillations. Furthermore, compared to the
bare case, the SOC-enhanced damping of the SDM notably
reduces the collision-induced thermalization of the BEC, resulting
in a higher condensate fraction left in the BEC. This condensate
part exhibits a more rapid localization of its CoM motion, which
may be more effectively converted to other types of excitations
(associated with the SOC-enhanced distortion of the BEC wave-
functions). These features suggest that SOC opens pathways for
our interacting quantum system to evolve that are absent without
interactions, in our case providing new mechanisms for the spin
current relaxation. Experiments on SO-coupled BECs, where
many parameters can be well controlled in real time and with the
potential of adding other types of synthetic gauge fields, may offer
rich opportunities to study nonequilibrium quantum dynamics62,
such as Kibble–Zurek physics while quenching through quantum
phase transitions63, and superfluidity16,33 in SO-coupled systems.

Methods
Spin-dependent vector potentials. In Eq. (1), the eigenenergies at δR= 0 are
given by:

E± qy
� �

¼ �h2q2y
2m

þ Er ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω

2

� 	2

þ �h2krqy
m

 !2
vuut ð3Þ

For Ω <Ωc, the ground band of the energy-quasimomentum dispersion has two
minima at:

qσmin Ωð Þ ¼ ± kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω=Ωc

� �2q
ð4Þ

The state of the atoms associated with each minimum at qσ min can be regarded as
a dressed spin state. For a double minima band structure, we thus have two dressed
spin components σ ¼ # ′j i and " ′j i that constitute a pseudo spin-1/2 system (when
Ω= 0, " ′j i and # ′j i become the bare spin "j i and #j i, respectively). The energy
spectrum expanded around each qσ min as E(qy)= ħ2(qy− qσ min)2/(2m*) is analogous
to the Hamiltonian describing a charged particle with charge Q in a magnetic vector
potential A, Ĥ ¼ ðp̂y � QAÞ2=ð2mQÞ, where m* is the effective mass of a dressed
atom and mQ is the mass of the charged particle. Therefore, we can identify the
quasimomentum (ħqy) with the canonical momentum ðp̂y ¼ �i�h ∂

∂yÞ, and ħqσ min

with the light-induced spin-dependent vector potentials (Aσ, by setting Q= 1 for our
case20). The velocity operator corresponding to the mechanical momentum,

v̂y ¼ �½Ĥ; y�=ði�hÞ ¼ ðp̂y � QAÞ=mQ , thus corresponds to ħ(qy− qσ min)/m*. These
spin-dependent vector potentials Aσ (represented by ħqσ min) are tunable by Ω. For
example, as seen in Fig. 1c, we can decrease Ω to separate the two ħqσ min or increase
Ω to combine them in the quasimomentum space.

Effects of the neglected mF ¼ þ1j i state. We apply an external bias magnetic
field B ¼ Bẑ (~5 gauss) to Zeeman split the energies E−1, E0, and E+1 of the
mF ¼ �1j i, mF ¼ 0j i, and mF ¼ þ1j i sublevels respectively (in the F= 1 hyper-
fine state of 87Rb atoms), where E−1− E0= ħωZ, E0− E+1= ħωZ− 2ε, ħ is the
reduced Planck constant and ε= (E−1+ E+1)/2− E0 is the quadratic Zeeman shift.
The frequency difference between the two Raman lasers is ΔωR/(2π)= 3.5 MHz.
The Raman detuning δR= ħ(ΔωR− ωZ) is controlled by B that controls ħωZ. In a
first-order approximation, the third state jmF ¼ þ1; �hk ¼ �hðqy � 3krÞi can be
excluded in Eq. (1) due to the quadratic Zeeman shift (2ε ~ 0.9 Er) from B but can
be included in the following three-state Hamiltonian:

H3 ¼

�h2

2m qy þ kr
� �2

�δR
Ω
2 0

Ω
2

�h2

2m qy � kr
� �2

Ω
2

0 Ω
2

�h2

2m qy � 3kr
� �2

þδR þ 2ε

0
BBBBB@

1
CCCCCA ð5Þ

In our SDM experiments, we always maintain approximately equal spin
populations in the #j i ¼ mF ¼ �1j i and "j i ¼ mF ¼ 0j i states both in the initial
dressed state prepared at ΩI and in the final dressed state at ΩF (with
approximately equal populations also achieved in # ′j i and " ′j i at ΩF). In Eq. (1)
based on the two-state picture in the main text, δR= 0 can give rise to such
balanced (dressed/bare) spin populations at any given Ω. However, in Eq. (5) with
δR= 0, a finite Ω can lead to unbalanced (dressed/bare) spin populations.
Therefore, in our experiment δR at a given Ω has to be changed to δ′(Ω,ε) to
achieve the balanced spin populations (note that in the double minima regime of
Eq. (5), this requirement is in a good approximation equivalent to the so-called
balanced band condition where the two minima in the ground dressed band have
equal energy). Such an effect is addressed in details in ref. 21. In our case, also note
that including the third state in Eq. (5) would cause the actual transition from the
double minima to single minimum to occur at Ωc ~ 4.7 Er rather than at Ωc= 4.0
Er as would be predicted by Eq. (1). Additionally, Eq. (5) is used for plotting
Figs. 1c and 3g, h, which more precisely means δR= δ′(Ω, ε) to achieve the
balanced spin populations for the corresponding Ω. In the following, we use Eq. (5)
to describe the initial state preparation process.

Initial state preparation, spin population balance, and imaging process. We
create spin-polarized 87Rb BECs in mF ¼ 0j i in an optical dipole trap consisting of
three cross laser beams (with a third beam added to the double beam dipole trap
described in ref. 64). To prepare the initial state of the BEC at the single minimum of
the ground dressed band at ΩI= 5.2 Er (at δR= δ′(ΩI, ε), shown in Fig. 1c), first
the Raman coupling Ω is ramped on slowly from 0 to ΩI in 80ms (slow enough
compared to the trap period and any inter-band excitation process) with δR ~−ε in
Eq. (5), such that the dominant bare spin component of the dressed BEC at any finite
Ω during the ramping process remains in mF ¼ 0j i. Subsequently, while holding Ω
at ΩI, we adjust B to change the Raman detuning from δR ~−ε to δR= δ′(ΩI, ε) in
80ms, and then we hold both Ω and δR for another 20ms to let the system equi-
librate. Note that adjusting δR to δ′(ΩI, ε) has to be empirically achieved by realizing
the balanced spin populations, with the reasons addressed in the next paragraph.
When the BEC is successfully prepared in the initial state at ΩI, equal populations in
the mF ¼ �1;þ�hkrj i and mF ¼ 0;��hkrj i states can be achieved and seen in TOF
images measured at thold=−1ms.

In addition to the change in the band structure when going from the two-state
picture to the three-state picture as discussed in the previous section, there are
several other experimental factors that can lead to unbalanced spin populations.
First, the slow drift in Ω can tilt (therefore unbalance) the band at a fixed δR.
Second, a slow drift in B would give rise to a drift in δR. Third, sometimes there
may still be excitations (for example, small-amplitude collective dipole oscillations
of a dressed BEC) at the end of the initial state preparation65, making the
quasimomentum of the dressed BEC deviate slightly from the quasimomentum of
the band minimum. As a result, the dressed BEC can have a nonzero group velocity
and unbalanced spin populations at ΩI (before applying the spin-dependent
electric fields Eσ). Hence, this can lead to unbalanced spin populations after the
application of Eσ, and the spin polarization P of atoms is not maintained around
zero during thold. Here, we define P= (N↑−N↓)/(N↑+N↓), where N↑(↓) is the total
atom number of the atomic cloud (measured in the TOF images) for the bare spin
component ↑(↓). Fourth, the quench process from the single minimum to double
minima bands during tE (Fig. 1c) may also give rise to unbalanced spin
populations, presumably because of the access to the magnetic phase in the double
minima regime where the ground state is the occupation of a single dressed spin
state (the two occupied dressed spin states are metastable states).

The above effects are avoided in our experiments by making sure that the
balanced spin populations are empirically achieved throughout our experiment
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(with occasional adjustment of δR, and discarding runs with notably unbalanced
spin populations). More specifically, we first make sure that balanced spin
populations can be achieved at ΩI, assuring δR= δ′(ΩI, ε) after the initial
preparation described above. Then, we linearly ramp δR from δ′(ΩI, ε) to δ′(ΩF, ε)
as we change Ω from ΩI to ΩF in tE, and subsequently hold δR at δ′(ΩF, ε) for
various thold. Here, δR= δ′(ΩF, ε) is empirically achieved by realizing balanced
spin populations at Ω=ΩF for various thold. Therefore, when we state δR= 0 at a
given Ω in the main text, it more precisely means that we realize balanced
spin populations (as would be achieved at δR= 0 in the 2-state picture described
by Eq. (1)).

The above-mentioned procedure of realizing δR= δ′(ΩF, ε) is further
experimentally verified by observing balanced spin populations using the same bias
magnetic fields but with tE= 15 ms and thold= 30 ms (slow enough to not to excite
notable SDM). This suggests that such a choice of δR= δ′(ΩF, ε) approximates a
balanced double minima band (with two equal-energy minima) at ΩF.

For the SDM measurements (e.g., Fig. 3), we make sure that the typical spin
polarization is close to zero, with |P|= 0.05 ± 0.04, where 0.05 is the mean and 0.04
is the standard deviation of the data. Note that we used the total atom numbers
N↑(↓) instead of condensate atom numbers N"ð#Þ

c to obtain P due to the less
fluctuation in the fitted N↑(↓). Typically images with such small P, indicating good
spin population balance for the whole atomic cloud, also do not exhibit notable
spin population imbalance in their condensate parts.

After holding the atoms in the trap at ΩF for various thold, we turn off all lasers
abruptly and do a 15-ms TOF, which includes a 9-ms Stern–Gerlach process in the
beginning to separate the atoms of different bare spin states. Then, the absorption
imaging is performed at the end of TOF to obtain the bare spin and momentum
compositions of atoms. We then extract the physical quantities such as the
mechanical momentum, condensate and thermal atom numbers of the atomic
cloud in each spin state from such TOF images.

Analysis of momentum damping. Since the propagation direction x̂′ð Þ of our
imaging laser is ~27° with respect to the x-axis in the x− z plane (see Fig. 1a), the
TOF images are in the y− z′ plane (where ẑ′ is perpendicular to x̂′ in the x− z
plane). The atomic cloud of each (dominant) bare spin component in the TOF
images is fitted to a 2D bimodal distribution:

Amax 1� y�yc
Ry

� �2
� z′�zc

Rz′

� �2
; 0

� 	3=2

þB exp � 1
2

y�ycT
σy

� �2
þ z′�zc

σz′

� �2� 	� 	 ð6Þ

where the first term corresponds to the condensate part according to the Thomas-
Fermi approximation and the second term corresponds to the thermal part. Note
that we only fit the majority bare spin cloud component when there is a distin-
guishable minority bare spin cloud component (which belongs to the same dressed
spin state, but has a population <9% of the majority component in our experi-
ments). This convention also applies to the analysis of the spin polarization defined
above, condensate fraction, and the coherent spin current (see below). In the spin
current or SOC directions ŷð Þ, we obtain the relative mechanical momentum
between the two bare spin components ħkspin= ħ(k↑− k↓) from the difference
between the center-of-mass positions of their condensate parts y"c � y#c

� �
and the

calibration of 2ħkr in TOF images (for example, 2ħkr can be calibrated from the
distance between different bare spin components ↑ and ↓ that are in the same
dressed spin state ↑′). To obtain the damping (1/Q) of the relative momentum
oscillations in SDM (Fig. 3), ħkspin as a function of thold is fitted to a damped
sinusoidal function A0e

�thold=τdamp cos ωthold þ θ0ð Þ þ B0, where τdamp is the
momentum decay time constant. The data have a small offset B0 because we only
use the majority bare spin component in each dressed spin component when
extracting ħk↑,↓. We extract τdamp to obtain the inverse quality factor 1/Q= ttrap/

(πτdamp), where ttrap ¼ ð2π=ωyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff=m

p
is the trap period along the y direction

taking into account of the effective mass meff for the dressed band around qσ min, m
is the bare atomic mass, and ωy/(2π) is the trap frequency along the y direction in
the absence of Raman lasers. Note that the effective masses around the two minima
in the dressed ground band are nearly the same so we take their average as the meff.
The standard error of the fit (95% confidence intervals) is obtained for determining
the uncertainty of 1/Q shown in Fig. 3 in the main text.

For the dipole oscillations of a BEC with a single dressed spin component
prepared in the # ′j i state (see Supplementary Note 1), we fit ħk↓ (mechanical
momentum of the dominant bare spin component #j i) as a function of thold to a
damped sinusoidal function to extract τdamp and thus to obtain 1/Q. The minority
bare spin "j i component oscillates in phase with the dominant #j i component with
similar damping, and thus is not taken into account for determining 1/Q.

Analysis of condensate fraction. During the SDM, the atomic cloud can be
significantly deformed along ŷ due to the interference between the two dressed spin
components (see e.g., Fig. 5). Therefore, in order to extract the total condensate
fraction (fc=Nc/N) of atoms to study the thermalization behavior as shown in
Fig. 4a, b, the measured optical density (OD) of each bare spin component σ in the
y− z′ plane is integrated along the y direction (the direction of SOC and the spin

current as well as the direction along which the cloud can be significantly distorted)
to obtain an integrated optical density versus z′ (denoted by ODz′). We fit ODz′ of
each bare spin component σ to a 1D bimodal distribution Amaxð1� ðz′�zc

Rz′
Þ2; 0Þ2

+ B expð� 1
2 ðz′�zc

σz′
Þ2Þ, where the first term corresponds to the condensate part

according to the Thomas-Fermi approximation and the second term corresponds
to the thermal part, to get the corresponding condensate and thermal atom
numbers, Nσ

c and Nσ
therm, respectively. The total condensate fraction is calculated as

fc ¼ Nc=N = ðN"
c þ N#

c Þ=ðN"
c þ N"

therm þ N#
c þ N#

thermÞ, shown as the scatters
(unsmoothed raw data) in Fig. 4a.

To quantitatively describe the thermalization, we fit the smoothed total
condensate fraction versus thold to a shifted exponential decay fc(t)= fs+ (fi− fs)
exp(−t/τtherm), where τtherm represents the time constant for the thermalization to
stop and for the decreasing condensate fraction to saturate, with fs being the
saturation condensate fraction. Because the large fluctuations in the unsmoothed
data can give erroneous fitting results, each fitted curve shown as a solid line in
Fig. 4a is the average of the three fits performed on the smoothed data, obtained
using different levels (M= 1, 2, 3) of smoothing, where the smoothing is done by
taking the average of the raw data within the nearest M time intervals.

Notice that the heating effect due to our Raman lasers (such as from
spontaneous emission) is negligible within the time scale of the experiments
(30 ms), because the lifetime of our BEC in the presence of the Raman lasers (with
the Raman coupling considered in this work) is measured to be hundreds of ms.
For example, the control experiment in Supplementary Fig. 1 shows no observable
thermalization within 30 ms for dipole oscillations of a BEC with a single dressed
spin component in the presence of the Raman lasers.

Coherent spin current. The Iσ in Eq. (2) reflects the number of BEC atoms of a
specific spin state passing through a cross section per unit time, and can be related
to JA, where J= ncv is the current density along the SOC direction ŷð Þ with the
effective number density nc=Nc/(LA), v is the corresponding velocity, and A is an
effective cross sectional area (the spin index σ is dropped in this discussion for
simplicity in notations). The in situ length in the y direction, L, of each bare spin
component can be estimated from the measured length of the BEC after TOF by

Ly tTOFð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ωytTOF

� �2r
Ly tTOF ¼ 0ð Þ for a cigar-shape interacting BEC with

ωx,y >> ωz and in the Thomas-Fermi approximation66, where Ly(tTOF) is defined as
2Ry in Eq. (6) and Ly(tTOF= 0)= L. For example, for a typical Ly(tTOF= 15 ms)=
88 μm measured for one bare spin component of a dressed BEC prepared at ΩI, we
get L= 4.5 μm for ωy= 2π × 205 Hz. The two spin components have similar L
when the spin populations are balanced. The in situ length L is thold-dependent
during the dynamics and calculated from the thold-dependent TOF size, and is then
used to obtain the thold-dependent spin current in Fig. 4b.

In the Thomas-Fermi approximation, we can also calculate L for the initial state
at ΩI from the condensate atom number and trap frequencies. For example, we
obtain L= 4.7 μm using Nc= 1.6 × 104 and ωy= 2π × 205 Hz by μ ¼ 1

2mω2
yL

2,

where μ ¼ 15
2
5

2 Nca=�að Þ25�h�ω, �ω ¼ ðωxωyωzÞ1=3, a is the s-wave scattering length, and

�a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h= m�ωð Þp

. In addition, the GPE-simulated L is 4.7 μm. These results of L are
consistent with the value calculated from the TOF width.

Analysis of BEC shape oscillations. We characterize a condensate’s shape
oscillations (in the y− z′ plane) of the bare spin component σ by its aspect ratio
Wσ

y =W
σ
z′ , where the condensate widths Wσ

y ¼ 2Rσ
y and Wσ

z′ ¼ 2Rσ
z′ (respectively

along the y and z′ directions) are obtained from Eq. (6). We take the average of the
aspect ratios of the two spin components ðWy=Wz′ ¼ ðW"

y =W
"
z′ þW#

y =W
#
z′Þ=2Þ,

and plot Wy/Wz′ as a function of thold in Fig. 5. In Fig. 5e, caution has to be paid
because the prominent thermalization in the bare case can make it challenging to fit
the 2D cloud and extract the aspect ratio. The notable distortion of the cloud at the
early stages of SDM can also make it difficult to perform the 2D Thomas–Fermi fit.
Therefore, in Fig. 5f, we choose the thold-dependent Wy/Wz′ data after the corre-
sponding dashed line (indicating thold ~ 2τdamp after which the SDM is fully
damped) to fit to a damped sinusoidal function to extract the frequency of the
aspect ratio oscillations.

In our experiments, there is no external modulation of the trapping potentials
or shapes of the BECs to intentionally excite the shape oscillations. However, it is
worth noting that shape oscillations can be induced via a non-adiabatic change in
the internal energy of atomic clouds67,68, which can take place when Ω is quickly
changed or when the two spin components collide within the trap. On the other
hand, we notice that in the dressed case the formation of density modulations can
significantly deform the shape of a BEC (Fig. 5b, d; Supplementary Movies 2, 4 and
5 in Supplementary Note 3) and may thus also induce energetically allowed BEC
shape oscillations, because the modified shape of the atomic cloud is no longer in
equilibrium with the trap. Note that such a shape deformation can also change the
internal energy. The m= 0 quadrupole mode excitation observed in our
experiments has the lowest mode frequency among all possible quadrupole modes
given our trap geometry and thus is the most energetically favorable (its mode
frequency is also lower than the SDM frequency ~ωy/(2π) for our trap parameters).
Such nonresonant mode excitation is quite different from most previous studies, in
which a collective mode of an atomic cloud is efficiently excited when it matches
with the external modulation or perturbation of the trap53,69 spatially and also
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spectrally (resonant with the modulation frequency). Compared to the dressed
case, the bare case has less damped SDM and more significant thermalization, thus
may complicate the shape oscillations due to more repeated SDM collisions and
more atom loss67,68. We expect that the energy of the shape oscillations may
eventually be converted to the energy of thermal atoms, leading to decay of the
collective modes.

To further verify the excitation of the m= 0 quadrupole mode in the dressed
case, we used another set of trap frequencies (see Supplementary Fig. 3 in
Supplementary Note 2), and measured the condensate’s aspect ratio as a function
of thold. The extracted frequency for the aspect ratio oscillations is again consistent
with the predicted frequency for the m= 0 quadrupole mode.

Calculation of nonorthogonality, effective interaction parameters, and
immiscibility. The interactions between atoms in bare spinor BECs are char-
acterized by the interspecies (g↑↓, g↓↑) and intraspecies (g↑↑, g↓↓) interaction
parameters, where g## ¼ g#" ¼ g"# ¼ 4π�h2 c0þc2ð Þ

m , g"" ¼ 4π�h2c0
m , c2=−0.46a0, and

c0= 100.86a0 (a0 is the Bohr radius) for 87Rb atoms in our case. For a dressed BEC,
in which " ′j i is at some quasimomentum ħqy (>0) and # ′j i is at −ħqy in the
ground dressed band at Ω (in the two-state picture described by Eq. (1) in the main
text with δR= 0), the effective interspecies (g↑′↓′= g↓′↑′) and intraspecies (g↑′↑′,
g↓′↓′) interaction parameters can be expressed in terms of the bare interaction g-
parameters:

g"′"′ ¼ g""
4 1þ cos θqy

� �2
þ g##

4 1� cos θqy

� �2
þ g"#

2 1� cos2 θqy

� � ð7Þ

g#′#′ ¼ g""
4 1� cos θqy

� �2
þ g##

4 1þ cos θqy

� �2
þ g"#

2 1� cos2θqy

� � ð8Þ

g"′#′ ¼
g"" þ g##

2
1� cos2θqy

� �
þ g"# ð9Þ

where cos θqy = �h2qykr=m
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h4q2yk

2
r=m

2 þ ðΩ=2Þ2
q

. The dressed spin states # ′j i
at −ħqy and " ′j i at ħqy in the ground dressed band can be expressed as

# ′j i ¼
cos

θqy
2

� �
�sin

θqy
2

� �
0
B@

1
CA ð10Þ

" ′j i ¼
sin

θqy
2

� �
�cos

θqy
2

� �
0
B@

1
CA ð11Þ

in the bare spin basis of #j i; "j if g. Using Eqs. (10) and (11), we can further obtain

" ′j # ′h i ¼ sin θqy ¼ ðΩ=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h4q2yk

2
r=m

2 þ ðΩ=2Þ2
q

ð12Þ

which characterizes the nonorthogonality (and thus the interference) between the
two dressed spin states (where " ′j i is located at ħqy and # ′j i is located at −ħqy in
the ground dressed band at Ω). Figure 7a plots such nonorthogonality versus
quasimomentum for various Ω.

Note that θqy (which is between 0 and π/2 in our case) characterizes the degree
of bare spin mixing of a single dressed spin state (Eqs. (10) and (11)) as well as the
nonorthogonality (due to the bare spin mixing, see Eq. (12)) between the two
dressed spin states. As we can see, either decreasing Ω or increasing qy would
decrease θqy (or increase cos θqy ). When θqy ! 0 (or cos θqy ! 1), all the dressed
spin states would approach the corresponding bare spin states, i.e., " ′j i ! "j i and
# ′j i ! #j i, thus the nonorthogonality 〈↑′|↓′〉 → 0. In addition, all the effective
interaction parameters would approach the corresponding bare values, i.e., g↑′↑′ →
g↑↑, g↓′↓′ → g↓↓, and g↑′↓′→ g↑↓.

On the other hand, either increasing Ω or decreasing qy would increase θqy
towards π/2 (or decrease cos θqy ), thus enhancing the bare spin mixing,

nonorthogonality and g↑′↓′. When θqy ! π=2 (or cos θqy ! 0),

g"′"′ ! g""
4 þ g##

4 þ g"#
2 , g#′#′ !

g""
4 þ g##

4 þ g"#
2 , and g"′#′ ! g""

2 þ g##
2 þ g"# . Therefore,

g↑′↓′ → 2g↑′↑′ or 2g↓′↓′, which is the upper bound of the effective interspecies
interaction parameter. Figure 7b, c shows the effective interaction parameters
normalized by g↑↑ versus quasimomentum ħqy at Ω= 0.1 Er and Ω= 1.26 Er,
respectively. When Ω increases or qy decreases, g↑′↓′ increases while g↑′↑′ and g↓′↓′
almost remain at the bare values. As qy → 0 at any finite Ω, g↑′↓′ approaches the
upper limit 2g↑′↑′ or 2g↓′↓′.

In the case of SDM, assume that in the ground dressed band at Ω, " ′j i is
located at ħqy and # ′j i is located at −ħqy at thold, we may use the immiscibility

metric70

η ¼ g2"′#′ � g"′"′g#′#′
� �

=g2"" ð13Þ

to understand how Ω may modify the miscibility (η < 0) or immiscibility (η > 0)
between " ′j i and # ′j i.

GPE simulations. The dynamical evolution of a BEC is simulated by the 3D time-
dependent GPE71. To compare with the experimental data, we conduct simulations
with similar parameters as those used in our experiment. The GPE of a SO-coupled
BEC can be written in the following form:

i�h ∂
∂tΨ r; tð Þ ¼ HtotΨ r; tð Þ

¼ p̂2x
2m þ p̂2z

2m þ HSOC þ Vtrap þ Vint

� �
Ψ r; tð Þ ð14Þ

where p̂x ¼ �i�h ∂
∂x p̂z ¼ �i�h ∂

∂z

� �
is the momentum operator along x̂ðẑÞ, and HSOC

is the (two-state) single-particle Hamiltonian Eq. (1), with qy replaced by
q̂y ¼ p̂y=�h ¼ �i ∂

∂y. Vtrap is the external trapping potential:

Vtrap ¼
1
2
mω2

xx
2 þ 1

2
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2 þ 1

2
mω2

z z
2 ð15Þ

where ωx(y,z) is the angular trap frequency along the spatial coordinate x(y, z). The
wavefunction (order parameter) of a spinor BEC can be written in the form

Ψ ¼ ψ#
ψ"

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n#ðr; tÞ

q
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q
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0
B@

1
CA ð16Þ

where ψ↓ and ψ↑ are the respective condensate wavefunctions of the two compo-
nents, n↓(n↑) is the condensate density, ϕ↓(ϕ↑) is the phase of the wavefunction, r is
the position, and t is time. The spatial integration of (n↓+ n↑) gives the total atom
number N. The two-body interactions between atoms are described by the non-
linear interaction term Vint, which can be written in the basis of {ψ↓, ψ↑}:

Vint ¼
g## ψ#
��� ���2þg#" ψ"

��� ���2 0

0 g"" ψ"
��� ���2þg"# ψ#

��� ���2
0
B@

1
CA ð17Þ

The interaction parameters are given by

g## ¼ g#" ¼ g"# ¼
4π�h2 c0 þ c2ð Þ

m
ð18Þ

and

g"" ¼
4π�h2c0
m

ð19Þ

The spin-dependent s-wave scattering lengths for 87Rb atoms are c0 and c0+ c2,
where c2=−0.46a0 and c0= 100.86a0 (a0 is the Bohr radius). The initial state of
the SO-coupled BEC is obtained by using the imaginary time propagation method.
Next we change ΩI to a final value ΩF in tE= 1.0 ms to simulate the spin-
dependent synthetic electric fields. Equation (14) is used to simulate the dynamics
of the BECs. The momentum space wavefunctions are calculated from the Fourier
transformation of the real space wave functions. The squared amplitude of the
momentum space wavefunctions is used to obtain the time-dependent momentum
space density distributions shown in e.g., Fig. 6a, b.

For the GPE simulations in Fig. 6, we have checked that moderate variations in
these parameters (as in our experimental data) do not affect our conclusions (while
they can slightly change the 1/Q values, for example, larger 1/Q found for higher
Nc). The simulations also reveal additional interesting features, such as the
appearance of the opposite momentum (back-scattering) peak for each spin
component in Fig. 6a, b, which are not well resolved in our experimental data.

Different forms of energies in GPE simulations. Using Eq. (16), the total energy
density ε (the spatial integration of which gives the total energy of the system) can
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be expressed as the sum of several terms35,59:

ε ¼ ε1 þ ε2 þ ε3 þ ε4 þ ε5 ð20Þ

ε1 ¼
�h2

8mn#
=n#
� �2

þ �h2

8mn"
=n"
� �2

ð21Þ

ε2 ¼ �h2n#
2m =ϕ#
� �2

þ �h2n"
2m =ϕ"
� �2

þ �h2kr
m n#∇yϕ# � n"∇yϕ"
� �

þ �h2k2r
2m n# þ n"
� � ð22Þ

ε3 ¼ Ω
ffiffiffiffiffiffiffiffiffiffi
n#n"

p
cos ϕ# � ϕ"
� �

ð23Þ

ε4 ¼
g##
2

n#
� �2

þ g""
2

n"
� �2

þg#"n#n" ð24Þ

ε5 ¼ Vtrap n# þ n"
� �

ð25Þ

In the above equations, = ¼ ∂
∂x x̂ þ ∂

∂y ŷ þ ∂
∂z ẑ and ∇y ¼ ∂

∂y. We will introduce ε1 to
ε5 one by one in the following. The expression of ε1 in Eq. (21) is the density of the
total (including two spin components) quantum pressure (QP), which is a type of
kinetic energy (KE) associated with the spatial variation of the condensate density.

An imaginary term � i�h2kr
m ∇yðn# � n"Þ appearing in the derivation of ε1 is not

shown in Eq. (21) as its spatial integration (for a confined system) is zero and thus
has no contribution to the energy. The expression of ε2 in Eq. (22) is the density of
the sum of two types of KE, the total CoM KE (sum of the CoM KE of both bare
spin components) and the total local current kinetic energy (LC KE). Both the
CoM KE and LC KE are associated with the spatial variation of the phase of
wavefunctions. The sum of the three types of kinetic energy (total QP, total CoM
KE, and total LC KE) gives the total KE. That is, the sum of ε1 and ε2 is the density
of the total KE. In the following, we derive explicit expressions for the CoM KE and
LC KE. For CoM KE, it is nonzero only in the y direction because the SDM is along
the y direction. Thus, the expression of CoM KE is:

CoMKE ¼ 1
2m

ψ#
D ����hk̂# ψ#

��� E2
þ ψ"
D ����hk̂" ψ"

��� E2� 	
ð26Þ

¼ �h2

2m ψ#
D ���∇yϕ# ψ#

��� E2
þ ψ"
D ���∇yϕ" ψ"

��� E2� 	

þ �h2kr
m ψ#

D ���∇yϕ# ψ#
��� E

� ψ"
D ���∇yϕ" ψ"

��� E� �
þ Ψh j �h2k2r2m Ψj i;

ð27Þ

where �hk̂# ¼ �hðq̂y þ krÞ ¼ �hð�i ∂
∂y þ krÞ ð�hk̂" ¼ �hðq̂y � krÞ ¼ �hð�i ∂

∂y � krÞÞ is the
momentum operator along ŷ for the spin down (up) component, and the last term
in Eq. (27) is simply N �h2k2r

2m . Recall that ε2 in Eq. (22) is the density of the sum of
CoM KE and LC KE. Thus, the expression of LC KE can be obtained by subtracting
the expression of CoM KE in Eq. (27) from the spatial integration of ε2 (Eq. (22)):

LCKE¼ �h2

2m ψ#
D ��� ∇ϕ#

� �2
ψ#
��� E

þ ψ"
D ��� ∇ϕ"

� �2
ψ"
��� E� 	

� �h2

2m ψ#
D ���∇yϕ# ψ#

��� E2
þ ψ"
D ���∇yϕ" ψ"

��� E2� 	 ð28Þ

¼ �h2

2m Δ ∇xϕ#
� �

þ Δ ∇xϕ"
� �

þ Δ ∇zϕ#
� ��

þΔ ∇zϕ"
� �

þ Δ ∇yϕ#
� �

þ Δ ∇yϕ"
� ��

;
ð29Þ

where Δ(∇x,y,zϕ↓,↑) is the standard deviation of ∇x,y,zϕ↓,↑, and note 〈∇x,zϕ↓,↑〉= 0.
Thus, if the wavefunction is a plane wave with a phase ϕ= qyy, its LC KE is zero.
For collective modes that do not have the CoM KE (for example, the quadrupole
modes), the associated motional (kinetic) energy can be accounted for by LC KE
and QP. The expression of ε3 in Eq. (23) is the density of the Raman energy,
associated with the Raman coupling Ω. The expression of ε4 in Eq. (24) is the
density of the sum of the bare intraspecies and interspecies interaction energies.
The expression of ε5 in Eq. (25) is the density of the total potential energy.

To calculate the time (thold) evolution of the various forms of energies, we can in
principle integrate the corresponding time-dependent energy densities over the real
space. In practice, for the kinetic energy part we only perform spatial integration of
ε2 (given by Eq. (22)). For convenience of computation, the total KE, total CoM KE,
total LC KE, and total QP are calculated using a different approach taking

advantages of the (quasi)momentum space representation of the quantum
mechanical wavefunctions and operators. Specifically, the total KE is calculated by

hψ#ðq; tÞj
ð�hk̂#Þ2þp̂2xþp̂2z

2m jψ#ðq; tÞi+ hψ"ðq; tÞj
ð�hk̂"Þ2þp̂2xþp̂2z

2m jψ"ðq; tÞi in the

quasimomentum space, where �hk̂# ¼ �hðq̂y þ krÞ ð�hk̂" ¼ �hðq̂y � krÞÞ is the
momentum operator along ŷ for the spin down (up) component, and ψ↓,↑(q, t) is
the momentum-space representation of the wavefunctions (in the two directions
not affected by SOC, x and z, we simply have qx= px and qz= pz). Similarly, the
total CoM KE is calculated in the quasimomentum space using Eq. (26). The total
LC KE is calculated by subtracting the calculated total CoM KE from the spatial
integration of ε2 (Eq. (22)). The total QP is calculated indirectly by subtracting the
spatial integration of ε2 from the total KE.

The total Raman energy is calculated by the spatial integration of ε3 (Eq. (23)).
The total bare intraspecies (g↑↑ and g↓↓) and interspecies (g↑↓) interaction energies
are calculated by the spatial integration of the corresponding terms in ε4 (Eq. (24)).
The total interaction energy is calculated as the sum of the bare intraspecies and
interspecies interaction energies. The total potential energy is calculated by the
spatial integration of ε5 (Eq. (25)). Lastly, the total energy of the system is
calculated as the sum of the total Raman energy, total potential energy, total
interaction energy, and total KE.

We note that even though our GPE simulations do not treat thermalization
and thermal energies, the calculated different forms of condensate energies
and their time evolution still provide valuable insights to understand the
dynamical processes involved in the SDM. The GPE calculated different forms of
energies shown in Fig. 8 and discussed in the associated texts below refer to the
energies per particle (i.e., the calculated energies divided by the total atom
number N).

In Fig. 8a, the total energy is a constant during thold, confirming the
conservation of the total energy. In Fig. 8b, the total Raman energy has relatively
small variations during thold. In Fig. 8c, the total potential energy in dressed cases
has smaller variations during thold compared with that in the bare case. In Fig. 8d,
the time evolution of the total interaction energy at different ΩF possesses a
complicated behavior, mainly due to the complicated dynamics of the densities of
the two spin components as well as their spatial overlap (see Supplementary
Movies 2, 4 and 5 in Supplementary Note 3).

Figure 8e–h shows the time evolution of the calculated total KE, total CoM KE,
total QP, and total LC KE at different ΩF, respectively. When ΩF is larger, the total
CoM KE (Fig. 8f) exhibits a faster damping while QP as well as LC KE exhibit a
faster increase (Fig. 8g, h, focusing on the relatively early stage of SDM) presumably
due to the enhancement of the interference, immiscibility, and effective interaction
between the two dressed spin components.

Figure 8i–k shows the time evolution of the calculated intraspecies and
interspecies interaction energies at different ΩF. Note that the interaction energies
are relatively small compared to other forms of energies, but are essential for the
damping mechanisms as discussed in the main text.

Data availability
The data presented in this work are available from the corresponding author upon
reasonable request.
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