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Chapter 1

Introduction

1.1 What is Model Order Reduction

Model order reduction is a very attractive idea in CAD area. It replaces the original
large scale system model with a much smaller one, yet still retains the original be-
havior under investigation to high accuracy. Therefore,by simulating just the reduced
small system one can still study the original system and thus make the design work
much easier. With the ever increasing scale of system models appearing in the engi-
neering design practice, model order reduction has become an indispensable tool in
numerous areas such as circuit interconnect and MEMS(micro-electrical mechanical
system), though the idea of model order reduction is general enough to be applica-
ble to other areas. Model order reduction is also a very interesting and meaningful
mathematical problem in its own right.

The following example, albeit linear, can easily demonstrate the meaning of model

order reduction. Suppose we are given a system of equations

x = Ax+ bu(t) (1.1)

y = cTx (1.2)

This system of equations may be the mathematical model for a realistic system in-

volving with specified input and output. Here x = x(t) is a N-dimensional vec-
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tor(variable) , A is an N by N (constant) matrix and b and ¢ are N-dimensional
(constant) vectors Note we will generally use bold lower case letters for vectors and
bold upper case letters for matrices and tensors in the thesis. Here u = u(t) is the
input, y = y(t) is the output. Usually,the initial value of x = x(¢) is zero (x(0) = 0)
unless otherwise stated.

This example is a SISO(single input-single output) example, which is the only
case that we will consider in the thesis , but the approaches can can be generalized to
the vector input-vector output case. In (1.1) x is often referred to as “state variables”
and the dimension N of the original system (1.1) and (1.2) is typically much larger
than 100.

Model order reduction then asks the following question: can we find another

system

z = A,z+ bu(t) (1.3)

Yp = cfz (1.4)

where the state variables z is of dimension n, A, is n by n matrix, b,and c, are
n-dimensional vectors and n is much smaller than N. For example, N could be in
the order of thousands and n might be less than 10. And the “reduced” system
has very close (input-output) behavior with the original system, that is, given input
u(t), the reduced system(equations 1.3 and 1.4) will generate an output y,(¢) which
is very close to y(¢). In more mathematical language, we can define for any system
S an input-output operator or map Lg which maps any input u(t) to the output y(¢)
generated by the system, and we would require that for the reduced system Sr, we
should have Lg, close to Lg in certain sense (and in this thesis, we by default use the
“point-wise” sense stated above that is for (any allowed) same input u(t),Lgs,[u(t)]
should be close to Lg[u(t)]. Thus once we have the reduced system, we can study
the interested behavior and property of the original system to a good precision by
just studying or simulating the reduced system instead of the much larger original

system. And people already have very good and mature methods to perform model
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order reduction on linear systems, as will be outlined in Chapter 3.

1.2 Nonlinear Model Order Reduction

In many engineering situations however, people have to deal with nonlinear models
and systems. And we can ask the same question of doing model order reduction for
nonlinear systems. For example a mostly encountered type (other types can often be
transformed to or approximated by this representative type) is to try to reduce(with

the meaning explained in the above section)

x = f(x)+ bu(t) (1.5)

y = cTx (1.6)
to

z = g(z)+byu(t) (1.7)

Y = €z (1.8)

where x € RY and z € R® with n < N as usual and both f and g are nonlinear
(vector)functions (by default all the functions appearing in the thesis are assumed to
have reasonably good properties such as infinite-times differentiable) .

Nonlinear model order reduction is very much desired for doing large scale CAD
and simulation in many areas involving nonlinear systems but there have not been
satisfactory and universally usable methods to do this. A mostly used traditional
strategy is to first linearize the system then perform model order reduction on linear
system; but the linearization does not always give good approximation to the original
nonlinear system. This thesis will present some methods to reduce nonlinear systems
(to smaller nonlinear systems) which are observed to offer much better approximations
to the original systems compared with the traditional linearization methods as we

keep the nonlinearality and which are applicable to general nonlinear systems usually
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encountered. These methods are based on higher degree approximation (especially

quadratic) of the nonlinear systems.

1.3 Thesis Outline

In what follows,Chapter 2 studies the linear, quadratic and higher degree approxima-
tions of the nonlinear system and demonstrate their accuracies through case studies.
This chapter therefore sets the goal for what the the reduced order models should
match and their potential accuracies. Chapter 3 gives a self-contained review of
one very successful method for linear model order reduction—the Arnoldi method.
Besides being an easy and practical method for reducing those quasi-linear systems
which is close to its linear approximations, some essential aspects of the method will
also be important components of the nonlinear model order reduction methods pre-
sented later. Chapters 4 is the main content of the thesis. In Chapter 4 we present the
“quadratic reduction” method for reducing nonlinear systems which aims to reduce
the quadratic approximation of the original system (which in turn is shown earlier in
Chapter 2 to usually give a quite good approximation to the nonlinear system) to a
smaller quadratic system by both reducing the linear part by the traditional Arnoldi
procedure and reducing the quadratic part(Hesse tensor) by applying the Arnoldi pro-
jection of state variables. We employ tensorial and Matlab notations to help express
the algorithm to reduce the quadratic/Hesse tensor. The method is demonstrated to
work satisfactorily on numerical verifications. We also give alternative but equivalent
versions of the quadratic reduction method with no need to first get the quadratic ap-
proximation of the original system. In Chapter 5 we presented some further methods
for doing nonlinear model order reductions, mainly the third order reduction method
for even higher precision requirement. We also briefly describe the generalization to
arbitrary degree approximation (which is not usually needed as we believe) and some

other possible methods. Chapter 6 draws the conclusions.
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Chapter 2

Nonlinear Systems and Their

Approximation

2.1 A Typical Form of Nonlinear System

The nonlinear systems (with single input and output) that we are concerned with in

this thesis are of the following form already encountered in the introductory chapter:

x = f(x)+ bu(?) (2.1)

y = cTx (2.2)

Here we can call the first equation “state equation” and the second one “output
equation” and we will refer this type of nonlinear systems as of “standard form” in
the thesis.

This type of nonlinear systems (with the nonlinearality focused on the state vari-
ables and with linear input and output appearance) is encountered often in the prac-
tical situations and we actually have not much loss of generality by restricting our
considerations to it with the following two remarks:

Remark 1: When there is a nonlinear dependence on the input u(t) in the state
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equation too it is often in the following form:

x = f(x) + bp(u(?))

where p(u) is a nonlinear function on u. In this case the nonlinear dependence on
input can often be bypassed with the trick commonly used in practical simulation by

treating the whole term p(u(t)) as the input, thus transforming the state equation to

x = f(x) + bv(?)

where v = p(u). Even for the most general case where the state equation reads

x = f(x) + Sh(u(t))

where h(u) = (hy(u), ha(u), -+, hy(u))" is some nonlinear vector function and 3 is
some constant(can be absorbed into h if needed); we can still similarly set v(t) =
h(u(t)) as the new (vector) input and B = Iy then transforming the state equation
to

% = f(x) + B v(t)

with the multi-input v = (vi,v, -+, v,)T = (h1(u(t)), ha((u(t)), - - -, ha(u(t)))T.

Remark.2: Although for convenience we will develop our nonlinear model order re-
duction methods for the standard type of system above, it will be seen in Chapter 4
that our main method which is based on projecting high dimensional state variables
onto low dimensional state variables is also easily extended to the case where the
output is nonlinearly depending on the state variables( y = g(u) where g is a non-
linear function). Besides this, for some systems with nonlinear output equations we
may also use some tricks to transform the system to the stand form. As an simple

illustrating example, for the system

o = €™ + x5+ u(t)
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i‘g = $1+Sin($2)

Yy = x1+2m2+x§

we can introduce a new state variable x3 = 12 thus i3 = 2@,7, (with the initial value

x3(0) still being 0) and therefore we can transform the original system to

i = €™+ a5+ u(t)
Te = x1+ sin(zy)
T3 = 2x1T9 + 2x9sin(zo)

Yy = 1+ 2%+ 73

which is of the standard form. (This sort of trick will work especially fine when
there are not too many auxiliary state variables introduced; although we increase the
system scale a bit at the transformation stage, the model order reduction step can
usually reduce the scale tremendously to generate a reduced order model with scale

still much smaller than the original one)

2.2 Approximations to Nonlinear System

All the nonlinear model order reduction methods presented in this thesis is based on
the idea of approximating the nonlinear system by a polynomial system through the
Taylor expansion (to certain degree, most easily two) which approximate the original
system to a satisfactory precision then trying to generate a reduced polynomial system
for it which matches it to high precision and in turn matches the original system
to satisfactory precision. The effectiveness and error of the nonlinear model order
reduction also come from the corresponding two pieces with the title of this section
being the first piece.

We observe that for the nonlinear system 1.5 and 1.6,
x = f(x)+ bu(t)
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if vector function f approximates f then the corresponding approximation system

x = f(X)+bu(t)

~ CT

»

will generate an output § also approximating y, independent to (any) input u. Actu-

ally we have

d

S =R)(1) = £x) — FR) = £(x) — £(%) + £(%) - F®)

and as usual we assume we are working on a bounded domain and f approximates f

with uniform error € then on any time range [0, 7] we will have

[£(x) — £(%)| + [£(%) — £(%)|

—~~
»
—~
o~
N—
|
M
—~
o~
SN—
-
AN

< Lix—X|+e

where L is some positive constant (say the maximum absolute values of all the first

order derivatives of f). Therefore

d

Zx® =% = 2 (x() —i(t»;

= 2(x(t) = %(1)- (x(t) — %(t))

- d -
< 20x(t) = (O] (x(8) - X(2))]
< 2Lx — X|* + 2¢|x — X|
< 2L|x —X|* 4+ 2Me

where M is some bound and then we have

SN0 = (0P} = {x(0) = KO = 2L}x(0) — K1) e 24 < 200ce
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integrating from 0 to ¢ gives

[x(t) — %(2)[?

VAN
[}

thus |x — X| can be made arbitrarily small with e arbitrarily small, and independent
of input u , so does |y — | which is bounded by ||c|||[x — X|. In other words, the
IO map(input-output map, introduced in Chapter 1) of the approximation system is
uniformly approximating that of the original one.

Traditionally people often simply use the linear approximation to linearize the
original nonlinear system, which works well for those systems operating in so called
linear regime (usually in a small departure from equilibrium), but works poor for
general cases as observed in many examples such as the MEM system reported in
[1, 2]. Usually the quadratic approximation which is mostly used in this thesis offers
much better and satisfactory accuracy;in case of even higher accuracy requirement
third order or even higher approximations may be needed. The next section will give
a typical nonlinear system which is from nonlinear circuits and yet relatively easy to
implement, together with its approximations of various orders. This typical example
will recur many times in the thesis to illustrate our ideas and verify our methods or

results.

2.3 A Nonlinear Circuit Example

Consider the following circuit RC structure in Fig. 2-1 where the resistors there are
nonlinear resistors, whose currents depending nonlinearly on the potential difference
across the resistor. We clearly label two ends of the resistors by “a” and “b” to specify
the their orientations because nonlinear resistors can be asymmetric, i.e., when one
flips the voltage the current may not get flipped in exactly value such as the case for
dianodes whose I-V dependence are highly asymmetric. And for simplicity we take
all the resistors to be the same and have the I-V dependence profile given by some

function g:when the potential difference from a to b through the resistor is V' the
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i=u(t) @ 0 ~C p~C p~C AC AC AC C

Figure 2-1: A nonlinear circuit structure

current flowing from a to b will be I = g(V'). If one reverses the orientation of the
resistor the I-V profile will simply be I = —g(—V"). There is one input current source
i = u(t) flowing into node 1. And our output is set to be the potential at node 1 with
the state variables being the potentials at nodes 1,---, N.

Looking at the currents at each node we can write down the following set of

equations:
d’Ul
U(t) = CE + g(vl — Ug) + g(vl)
dv
gvr —vg) = Cd—2 + g(va — v3)

t

dv
gk —vg) = Cd—tk + g(vk — Vg11)

dv

Q(UNA - UN) = Cd—:

20



e

' r
'

Figure 2-2: A dianode paralleled with a normal resistor

aNb aNb
!

which can be arranged to our standard form as

—g(v1) — g(v1 — vy)
9(”1 - 112) - 9(”2 - Us) 1
dv : 0

dt g(vk—1 — v) — g(vK — V1)

g(UN—l - UN)

And the linear and quadratic approximation of the system are simply obtained by
replace the function g above by its linear and quadratic approximation in its Taylor
expansion respectively, also similar for higher order approximations.

To perform real computation we choose the size of the system to be 100 (N = 100)

and we pick a nonlinear resistor profile g to be

g(v) = exp(40v) +v — 1 (2.4)

that is, we let all the nonlinear resistors appearing in Fig. 2-1 to be consists of a
dianode with IV profile g4(v) = exp(40v) — 1 paralleled with a normal (linear) resistor
which has unit resistance with profile g,(v) = v (see Fig. 2-2) and the corresponding
whole circuit shown in more detail in Fig. 2-3.

And for simplicity we let all the capacitors in the example have unit capacitance

21
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i=u(t) ~C m~C 7nC m~C ~nC nC mC
Figure 2-3: The nonlinear circuit example
(C =1). Now the original nonlinear system equations for this example is
—g(v1) — g(vi — v2)
g(v1 — v2) — g(v2 — v3) 1
dv : 0
- = + u(t) (2.5)
9(Vk—1 — k) — g(Vk — V1)
0

Q(UNA - UN)

with ¢g(v) = exp(40v) +v — 1

For this example we will investigate its approximation up to 3rd order. The linear

approximation of this g(v) is

g1(v) = 40v +v = 41v

the quadratic approximation is

g2(v) = 41v + (40v)?/2 = 41v + 8000

22



A step current source
2 T T T

18} 1

16 b

12 b

Current
=
T

0.6 1

04 1

02 J

Time

Figure 2-4: The step current source in the example

and the 3rd order approximation is

g3(v) = 41v + 8000 4 (40V)3/(3!) = 41v + 800v? + (32000/3)v?

Then the linear,quadratic and 3rd order approximations of system (2.5) are obtained
by replacing the g there by g1, g2, g3 respectively.

Now we pick a specific current source i = u(t) to be a step source from 0 to 1
which is turned on at time ¢ = 3 (see Fig. 2-4).

Step sources are one of the most commonly used source in this type of simulations
to study the behavior and performance of the original and approximation systems.
It is easy to represent and it will also reveal some of the most important feature of
the system such as the steady state and how the system approach to it. With step
source we can judge the accuracy of an approximation or reduced system to match

the original system through comparing its steady state and transition behavior, which
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Comparision of original system and its approximations:response to step source

0.025 T T T T \ \ T T T
-
, e
/
0.02F / 1
/
0.015F
H
5 001f 7
6
0.0051- —— original i
- == linear approximation
- = quadratic approximation
3rd order approximation
O -
_0005 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time

Figure 2-5: Comparison of the original system in the example and its linear,quadratic
and 3rd order approximations

are our too important criteria, with original ones and see how well they capture or
match them.

We proceed to integrate’ the ODEs in the (2.5) with the g substituted by (2.4)
and its various approximations gi, g2, g3 and compute the corresponding outputs for
the original and approximations systems with the results given in Fig. 2-5.

We see for this nonlinear system the linear approximation departures seriously
from the original system, therefore even the traditional linear model order reduc-

tion can generate a reduced order linear system which matches this (N = 20)linear

!'Backward Euler method are often used when integrating ODES which have steep transition
because forward Euler method can break down in this case.

24



approximation exactly, it would still be quite far from the original nonlinear system.
We also see that the quadratic approximation(which now retains some nonlinearality)
gives a much better (about 6 times closer) approximation to the original system so a
good reduced order quadratic system generated out of it (which is our goal in Chap-
ter chap:quad) would also be a good approximation for the original system. And we
further see that the 3rd order approximation gives really high accuracy as expected,

though it may be more time consuming to deal with in computation.
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Chapter 3

Linear System Reduction

3.1 Model Order Reduction for Linear Systems

We see in Chapter 2 that the linearization method will not generally give a good
approximation for nonlinear system, but reducing a linear system is a subject in its
own right and particularly the methods in reducing linear systems also give us helpful
hints in developing methods for reducing nonlinear systems; therefore in this section
we will give a self-contained review of model order reduction for linear systems as a
preparation and also useful tool for later nonlinear model order reductions.

There are actually several methods to do model order reduction for linear sys-
tems(see for example [3]) such as slowest modes, explicit moment matching, Arnoldi
method, Lanczos method (these two also belong to “implicit moment matching”) and
truncated linear system etc. Among them the Arnoldi method is one of the most pop-
ular and successful method for its effectiveness and ease to use and it is this method
that will be reviewed here and also be useful in later part of the thesis.

For a linear system® given as in (1.1,1.2)

x = Ax+ bu(t)

'We will only deal with nondegenerate systems, i.e, we always assume A to be nonsingular and for
nonlinear state equation (1.5) we assume the Jacobian of f to be nonsingular too. These requirements
are almost always satisfied in realistic situations

27



we can perform Laplace transform on the equations to get
sX(s) = AX(s)+bU(s)

and

Y(s) = cTX(s)

where we make use of the fact that x(0) = 0 and we now have the Laplace transform

of output linked with that the input simply as
Y(s) =G(s)U(s) (3.1)

where
G(s)=cT'(sI-A)'b=-cA'I-s5A)"'b (3.2)
is the all important transfer function of the linear system (1.1)-(1.2) and we can
expand G(s) as
G(s) = —c"ATN I+ sAT + A7+ )b =—) mys' (3.3)
where
m; = cTA~HDb = cTA~{(A D) (3.4)

is called the ith moment(i = 0,1,---). And Arnoldi method (as well as many other
linear model order reduction methods) is based on the idea to try to come up with a

reduced system (1.3)(1.4)

z = A,z+b,u(?)

Yr = CTZ

<

whose transfer function G,(s) = ¢ (sI — A,)~'b, will have the same moments with

28



G(s) up to some degree:

cIAZH L, = A~ i =0,1,---, k (3.5)

where k usually depends on the size of the reduced system (it is of the order of
the size of the reduced system in the Arnoldi case). Thus the reduced linear system
approximates the original linear system (independent to the input) because its transfer
function (independent of u) approximates the transfer function of the original linear
system.

The Arnoldi method is based on the following “Arnoldi algorithm” ([4]) which has
3 inputs?:
A , an N by N matrix; b € RY; and an integer ¢, which will be the size chosen for
the reduced system and usually ¢ < N
and will generate 3 outputs:
V, an N by ¢ matrix; H, an ¢ by ¢ matrix; and v,y; € R? which will satisfy the
following 3 properties:
Property 1.V is an column-orthonormal matrix: its ¢ columns form a set of orthonor-
mal vectors in RV;
Property 2.

AV = VH + hvg, €] (3.6)

where h is a scalar and the e, is the gth standard unit vector in R? (unless stated

otherwise all standard units vectors e; appearing below will be in R? by default)

Property 3.

Afb = ||b||[VHe, (3.7)
where k = 0,---,¢ — 1 and here || - || is the 2-norm (the default norm used in the
thesis).

The Arnoldi algorithm is actually a modified Gram-Schmidt process for the Krylov
subspace K, (A, b) = span{b, Ab, A?b,---, A9 'b} with the orthogonalized g vectors

2the A and b here do not refer to the A and b above
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Vi, - -+, V4 constitute of the ¢ columns of the matrix V as described below:
First form unit vector v; = b/||bl|
Then we know Av,— <Av;,v;> v, is orthogonal to v; (here <a,b> is the RV

inner-product a’b) then let

Avi— <Av,vi> vy
|Avi— <Avy,vi> vq|

Vo =

which will be orthonormal with v; and if we denote h;; =<Awvy,vi> and hy; =

|Avi— <Avy,vi> vy|| we will have from above equation:
Avi =hi1vi+ he1ve

Similarly we can proceed to form

_ Avy,— <AV2,V1> Vi— <AV2,V2> Vo
|Ave— <Avy, vi> vi— <Avy, vo> vy

V3

which is orthonormal to both v; and v, and again denote hy 9 =<Avy, vi>, hos =<

AVQ, vo> and h3,2 = ||AV2— <AV2, Vi> Vi— <AV2, Vo> V2|| we have

Avy = hiovi + hopvo + h3ov3

continue in this manner through to form the v, from orthonormalizing Av,_; with

vi, -+, V1 and after v, we perform this one more step to form® a
Av,— <Av,,vi> vi— <AV, Vo> vy — - - — <Av,, V> v,
Vg+1 =
T | Avy— <AV, vi> vi— <AV, Vo> Vo — -+ — <AV, V> V|
which is orthonormal to all* vy, -+, v, with

Avy = hygvi+ hogvo + -+ hggvg + 1,0V

31f we can, see the footnote on page 32
1So Vvy1 =0
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where hy , =<Avg, vi>, ho g =<Avy,vo>, -, hy g =<Av,, v,> and

hgy1,4 = ||AVq— <AV, V> vi— <AV, Vo> vy — - — <Av, v> Vq”
Now let
vV = (Vl,Vg,"',Vq) (38)
hiy hiy oo - hyg
hor hag -+ - hyg
H = hsp - : (3.9)
L hq—l,q hqq i

where those blank parts in H are all zeros and H is some times called an “upper
Heisenberg matrix”. From the above description of the modified Gram-Schmidt pro-
cess we obviously have Property 1 and Property 2 (where we set h = hg1,). For
Property 3 we note that since the part of H below (not including) its lower-2nd
diagonal® are all zeros it is easy to prove by induction that the part of H* below its
lower-(k + 1)th diagonals are all zeros , where k& = 0,---,¢ — 2 and therefore their

(g, 1) entries are all zero:

e, H'e; =0 (3.10)
where £ =0,---,¢ — 2 and e;,e; € R?. We also note that the first column of matrix
V is actually v; = b/||b|| so

b = ||b|| Ve,

and from (3.6) we have

[bl|AVe; = |[b||VHe; + hl[b[v,sie;e: = [[b||[VHe,

SHere we refer to the diagonal consists of ha 1,h3 2, -, hg 4—1. The main diagonal both the first
lower and upper diagonal in this sense
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i.e.

Ab = ||b|[VHe,

then with both equations (3.6) and (3.10),we get easily by induction that
A*b = ||b|[VHe,

where k£ =0,1,---,¢g — 1 thus Property 3 holds.
The Arnoldi algorithm described above can be summarized in more concise form
as following:
[V, vgt1, H = arnoldi(A, b, q)
{
vi =b/|b]|
for j=1:¢q
{w = Av,
fori=1:7
{hij =wTv;
w=w — h;;v;}
i1 = Il

if°(hjy1; # 0)Vip1 = W/hjia 5 }

To reduce the original linear system (1.1) and (1.2) we just set A; = A~! and

b; = A~'b then apply the Arnoldi algorithm above on A;,b; and ¢ to get the V
and H then set

A, =H b, =|bi|H 'e;,c, = V'ec (3.11)

fIn case of some hji1,; becomes 0, which is rare—such as the b happen to be an eigenvector of
A or ¢ = n—this means the ¢ chosen for the size of the reduced system is unnecessarily overlarge.
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then use Property 3 we will have

c; A, b, = |by||c" VIH*""H e, = ||by[|c" VI He; = ¢’ ATb, = " A~**b
(3.12)
which is exactly equation 3.5 for k =0,1,---,¢— 1

Therefore if we use A,, b,, ¢, to form

z = A,z+Dbu(t)
Yr = CfZ

This will be a reduced linear system for (1.1-1.2) of size ¢ and its transfer function
will match up to (¢ — 1)th moments of the original system.

Remarks:

1. If the original linear system is given in the form of

Ax = x+ bu(t) (3.13)
y = cTx (3.14)
with transfer function
G(s)=—c"I-3sA)'b=-) (c"A'D)s
=0

then the reduced system of size q by Arnoldi method is even simpler given by

A,z = z+bu(t) (3.15)

Y = C 2 (3.16)

T

for which

A, =H,c, =V7c,b, = |b|le;

where V and H are gotten by applying Arnoldi algorithm on A, b and ¢ directly and
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it will match the moments” of the original (3.13-3.14) for up to ¢ — 1 th order.

2. For the system above in Remark 1, there is a very important point of view to
easily interpret the Arnoldi method of model order reduction by thinking the matrix
V form the Arnoldi algorithm as a projection operator from RY to RY, that is , make
the following change of variable

x=Vz (3.17)

in the original system (3.13-3.14) to get

AVz = Vz+bu(t) (3.18)

y = cTVz (3.19)

Then multiply both side of equation 3.18 by VT and note from the properties of
Arnoldi algorithm that VI'V =1, and V'AV = VI'VH + thq+1eqT = H we will
get

Hz = z+ V'bu(t) (3.20)

y = c'Vz (3.21)

which is actually (3.15-3.16).

The change of variable (3.17) is a projection of the state variables from R" to
R? by the matrix V(which has those important moment-matching property given by
Arnoldi process) and this state variables projection is very important and will be used
again later in nonlinear system model order reduction.

3. The Arnoldi model order reduction method for linear system of form (1.1-1.2)

as we described earlier in this section is actually derived® by first transforming the

"the kth moment in this case is cT A*b

8Tt is worth while to point out that it will not work conveniently (having the desired moment
matching property) to make a similar variable-projection as in Remark 2. directly for system (1.1-
1.2) due to the fact that in Arnoldi process generally (VIAV)™! £ VTA-1V
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system (1.1-1.2) to

A7'%x = x+ A7'bu(t) (3.22)

y = cTx (3.23)

then reduce it by Arnoldi as described in Remark 1,and finally transform the reduced
system back to be with the same form as (1.1-1.2).

4. The Arnoldi method usually works very well for reducing linear system. Just
for example, the following linear system , of size N = 1000 is from a discretized heat
conduction equation on a 1-D bar with a step heat scourge at one end as the input

and the temperature at this end as output.

-2 1 _

0

1 -2 1 T )

1 :
X = — : t) (3.24
X = 1 N Y N EORCED

1 —2 1 21000
1
1 -1 -
| 4 1000x1000

y = 00 = (0,---,0,1)-x (3.25)

And we use Arnoldi method to reduce it to a ¢ = 5 (as versus 1000!) linear system
with the comparison shown in Fig 3-1.

We see although the reduced system is 200 times smaller than the original it still
approximates the original linear system very accurately. And it is very worthwhile to
point out that reduced order linear systems generated by any model order reduction
methods for linear system based on moment matching will always match the steady
state exactly, because the steady state(obtained by set x = 0 on the lefthand side of

the linear state equation) is —c” A~'b — (negative) first moment!
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1
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H
=0.6
0
0.4
02 ——  Original system(size 1000)
: reduced to 5
0 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time

Figure 3-1: Comparison of the behavior of the original size-1000 linear system with
the size-5 reduced linear system,the reduced system matches the steady state exactly
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3.2 Linearization Model Order Reduction for Non-
linear Systems

As we have implied in Chapter 2 that the linearization model order reduction method
for nonlinear systems will generally give no better approximation for the original
nonlinear system than its linearization shown there. The linearization and linear
model order reduction method will only work satisfactorily for nonlinear systems
which are actually close to linear systems or operating within or near its linear regime
(see for example[1, 2]). For most nonlinear systems, we will have to use methods other

than it.
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Chapter 4

Quadratic Reduction for

Nonlinear Systems

This chapter will present the “quadratic reduction” method to perform model or-
der reduction! on nonlinear systems, which will reduce the original system of any
nonlinearality to a reduced system of quadratic nonlinearality. As already implied
in Chapter 2 this method is based on the strategy of first approximate the original
nonlinear system by its quadratic approximation (which generally gives a much bet-
ter approximation to the original system than its linear approximation (linearized
system) does); and then reduce this quadratic approximation system (which has the
same size with the original nonlinear system) to a much smaller quadratic system
which matches that quadratic approximation system?(to high precision) therefore
this reduced quadratic system will be a good reduced nonlinear system to the origi-
nal nonlinear system. It will represent both a reduction in size and in nonlinearality
yet will be seen to still match the original system as well as the quadratic approxima-

tion does. The basis of the method will be how to reduce a quadratic system, as to be

L«“Model” is treated simply as a synonym of “system” here.

2Three different level of systems will be involved in this Chapter. To avoid confusion of which
is which , we will call the quadratic approximation to the original nonlinear system the “quadratic
approximation system” (which has the same size with the original nonlinear system) , and call the
reduced system from this quadratic approximation system “reduced quadratic system” (which is still
quadratic and is supposed to have a much smaller size than the quadratic approximation system).
Similar name conventions will also be conformed with in following chapters
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presented in Section 4.1; although in Section. 4.2.2 we will present methods to get a
reduced quadratic system without explicitly computing the quadratic approximation

system.

4.1 Model Order Reduction for Quadratic Sys-

tems

4.1.1 Tensorial Notation for Quadratic Systems

Any quadratic system with size N that we are considering can be written in the

following concise form:

X = Ax+x'Wx+ bu(t) (4.1)

y = c'x (4.2)

where W is a 3-D array or an N x N x N tensor.

Equation 4.1 is a vector equality and every the quadratic part lies on x? Wx
with each element of which expressed as a quadratic form of the NV state variables
x1,---,xn. As a 3-D array W can be thought of as N of pages of matrices where
expressed in convenient Matlab convention the kth page is W (:,:, k) which isa N x N
matrix,denoted as W, , and the vector x! Wx, denoted here as p is simply determined

by

p(k) = pr = x" Wiex (4.3)

withk=1,---,N

k

As a tensor’ W with 3 indices we usually write it as W = (wf;) where we stress

that in tensor notations the superscripts are indices instead of powers®, as easily

3More detailed and complete treatise about tensor operations and notations can be found in
almost any book on tensor analysis or differential geometry , see for example, the classic [5] or [6]

4The distinction of superscripts and subscripts actually have more subtle meaning involving
coordinate transformation properties but this aspect will not appear in our usage of tensors
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distinguishable from the context. . We will call W the quadratic tensor of the
system. The benefits of using tensor notations is that it can make the indices and
multi summations we use later clearer and easier to keep track with(tensors are still
stored and manipulated as multi-dimensional arrays in our computations). Here for
xTRx we will have
(x"Wx)* = wlz's? (4.4)
where again all superscripts are indices and we also make use of the popular “Fin-
stein summation convention” that a pair of up-stairs and down-stairs index (i.e., a
superscript and subscript of the same letter) means summation over this index so
equation 4.4 says the same thing with equation 4.3.
Tensors with m superscripts and n subscripts are called a (m,n) type tensor and

in this framework a vector x = (z!

-, &) T is a (1,0) tensor and a matrix® A = (a}) is
a (1,1) tensor and our quadratic tensor W is a tensor of type (1,2) and size N x N x N.
The two main tensor operations that we will use are the tensor product and the
contraction:
Tensor product with the notation ® is a binary operation defined for any two
tensors®. The tensor product of an (m,n) tensor with a (p,q) tensor is simply an

(m+p,n+q) tensor defined element-wise. For example the tensor product of (1,2)

tensor W and matrix A will be a (2,3) tensor, if denoted as R, determined by

R

Il

(rg’fk) =S A= (wfjaz)

The contraction is an operation on one tensor by summation over a pair of upper
and lower case indices. For example, the contraction operator T) is defined on any
(2,2) tensor and it acting on Q = (g}3) will contract the 1st superscript with the 2nd

subscript to generate a (1,1) tensor(i.e. a matrix) P = (p}) where

P =T,(Q)

Swhen a matrix is written is this form the convention will be that the superscript 4 is the row
index while the subscript j is the column index
6They do not even to have the same dimension
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and
] ki —
Z' - CI]lz: - Z QJk

Contractions can also be carried out in parallel, for example, T}.2 will mean to contract
the first superscript with the first subscript and also the second superscript with the
second subscript, for example on (2,2) tensors this would be T12[(a)] = (%) which
results in a scalar.

It is the contraction composed with tensor product that will give a variety of ways
to generate new tensors out of the old. For example with this notation the product
of two matrices A = (a}) and B = (b}) (suppose they are dimensionally matched to

multipliable) is simply another matrix (an (1,1) tensor)
C=TA®B)

And the goal of model order reduction for quadratic system (4.1-4.2) is to find a

reduced quadratic system with size ¢

z = Az+2"Wz+ bu(t) (4.5)

j = &'z (4.6)

where z € R? and W a ¢ X ¢ X g (quadratic) tensor.

4.1.2 The Abstract Concept of Model Order Reduction

It is helpful to make some contemplation about the abstracted concept of model order
reduction. We can say a model order reduction is an operator Mor which acts on
some class of systems , for example on the quadratic systems of form (4.1-4.2)—we
denote this class of system as QU A—or on the class nonlinear systems (NOL) of the
form (1.5-1.6) or on the class of linear systems (LIN). And when it operated on a

“original” system S belonging to this (domain) class and with state variables x € RY
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it will generate a “reduced” system S, in some class and with state variables’ x for the
state variablesz € R? (and ¢ is supposed to be much smaller than N) For example, the
Arnoldi model order reduction for linear systems described in Chapter 3) is a model
order reduction operator from LIN to LIN, and the quadratic reduction method(s)
for reducing nonlinear systems to be presented in this chapter will be some model
order reduction operator(s) from NOL to QU A and the model order reduction for
quadratic systems in this section will be a reduction operator from QU A to QU A.2

With specific sizes, we can denote a model order reduction operator Mor which
reduces size-IN systems to size ¢ systems as M orflv and it is easy to see the following
requirement will be a fundermental criterion for such a model order reduction to be
a satisfiable one:

Requirement (Recovery Property): When ¢ = N, the reduced system should
be equivalent to the original system (although they may differ in form) . That is, given
original system S, S, = M orév [S] should generate exactly the same (not just very
close) output y(t) with that of S for same input u(t)

A model oder reduction must satisfy the above recovery property to be expected
to give a general acceptable reduced system S, with ¢ < N and when we increase ¢
we can expect S, to be closer and closer to the original S until become equivalent to
S when ¢ reaches N (no reduction).

An important and useful way to get a model order reduction operator is by way of
a state variables projection, like what we do in the Remark 2 of Chapter 3. There we
are working on the class of linear systems LLIN (“left LIN”) with form (3.13-3.14)
use the matrix V to make a projection form the high dimension (N) state space
to low dimension (q) state space (see also the footnote on page 34). Because V is
orthonormal matrix there it will be invertible when ¢ = N so the recovery property is

easily seen to be satisfied. If we denote this reduction operator as LArn, acting from

"We use different letter for state variables simply to avoid confusions

8In this spirit and language , if we also consider the quadratic approximation procedure for
nonlinear systems to be an “approximation” operator QA from NOL to QU A then the (explicit)
quadratic reduction methods for nonlinear systems in this chapter is simply the model order reduc-
tion for quadratic systems composed with @ A.
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LLIN to LLIN, and also denote the transformation of a linear system of the form

x = Ax+ bu(t)
y = cTx

which belongs to LIN to

A% = x+ A 'bu(t)

which belongs to LLIN as an operator L (for “left multiplication”) , acting from
LIN to LLIN then the Arnoldi model order reduction for LIN in Chapter 3 is just
formed as Arn = L 'o LArno L ! where LArn reduces the size and L keeps the size
when operating.

This suggests to us that the similar linear® state variables projection from original
state space to low dimensional (reduced) state space and which is invertible when
qg = N could also be applicable for nonlinear systems especially quadratic systems

with appropriate forms to make a promising model order reduction.

4.1.3 Reducing a Quadratic System

With all the preparation in the preceding sections, we now proceed to reduce the

quadratic system

x = Ax+x'Wx+ bu(t)
y = c'x
which is of size N.

With the consideration in the footnote on page 34 and to get a convenient reduced

9Tn principle we could also imagine a nonlinear change of variables x = g(z) for nonlinear systems
but unless for special forms it will usually be not easy to rearrange the resulted system to an easy-
to-dealt-with form while still keeping the size of the reduced system down

44



system we first transform the system to

A% = x4+ A XTWx + A bu(?)
y = cTx

which differs from (3.13-3.14) only with the addition of the quadratic term. Inspired
by the success of the Arnoldi linear projection of state variables in reducing (3.13-
3.14) and the corresponding discussions in Section 4.1.2 we set A; = A=} by = A~'b
then apply the Arnoldi algorithm described on page 3.1 on A, b; and a g chosen for
the reduced system size to get the matrices V and H where V is an N X ¢ matrix
, VIV =1, and H=VTAV

Then we perform the similar change of variable which is the key state space
projection'® :

x=Vz

where z € R? to get!!

AVz = Vz+ Az’ VIWVz + biu(t)

y = ctVz
then

Hz = VA, Vi=2z+VTA2Z"VIWVz+ VTbu(t)

y = ctVz

0Gince V is still invertible when ¢ = N so the recovery property is still satisfied

"UHere VIWYV still represents page-wise matrix multiplication as a convenient shorthand in this
case with result of the multiplication being N pages of ¢ x ¢ matrices which is also a N x ¢ x ¢
type(1,2) tensor and can be further page-wise multiplied with z” and z
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and

z = H'z+ H'VTAZZVIWVz + H 'V bu(t)

y = cTVz
Now we set
A = H! (4.7)
b = H'V'b, = |b||H 'e, (4.8)
¢ = Vie (4.9)

which is actually the same as equation 3.11 because these are still the reduced data
of the linear part.

For the complicated quadratic term g(z) = H-'VT A ;27" VIWVz now (temporar-
ily) appearing above, we need to rewrite it as a standard form to have a reduced
quadratic system in real sense. For this we define the ¢ x N matrix D = AVTA, =
H 'VTA, =H 'VTA !and the B=VIWYV which is actually a N x ¢ x ¢ type(1,2)
tensor. Then

g(z) = D(<"B2)

and if D = (d}),B = (3%,) we denote [v]; for the ith element of any vector v we have,

in terms of elements,
&(z)]i = ( ’ stz) 2°( ;c ft)zt :stitzt

or

g(z) = 2" Wz (4.10)

where W = (#%,) with @?, = di 8, or in tensor notation

W = T?(D @ B) (4.11)
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Therefor we finally reduced the original quadratic system to

72 = Az+2TWz+ Bu(t)

= ¢l'g

<
|

which is exactly of the form (4.5-4.6).

We can now summarize the above method for reducing a size N quadratic system

X = Ax+x' Wx + bu(t) (4.12)

y = c’'x (4.13)

to size ¢ as follows:
Step 1. Set A=A 1 b;=A"b
Step 2. Apply Arnoldi algorithm(page 32) on Ay, by, ¢ to get V and H
Step 3. Set A=H"' b =|b;||H 'e; and & = V¢
Step 4. Let D =AVTA; and B =VTWYV to get W =T2(D ® B)
Then

72 = Az+z2TWz+ Bu(t)

&'z

N
I

will be a reduced quadratic system of size ¢
To verify the effectiveness of this method we apply it on the quadratic approxima-
tion of the nonlinear circuit system in Section 2.3 and shown in Fig. 2-3 with N = 100

capacitors and the same resistor profile g(v) function chose there.
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This quadratic system is of the form (4.12-4.13) with

—82 41
41 =82 41

- 4 100x100

which is tridiagonal and the quadratic tensor W = (w;) = (W*) where N x N matrix
(the 7th page of this (1,2) tensor) W* = (w") is given by the following rules:
—1600 800

W' has its [1:2,1:2] block being and all other parts zeros;
800  —800

800 —800 0
W' wherei = 2,---, N—1hasits [{—1:i+1,;—1:i+1] block being | —800 0 800

0 800 —800
and all other parts zeros;

; . . _ 800 —800
W* has its lower-right [V — 1:N,N — 1:N] block being and all
—800 800

other parts zeros;

We now reduce this size-100 quadratic system to ¢ = 5,¢ = 10 and ¢ = 20
respectively with the results (still using the step source as in Section 2.3) shown in
Fig. 4-1. We see the ¢ = 5 reduced system indeed departs from the original quadratic
system in transit behavior while capturing the steady state still well, and both the
g = 10 (10 times smaller than the original) and ¢ = 20 reduced system match the
original system almost accurately so that we cannot even well distinguish them in the
plot.

And we also try various other form of sources including sinusoidal, exponential
and polynomial sources with their results shown in Fig. 4-2-4-5. In all of them we
see the ¢ = 10 reduced quadratic system (let alone the ¢ = 20 one) gives a very good
accuracy in matching the original quadratic system.

We also record the computation time for integrating the N = 100 and its sys-
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Quadratic reduction from N=100
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Figure 4-1: Comparison of the original size-100 quadratic system

reduction to size 5,10 and 20
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Time
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. %10 Quadratic reduction from N=100
. T T T

Voltage output with sin source

—— N=100, unreduced quadratic system
reduce to 5

- ——  reduceto 10

- - reduce to 20

25 | | ! ! R ! ! | |
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Figure 4-2: Comparison of the original size-100 quadratic system to its quadratic
reduction to size 5,10 and 20:response to a sinusoidal source u(t) = sin(¢)/10
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Quadratic reduction from N=100
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Figure 4-3: Comparison of the original size-100 quadratic system to its quadratic
reduction to size 5,10 and 20:response to a source u = —e ¢
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Quadratic reduction from N=100
1.8 T T T
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12 —— N=100, unreduced quadratic system i
reduce to 5

- ——  reduceto 10

1F - - reduce to 20 1
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Figure 4-4: Comparison of the original size-100 quadratic system to its quadratic
reduction to size 5,10 and 20:response to a source u = €'/10; in this case even the
q=5 match the original one accurately
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Quadratic reduction from N=100
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Figure 4-5: Comparison of the original size-100 quadratic system to its quadratic
reduction to size 5,10 and 20:response to a source u = (¢t — 1)?
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Computation time unreduced quadratic | reduce | reduce | reduce
(in sec) system(N=100) to5 | to10 | to 20
with step source 902.3 1.77 8.95 43.8
with sin source 1120 1.60 7.66 45.7
with source u = —e™* 1177 1.25 7.59 45.3
with source u = €'/10 5329 8.14 714 | 2674
with source u = (t — 1)? 822.8 0.84 7.20 26.6

Table 4.1: Comparison of computation time for integrating unreduced and reduced
quadratic systems

tems in the above computations in Table 4.1 from which we see the reduced systems
(particularly the ¢ = 10 one which gives very satisfactory match) indeed make a
tremendous reduction in computation time. And since the reduced quadratic tensor
W, of size ¢ X ¢ X ¢ is usually dense (even when the original one is sparse) the com-
putational complexity for integrating the reduced quadratic system will increase as
O(q®) with the size of the reduced system, which comes from doing the vector-tensor

multiplication z7 W, z.

4.2 Quadratic Reduction for Nonlinear Systems

In the previous section we see that the quadratic reduced system can give a very
satisfactory accuracy in matching the unreduced quadratic system. And in Chapter 2
we already see the quadratic approximation of a nonlinear system usually approximate
the original nonlinear system to a much better accuracy than the linearization system,
therefore the quadratic reduced system generated from the quadratic approximation
of a nonlinear system can offer a quite satisfactory reduced system for the original
nonlinear system which both saves much of the computation time and also match
the original nonlinear system to a good accuracy as well as the original quadratic
approximation does.

For clearer demonstration and reference we plot the behavior of the original non-
linear system for the nonlinear circuit example in Section 2.3 with size 100 (for which
we already reduce its quadratic approximation to ¢ = 10 in last section) together with

those of the reduced quadratic system (to ¢ = 10) and its reduced linear system (to

54



0.025

0.02}
0015} 9 ]
]
g 3
S |
0 T
? — .
0.01 | Original nonlinear(n=100) 1
— — - quadratic approximation of original
0 freieTy o
! +  + linearization of original
! — =+ Quadratic reduction to q=10
t lo o linearreduction to q=10
0.005+ o .
!
|
!
|
OO ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9 10

Time

Figure 4-6: Comparison of the original nonlinear system(size 100) with the reduced
systems generated by quadratic reduction and by linearization to size 10.The response
output is for the step source and here we also plot the original quadratic approxima-
tion and linearization systems for reference

g = 10) by linearization in Fig. 4-6 and Fig 4-7 with step source and an exponential
source respectively. And we also compare the integration'? time for computing them
in Table4.2. From these we clearly see the reduced quadratic system (with 10 times
smaller in size) gives a quite good approximation to the original nonlinear system
which is much closer than the linear reduced one but still costing only a fraction of

the time used to integrate the original nonlinear.

2Implemented on a faster machine than the one used for computations in Table 4.1
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Model order reduction for nonlinear system
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Figure 4-7: Comparison between the same original nonlinear system with its quadratic
and linear reductions but for an input source u = e~

t

10

Computation time

Original nonlinear

quadratic reduced

linear reduced

(in sec) (size 100) system(size 10) | system(size 10)
with step source 98.3 6.74 1.60
with source u = e~* 115.3 6.77 1.60

Table 4.2: Comparison of computation time to integrating original nonlinear system

and its quadratic and linear reduced systems
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4.2.1 Explicit Quadratic Reduction Method

Suppose we have the following nonlinear system

x = f(x)+ bu(t)

y = c'x

and f(x) has the following 2nd order Taylor expansion (we assume f(0) = 0) as usual)

1
f(x) ~ Dg(0)x + EXTHf(O)X (4.14)
where f = (f1, fo, -+, fn)1,Dg(0) = (g£;|0) is the Jacobian at 0 and Hg(0) =
(ﬂb) is the Hesse tensor of f at 0 with type (1,2).

Ox;0xy,

Therefore the above original nonlinear system has the quadratic approximation

X = Ax+x'Wx + bu(t)
y = c'x
with A = Dg(0) and W = £Hg(0) here.

And the explicit quadratic reduction method to reduce the above nonlinear system
is just first compute the Jacobian and Hesse tensor of f to get the quadratic approxi-
mation system then use the reduction method for quadratic systems described in the
previous section to get the reduced quadratic system. This will be convenient if the
original nonlinear system is given in simple analytic form and it is easy to get the

entire quadratic approximation system.

4.2.2 Implicit Quadratic Reduction Methods

The implicit quadratic reduction is to generate the reduced quadratic system for the
original nonlinear systems without computing all the second derivatives in the Hesse

tensor explicitly'® which(although only once during the reduced model generation

13We will still need to compute the Jacobian in these methods, however
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process) can be time-consuming (having N? elements) or not worthwhile to compute
especially when the original system is very large or not given in a simple analytic
form.

To do this, we first compute the Jacobian of f at 0 to get the matrix A and in the
same way as described in last section to get matrices H and V = (v!) by applying
Arnoldi on A™!, A~'b, ¢ then get the A, B, ¢ and also compute the auxiliary matrix
D= (dj) =H 'V'A™!

Recall the reduced quadratic tensor W is formed by

Gk _ gkl
Wi = di' B;;

where
(B;) =B=V'WV
l l _ 1, r 0%f | s
50 i = wrsvj - QUZ 0T, 0xs
therefore
1, 0°f
~k k
Wy = g ax,a Jlovies
0 oft
— dk r
Jaxs(Q oz, vi)lo

which we recognize as a directional derivative.

If we denote vector v; = (v;) and define functions

of

k k
; —d
0 00) = i (0]
or in matrix form a matrix function
1
G(x) = (4 (x)) = ;D-De(x)-V (4.15)
then we have
Wl = Dy, g (0) (4.16)
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or in more compact notation

i}, = Dy, G(0)

Using difference we can also give an approximation formula to be used in computation
for equation 4.16 as
koSt kOft ,r
ok (g%)(ev;) — (9%)(0) _ (d7 53, v7) (€v5) — (d7 53, v7)(0) (4.17)

Y € 2¢

where € is a very small positive number.

We can get another formula for %¥ even avoiding using functions g¥ which have

ij
first derivatives in them ,which will give us a second order type difference formula.

This is by observing further that

of 0 1

900 = 5t 52000 = o] - (3 ) () = Due()

where we define functions
1
hF(x) = §d{“ ! (4.18)
or
h(x) = (h*) = >D - £(x)

therefore

uE = (9F)(ev;) = (gF)(0)

J €

Dy, hi(ev;) — Dy, h*(0)

€
hk(6V¢—|—€Vj)*hk(6Vj) _ hk(evi)—hk(())
- €
_ hk(G(Vj + Vz)) — h,k(Vj) — h,k(GVi) + hk(O) (419)

€2

One can also have a centralized-like difference scheme,written in vector form it is

by = = — 2 (4.20)
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In the first scheme (4.17) we need to evaluate the Jacobian ¢ times (at the vectors
€vy,- -, €v,) and there are two summation loops from 1 to N (indexed by [ and r in
(4.17) which will need O(N?) computations when the Jacobian is dense and O(N)
when it is sparse like in out circuit example) when computing the functions g and
there are ¢? such functions to compute. So the total complexity is O(¢g® N?) when the
Jacobian is dense and O(¢®N) when it is sparse. In the second scheme(see (4.19) or
(4.20)) we have ¢? function evaluations to compute hy (g such functions) and there
is only one summation loop of size N when computing hj so this scheme has a total
complexity of O(¢>N) and could be better than the first scheme when the Jacobians

are dense.
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Chapter 5

Further and Other Methods for

Reducing Nonlinear Systems

5.1 Third and Higher Order Methods to Reduce
Nonlinear Systems

We see in the previous chapter that the quadratic reduction for nonlinear system
based on its quadratic approximations can generate reduced systems approximating
the original to a quite good accuracy and with low computation cost. We can use 3rd
or higher order approximations when even higher precision is required for the reduced
system to match the original nonlinear system whose higher order approximations
matches the original more accurately, but with some increased computation time and
memory requirement compared with the quadratic reductions.

The 3rd order method is just a natural extension of the quadratic reduction
method in last Chapter. Here for a nonlinear system in form (1.5-1.6) we approxi-
mate the nonlinear term! f(x) = (f!(x), f2(x), -+, fN¥(x))T by its 3rd order Taylor
expansion:

f(x) = Ax + xWx + P(x,R) (5.1)

L Again we assume f(0) =0
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where again Aand W are the linear and quadratic part as given in last Chapter and
R is for the 3rd degree part and it is a (1,3) type N x N X N x N tensor given as

and the 3rd order term P(x,R) in equation 5.1 is a vector-(1,3) tensor multiplication

which results in a vector given as (indexed by 1)
P(x,R) = (Rjyz's’s") = T (ROXx ® X ® X) (5.3)
and we know the resultant 3rd degree system

% = Ax+x"Wx+ P(x,R) + bu(t) (5.4)

y = c'x (5.5)

can give a even higher precision approximation to the original nonlinear system as
observed in Fig. 2-5

And the process to generate a reduced 3rd degree system from the 3rd order
approximation is also directly similar to the quadratic reduction in last Chapter
by still using the Arnoldi type state variable projection to transform all the linear,
quadratic and 3rd order term to low dimensional form. We briefly summarize the
procedure as follows:

Step 1. Set A=A b, =A"'b

Step 2. Apply Arnoldi algorithm(page 32) on Ay, by, ¢ to get V and H

Step 3. Set A = H™'.b = ||by||H 'e; and & = V”¢. This reduces the linear
components.

Step 4. Let D = AVTA; and B = VIWYV to get W = T2(D ® B) This reduces
the quadratic part.

Step 5. Let? R=TZ5(D QR ®V ®V ®V). This reduces the 3rd degree part.

2Wri ; sis Pl = d' RS wPuly”
Written in elements this is R;;;, = d,R},,v;vjvg
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Figure 5-1: Comparison of the original size-100 nonlinear system to its 3rd order
approximation and reduction to sizes 5,10 and 20

Then

z = Az+2"Wz+ +P(z,R) + bu(t)
j = &'z
will be a reduced 3rd degree system of size ¢
We can apply the above 3rd order reduction method?® for the nonlinear circuit
example system to get the result given in Fig. 5-1

We see the 3rd order reduced system is almost an exact match to the original

3using backward Euler integration with approximate Newton method
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nonlinear system, although it uses as much as about 1/3 of the integration time* used
to integrate the original nonlinear system which is not as significant a time reduction
as compared with quadratic reduced system.

The even higher degree reduction methods can be posed just similarly as the 3rd
order reduction method. But those will significantly increase the time and memory

cost and therefore are rarely used.

5.2 Dealing with General Forms of Nonlinear Sys-
tems

All the nonlinear systems that we have been considering so far are of or near the
standard form which has the feature that the input term is separated from the state
variables. But our model order reduction approach can be extended to deal with even
more general forms of systems.

Suppose we are given a nonlinear system of the following form

x = f(x)+b(x)u(t) (5.6)
y = gx) (5.7)
in which b(x) is a nonlinear vector function and the state variables are not separated
from the input®. We can still expand all the nonlinear functions f,b, g to quadratic

forms and get the following generalized quadratic system as approximation to the

original:

X = Ax+x"Wx+ (b+ Bx +x"Sx)u(t) (5.8)

4On a SunUltraSparc 30 machine(300MHz) it costs 92.5 seconds to integrate the original size-100
nonlinear system, 4.8 seconds to integrate the quadratic reduced size-10 system and 32 seconds to
integrate the third order reduced size-10 system

5In some cases we can try to find a coordinate transformation x = %(x) with Jacobian J(x) =
W such that J(x)-b(x) = b is a constant vector,then the transformation X = %(x) can

1,52 N)
separate the input from the (new) state variables
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y = c+Ex+x'Ux (5.9)

and our approach of using state-variable projection together with the tensor contrac-
tion can still apply to this system to generate a reduced quadratic system of the
similar form.

For the even more general form of nonlinear system

x = f(x,u) (5.10)

y = g(® (5.11)

where f is a general nonlinear function of both state variables and input we may
still expand f to get the quadratic approximation of the above form which may have

multi-inputs. And the higher order approaches can also be extended similarly.

5.3 Some Other Methods for Nonlinear Model
Order Reduction

There are some other methods existed for doing model order reductions on nonlinear
systems. [7, 8] try to use balancing technique to reduce nonlinear system satisfy-
ing certain conditions; [9] discusses using decomposition method to try to extract a
small set of basis functions for modeling in the context of fluid integration systems.
[10] studies generating low order macromodels for a type of MEMS system using a
generalized-coordinate approach. Most of these methods are either only posed for
some specific types of nonlinear systems or have not been practically applicable for
general nonlinear model order reductions. A more detailed review for many of these
methods is given in [11]. We also feel that our methods in this thesis may have
limitations in some situations, for example when the nonlinear term of the nonlinear
state equation is very bounded even for large state variables (therefore the quadratic
approximation of it is even farther away from the original nonlinear term than the

linear approximation globally) or the output of the system is tending to be unbounded
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for large simulation time (such that the error between the quadratic approximation
and the original grows to be very large); for these cases further model order reduction
methods beyond the simple PP-type (using Polynomial approximation together use
one Projection of state variables) reduction methods in this thesis should be devel-

oped.
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Chapter 6

Conclusions

This thesis develops some practical and efficient methods for doing model order re-
duction on nonlinear systems.

We obtain a highly successful method for reducing quadratic systems and demon-
strate its accuracy and efficiency through nonlinear circuit example. This method
coupled with the quadratic approximation for nonlinear systems generate quadratic
reduced order systems for original nonlinear systems which offer a much better accu-
racy than linearization methods. We also extend this method to third or even higher
order which offer even higher accuracy for reducing the nonlinear systems.

This approach is applicable for a large category of nonlinear systems whose quadratic
or higher order polynomial approximations give a closer approximation for the original

nonlinear systems than the linearization do.
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