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ABSTRACT

In order to simulate and optimize efficiently systems
which include micromachined devices, designers need dy-
namically accurate macromodels for the those devices.
Although it is possible to develop such macromodels by
hand, it would be vastly more efficient if it were possible
to automatically derive such macromodels directly from
physical coupled-domain simulation. Although such au-
tomatic techniques exist if the problem is linear, most
micromachined devices are at least mildly nonlinear and
new techniques must be developed. In this paper we
present a quadratic reduction method which makes use
of the Krylov subspace generated from linearized analy-
sis. The result is a reduced-order model with a quadratic
nonlinearity. Results on using the method for a nonlinear
resistor network show that the nonlinear approach is much
more accurate than using a linearized approach alone.
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Introduction

Integrated circuit designers have sophisticated tools
for handling electrical problems associated with intercon-
nect and packaging. They describe the geometry of the
interconnect structure to a three-dimensional electromag-
netic analysis program, and that program automatically
generates dynamically accurate macromodels of the input-
output behavior of the structure. Then, the designer can
include this macromodel in a circuit-level simulation of
the entire system [1]. Designers of novel micromachined
devices need just such a capability, so they can simulate
systems which include their new devices. However, un-
like interconnect and packaging, most micromachined de-
vices are nonlinear, and extracting dynamically accurate
nonlinear macromodels from simulation is an open prob-
lem. For this reason, there has been much current inter-
est in developing nonlinear model-order reduction strate-
gies [2]-[4].

In [5], a dynamically accurate macromodel for an elec-
trostatically deformed beam was generated using lineariza-
tion and an Arnoldi type state projection. In this paper
we present a quadratic reduction method which makes
use of the same projection space, but uses the method
to reduce a nonlinear system to a small nonlinear system
with quadratic nonlinearity. We begin below with a short
review of Arnoldi model reduction for linear systems and

then describe the quadratic reduction algorithm. Finally,
results are presented for a nonlinear resistor network.

Background on Arnoldi Methods

Consider a single input, single output (SISO) linear
system of the form

Ax = b
xr azT—i— U (1)

y = ca.
where A is a n X n matrix, and b and ¢ are n-length
vectors.

From (1), the input-output transfer function, H(s), is
given by

Hsy= 28— _orr_ay e (2)

where s is the Laplace transform variable.
The transfer function H(s) can be expanded in a Tay-
lor series as
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where m;, the coefficient of the #** term in the Taylor
series, is known as the i*» moment of the transfer function.
A reduced-order model for (1) is the SISO system

A, azoq = x,+ byu 4
Co_ (4)
y o= ey

where x,,b,,¢, € RY, A, € R7*? and ¢ is presumably
much smaller than n. The model-order reduction problem
is then finding the smallest A,, b, and ¢, such that

()= M) o T (1A b, (5)

approximates H(s) = %(%% with sufficient accuracy.

A commonly used approach for generating reduced-
order models is based on the Arnoldi algorithm for ro-
bustly generating an orthonormal basis for the Krylov
subspace given by

Ki(A,b) = span{b, Ab, A’b,---, A*~'b}. (6)

The basic idea of the Arnoldi approach is to generate a
k' order orthogonalized Krylov subspace from a (k— 1)



order orthogonalized Krylov subspace. First, the last vec-
tor in the (k—1)"*-order orthogonalized subspace is multi-
plied by A, and then the resulting vector is orthogonalized
with respect to the previous k — 1 vectors.

After ¢ steps, the Arnoldi algorithm returns a set of ¢
orthonormal vectors, as the columns of the matrix V, €
R™*9 and a ¢ x q upper Hessenberg (tridiagonal plus up-
per triangular) matrix H, whose entries are the scalars
h; ; generated by the Arnoldi algorithm. These two ma-
trices satisfy the following relationship:

AVy=Vy Hy+hyyig v eqT (7)

where e, is the ¢'* unit vector in R?. From (7), it can
easily be seen that after ¢ steps of an Arnoldi process, for
k<q,

A" b= ||bl]> A* V, e1 = ||bll2 V, HY er. (8)

With this relation, the moments (3) can be related to H,
by

my =cl A¥ b= [|5]]2 e’ v, Hl; e (9)
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and so, by analogy with (3), the ¢* order Arnoldi-based
approximation to H(s) can be written as

H(s)m H(s)|[bll2 " Vi (I—sH)™" e (10)
corresponding to the state-space realization A, = H,,
b, = ey, and ¢, = [|b]|2 ‘{T c.

Another way of viewing the Arnoldi reduction is to
consider that V; introduces a nonsquare change of vari-
ables of the form

r =V, (11)

Substituting the change of variablesin (1) and multiplying
through by V(']T vields

viAv,e = Vie, + Vb (12)

g = V(']Tazq.
Matching corresponding terms in (1) and (12) results in
exactly the same reduced-order model as matching corre-
sponding terms in the transfer functions (2) and (5). The
change of variables point of view, however, extends more
readily to the nonlinear case.

Nonlinear Model Order Reduction

To briefly describe the method, consider a nonlinear
system

% =f(x)+bu(t) y=cTx (13)

were x 1s an n-length vector, f is a nonlinear vector func-
tion. The above system with a nonlinear state equation
is referred to as the “original” system which will be re-
duced to a much smaller system. Here u(?) is the input

of the system and y(¢) the output. The reduced system
1s expect to preserve the input-output behavior.

Taylor expanding the function f to second order about
the origin yeilds a quadratic approximation of the above
system

x=Jex+x"Wx +bu(t) y=clx (14)
where Jg; ; = gi’v is the Jacobian of f evaluated about

zero, and Wisan N x N x N Hessian tensor whose entrees
are given by

0 fi

W, .= st 15
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Assuming J¢ 18 nonsingular, the above quadratic sys-
tem can be put in a form similar to that used in the linear
Arnoldi algorithm above. Let A = Jf_l, then multiplying
(14) by A results in

Ax =x+ Ax  Wx + Abu(t) y= cTx. (16)

The Arnoldi method can be used to construct an orthog-
onal basis for the Krylov subspace

Span{Ab,A%b,--. Ab}

where ¢ will be the size of the reduced system. The
Arnoldi process generates V, an n x ¢ orthonormal ma-
trix whose columns span the Krylov subspace, and H =
VTAV.

Following the linear model order reduction approach
above, consider introducing the nonsquare change of vari-
ables

x = Vz. (17)
Using (17) in (16),
AVi = Vz4 Az'VIWVz 4+ bu(t)
y = cTvz.
Substituting using the definition of the matrix H,
Hz = VTAVi=z+VTAZ'VIWVz + VTbu(t)
y = ¢'Vaz.

The system can be returned to the normal form of (14)
by multiplying though by H~',

7 = H 24+ H 'VIAZVIWVz + H 'V b u(t)
y = cTVaz.

Now denote

J = H! (18)
b = H 'V (19)
¢ = Ve (20)
The term

H 'VITAZ"VIWVz



is quadratic in z, and so can be written in the form 2T Wz
for some W. Then, (18) can be reduced to a quadratic
system of the form

7z = jz—i—zTWz—i—f)u(t)
g = &'z

The key point is that the Arnoldi projection was used
to reduce the large quadratic tensor to a small quadratic
tensor.

Preliminary Results

To demonstrate the method, consider the capacitor
and nonlinear reistor circuit example shown in Figure 1.
The nonlinear resistors (a diode in parallel with a unit
resistor) have the constitutive relation i(v) = (exp(40v)—
1) + v and the capacitors have unit capacitance. The in-
put 1s a current source entering node 1, and the output
is the voltage at node 1. The number of nodes in the
original system is N = 100. The quadratic method was
used to reduce the system to ¢ = 10 and Figure 2 and 3
compare the outputs of the reduced systems with those
original and linearization systems in response to two cho-
sen inputs. Although our implementation is in Matlab,
and so computational comparisons can only be used to
determine trends, it is interesting to note that the dy-
namic simulation of the 10th order model is much faster
than the integration of the original system (See Table 1).

i=u(t)
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Figure 1: The nonlinear circuit example
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Figure 2: Comparison of the original nonlinear system(size
100) with the reduced systems generated by quadratic re-
duction and by linearization to size 10.The response out-
put is for the step source and here we also plot the original
quadratic approximation and linearization systems for ref-
erence
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Figure 3: Comparison between the same original nonlinear

system with its quadratic and linear reductions for an input

source 4 = e~!

CPU time Full reduced (quad) | reduced (lin)
(in sec) (size 100) | system(size 10) | system(size 10)
u = step 98.3 6.74 1.60
u=e"" 115.3 6.77 1.60

Table 1: Comparison of computation time to integrating
original nonlinear system and its quadratic and linear
reduced systems

Conclusions and Acknowledgements

In this paper we presented a quadratic reduction method
which makes use of the Krylov subspace generated from
linearized analysis. The result 1s a reduced-order model
with a quadratic nonlinearity. Results on using the method
for a nonlinear resistor network show that the nonlinear
approach is much more accurate than using a linearized
approach alone.

Note that the reduced quadratic system can be derived
without explicitly computing the full quadratic approxi-
mations of the original system [6]. Also, it is possible
to improve accuracy by extending the above method to
include a third order approximation, but the cost of the
reduced-order model increases like ¢ and even a tenth
order model has 10,000 coefficients. Finally, the notation
used herein and in [6] is cumbersome, and the choice of
projection space is ad-hoc. A much cleaner presentation
using Kronecker products and a theoretically sounder ap-
proach for selecting the projection space is given in [4].
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