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ABSTRACT

In order to simulate and optimize e�ciently systems
which include micromachined devices, designers need dy-
namically accurate macromodels for the those devices.
Although it is possible to develop such macromodels by
hand, it would be vastly more e�cient if it were possible
to automatically derive such macromodels directly from
physical coupled-domain simulation. Although such au-
tomatic techniques exist if the problem is linear, most
micromachined devices are at least mildly nonlinear and
new techniques must be developed. In this paper we
present a quadratic reduction method which makes use
of the Krylov subspace generated from linearized analy-
sis. The result is a reduced-order model with a quadratic
nonlinearity. Results on using the method for a nonlinear
resistor network show that the nonlinear approach is much
more accurate than using a linearized approach alone.
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Introduction

Integrated circuit designers have sophisticated tools
for handling electrical problems associated with intercon-
nect and packaging. They describe the geometry of the
interconnect structure to a three-dimensional electromag-
netic analysis program, and that program automatically
generates dynamically accurate macromodels of the input-
output behavior of the structure. Then, the designer can
include this macromodel in a circuit-level simulation of
the entire system [1]. Designers of novel micromachined
devices need just such a capability, so they can simulate
systems which include their new devices. However, un-
like interconnect and packaging, most micromachined de-
vices are nonlinear, and extracting dynamically accurate
nonlinear macromodels from simulation is an open prob-
lem. For this reason, there has been much current inter-
est in developing nonlinear model-order reduction strate-
gies [2]{[4].

In [5], a dynamically accurate macromodel for an elec-
trostatically deformed beamwas generated using lineariza-
tion and an Arnoldi type state projection. In this paper
we present a quadratic reduction method which makes
use of the same projection space, but uses the method
to reduce a nonlinear system to a small nonlinear system
with quadratic nonlinearity. We begin below with a short
review of Arnoldi model reduction for linear systems and

then describe the quadratic reduction algorithm. Finally,
results are presented for a nonlinear resistor network.

Background on Arnoldi Methods

Consider a single input, single output (SISO) linear
system of the form

A
�

x = x + bu

y = cTx:
(1)

where A is a n � n matrix, and b and c are n-length
vectors.

From (1), the input-output transfer function, H(s), is
given by

H(s) =
y(s)

u(s)
= �cT (I � sA)�1 b (2)

where s is the Laplace transform variable.
The transfer function H(s) can be expanded in a Tay-

lor series as

H(s) =
1X
i=0

mis
i =

1X
i=0

�cTA�(i+1)bsi (3)

where mi, the coe�cient of the ith term in the Taylor
series, is known as the ith moment of the transfer function.

A reduced-order model for (1) is the SISO system

Aq
�

xq = xq + bqu

ŷ = cTq xq
(4)

where xq ; bq; cq 2 R
q, Aq 2 R

q�q and q is presumably
much smaller than n. The model-order reduction problem
is then �nding the smallest Aq, bq and cq such that

Ĥ(s) =
ŷ(s)

u(s)
= �cq

T (I � sAq)
�1
bq (5)

approximates H(s) = y(s)
u(s) with su�cient accuracy.

A commonly used approach for generating reduced-
order models is based on the Arnoldi algorithm for ro-
bustly generating an orthonormal basis for the Krylov
subspace given by

Kk(A; b) = spanfb;Ab;A2b; � � � ;Ak�1bg: (6)

The basic idea of the Arnoldi approach is to generate a
kth order orthogonalized Krylov subspace from a (k�1)th



order orthogonalized Krylov subspace. First, the last vec-
tor in the (k�1)th-order orthogonalized subspace is multi-
plied by A, and then the resulting vector is orthogonalized
with respect to the previous k � 1 vectors.

After q steps, the Arnoldi algorithm returns a set of q
orthonormal vectors, as the columns of the matrix Vq 2
Rn�q, and a q� q upper Hessenberg (tridiagonal plus up-
per triangular) matrix Hq whose entries are the scalars
hi;j generated by the Arnoldi algorithm. These two ma-
trices satisfy the following relationship:

A Vq = Vq Hq + hq+1;q vq+1 e
T
q (7)

where eq is the qth unit vector in Rq. From (7), it can
easily be seen that after q steps of an Arnoldi process, for
k < q,

Ak b = kbk2 A
k Vq e1 = kbk2 Vq H

k
q e1: (8)

With this relation, the moments (3) can be related to Hq

by

mk = cT A
k
b = kbk2 c

T Vq| {z }
cTq

H
k
q|{z}

Ak

q

e1|{z}
bq

(9)

and so, by analogy with (3), the qth order Arnoldi-based
approximation to H(s) can be written as

H(s) � Ĥ(s)kbk2 c
T Vq (I � sHq)

�1
e1 (10)

corresponding to the state-space realization Aq = Hq,

bq = e1, and cq = kbk2 V
T

q c.
Another way of viewing the Arnoldi reduction is to

consider that Vq introduces a nonsquare change of vari-
ables of the form

x = Vqxq: (11)

Substituting the change of variables in (1) and multiplying
through by V T

q yields

V T
q AVq

�

x = V T
q xq + V T

q bu

ŷ = cTV T
q xq:

(12)

Matching corresponding terms in (1) and (12) results in
exactly the same reduced-order model as matching corre-
sponding terms in the transfer functions (2) and (5). The
change of variables point of view, however, extends more
readily to the nonlinear case.

Nonlinear Model Order Reduction

To brie
y describe the method, consider a nonlinear
system

_x = f (x) + bu(t) y = c
T
x (13)

were x is an n-length vector, f is a nonlinear vector func-
tion. The above system with a nonlinear state equation
is referred to as the \original" system which will be re-
duced to a much smaller system. Here u(t) is the input

of the system and y(t) the output. The reduced system
is expect to preserve the input-output behavior.

Taylor expanding the function f to second order about
the origin yeilds a quadratic approximation of the above
system

_x = Jfx + x
T
Wx + bu(t) y = c

T
x (14)

where Jf i;j = @fi
@xj

is the Jacobian of f evaluated about

zero, andW is an N�N�N Hessian tensor whose entrees
are given by

Wi;j;k =
@2fi

@xj@xk
: (15)

Assuming Jf is nonsingular, the above quadratic sys-
tem can be put in a form similar to that used in the linear
Arnoldi algorithm above. Let A = J�1f , then multiplying
(14) by A results in

A _x = x +Ax
T
Wx +Abu(t) y = c

T
x: (16)

The Arnoldi method can be used to construct an orthog-
onal basis for the Krylov subspace

SpanfAb;A2
b; � � � ;Aq

bg

where q will be the size of the reduced system. The
Arnoldi process generates V, an n � q orthonormal ma-
trix whose columns span the Krylov subspace, and H =
VTAV.

Following the linear model order reduction approach
above, consider introducing the nonsquare change of vari-
ables

x = Vz: (17)

Using (17) in (16),

AV _z = Vz+Az
T
V

T
WVz + b1u(t)

y = c
T
Vz:

Substituting using the de�nition of the matrix H,

H _z = V
T
AV _z = z+V

T
Az

T
V

T
WVz +V

T
b1u(t)

y = c
T
Vz:

The system can be returned to the normal form of (14)
by multiplying though by H�1,

_z = H
�1
z+H

�1
V

T
Az

T
V

T
WVz +H

�1
V

T
b1u(t)

y = c
T
Vz:

Now denote

Ĵ = H
�1 (18)

b̂ = H
�1
V

T
b (19)

ĉ = V
T
c: (20)

The term

H
�1
V

T
Az

T
V

T
WVz



is quadratic in z, and so can be written in the form zTŴz

for some Ŵ. Then, (18) can be reduced to a quadratic
system of the form

_z = Ĵz+ z
T
Ŵz + b̂u(t)

ŷ = ĉ
T
z

The key point is that the Arnoldi projection was used
to reduce the large quadratic tensor to a small quadratic
tensor.

Preliminary Results

To demonstrate the method, consider the capacitor
and nonlinear reistor circuit example shown in Figure 1.
The nonlinear resistors (a diode in parallel with a unit
resistor) have the constitutive relation i(v) = (exp(40v)�
1) + v and the capacitors have unit capacitance. The in-
put is a current source entering node 1, and the output
is the voltage at node 1. The number of nodes in the
original system is N = 100. The quadratic method was
used to reduce the system to q = 10 and Figure 2 and 3
compare the outputs of the reduced systems with those
original and linearization systems in response to two cho-
sen inputs. Although our implementation is in Matlab,
and so computational comparisons can only be used to
determine trends, it is interesting to note that the dy-
namic simulation of the 10th order model is much faster
than the integration of the original system (See Table 1).

N-2N-3 N321

CCCCCCCi=u(t)

N-1

Figure 1: The nonlinear circuit example
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Figure 2: Comparison of the original nonlinear system(size
100) with the reduced systems generated by quadratic re-
duction and by linearization to size 10.The response out-
put is for the step source and here we also plot the original
quadratic approximation and linearization systems for ref-
erence
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Figure 3: Comparison between the same original nonlinear
system with its quadratic and linear reductions for an input
source u = e�t

CPU time Full reduced (quad) reduced (lin)
(in sec) (size 100) system(size 10) system(size 10)
u = step 98.3 6.74 1.60
u = e�t 115.3 6.77 1.60

Table 1: Comparison of computation time to integrating
original nonlinear system and its quadratic and linear

reduced systems

Conclusions and Acknowledgements

In this paper we presented a quadratic reduction method
which makes use of the Krylov subspace generated from
linearized analysis. The result is a reduced-order model
with a quadratic nonlinearity. Results on using the method
for a nonlinear resistor network show that the nonlinear
approach is much more accurate than using a linearized
approach alone.

Note that the reduced quadratic system can be derived
without explicitly computing the full quadratic approxi-
mations of the original system [6]. Also, it is possible
to improve accuracy by extending the above method to
include a third order approximation, but the cost of the
reduced-order model increases like q4 and even a tenth
order model has 10,000 coe�cients. Finally, the notation
used herein and in [6] is cumbersome, and the choice of
projection space is ad-hoc. A much cleaner presentation
using Kronecker products and a theoretically sounder ap-
proach for selecting the projection space is given in [4].
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