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Electronic transport in chemical vapor deposited graphene synthesized
on Cu: Quantum Hall effect and weak localization
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We report on electronic properties of graphene synthesized by chemical vapor deposition (CVD) on
copper then transferred to SiO,/Si. Wafer-scale (up to 4 in.) graphene films have been synthesized,
consisting dominantly of monolayer graphene as indicated by spectroscopic Raman mapping. Low
temperature transport measurements are performed on microdevices fabricated from such CVD
graphene, displaying ambipolar field effect (with on/off ratio ~5 and carrier mobilities up to
~3000 cm?/V s) and “half-integer” quantum Hall effect, a hall-mark of intrinsic electronic
properties of monolayer graphene. We also observe weak localization and extract information about
phase coherence and scattering of carriers. © 2010 American Institute of Physics.

[doi:10.1063/1.3371684]

Graphene, a single layer of graphite, has attracted tre-
mendous interests as a novel electronic material with many
potential applications.l’2 The initial experiments revealing
graphene’s unique electronic transport properties [such as
ambipolar field effect’ and “half-integer” quantum Hall ef-
fect (QHE)"’] were performed with graphene mechanically
exfoliated from graphite. While exfoliation typically gives
only small (tens of micrometers) graphene flakes and is not a
scalable method to produce graphene for practical applica-
tions, many other methods are developed to synthesize high
quality graphene at large scale. One example is epitaxial
growth on SiC.%" Another example is chemical vapor depo-
sition (CVD) on metals. Metal-based CVD is a decades-old
method to grow graphene (see reviews in Refs. 8 and 9).
Lately it has received revived interests as a potentially scal-
able way to produce graphene that can be readil?/ transferred
to other substrates for electronic applications.lof ’In particu-
lar, copper (Cu) has been demonstrated as an exceptional
metal substrate allowing CVD growth of large-size single
layer graphene with excellent quality and uniformitylsf17 and
promise for applications in transistors,'>'* transparent
electrodes,”’19 and flexible electronics.'”"”

In this letter, we demonstrate that CVD graphene grown
on Cu possesses intrinsic graphene electronic properties by
observing the hall-mark half-integer QHE. We also study the
weak localization (WL) to probe carrier scattering and phase
coherence. Our results will be important for understanding
the electronic properties of CVD-grown graphene on Cu and
using such graphene in fundamental research or electronic
applications.

The CVD-graphene samples used in this work are syn-
thesized on Cu foils using procedures20 analogous to those in
published literature'>™"* and in our previous work.”" The
growth pressure is 1 atm (ambient pressure). Following the
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synthesis, the Cu is etched and graphene transferred (assisted
by PMMA'"""%) onto Si0,/Si. Figures 1(a) and 1(b) show a
large (4X4 in.%) graphene we synthesized. Figure 1(c)
shows representative Raman spectra measured (with a 532
nm laser) at several different spots from the transferred film.
The very low disorder-induced “D” band (~1350 cm™') in-
dicates the high quality of the synthesized graphene.22 The
large intensity ratio (I,p/Ig>2) of 2D band (~2680 cm™')
over “G” band (~1580 cm™') is associated with monolayer
graphene.'s’22 One possible reason for the relatively large
variation of I,p/Ig could be the spatially nonuniform adhe-
sion between the transferred graphene and the substrate
(SiO,), as the substrate-interaction can strongly affect the
Raman spectrum for monolayer graphene.23 Figure 1(d)
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FIG. 1. (Color) Photograph of a 4 X4 in.2 CVD graphene film (a) coated
with PMMA and floating on liquid after etching off the Cu substrate and (b)
transferred on a Si wafer, with PMMA removed (arrow marks the edge of
graphene and thick black lines on the wafer are room ceiling reflections). (c)
Representative Raman spectra (c, offset for clarity) measured (with a 532
nm laser) in a CVD graphene film transferred to SiO,/Si. The 2D band can
all be fitted by a single Lorentzian, with center ~2680 ¢cm™' and FWHM
~34 c¢cm™!, consistent with previously observed values (Ref. 15). (d) Raman
map of I,p/Ig over a 200X 200 um? area, most (99%) of which can be

associated with monolayer (L,p/I5>2).
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FIG. 2. (Color online) Ambipolar field
effect and half integer QHE of CVD
graphene. (a) Four-terminal longitudi-
nal resistance (R,,) as a function of
gate voltage (V) measured in de-
vice “A” (optical image shown in the

inset). (b) Ry, and R, (Hall resis-
tance) as a function of gate voltage at
perpendicular magnetic field B=18 T
and low temperature (7=0.7 K). (c),
(d) Ry and R,y as functions of B at

T=0.6 K for V=75 V (n-type car-
riers) and V=0 V (p-type carriers),
respectively. The Landau filling fac-
tors (v) of the observed quantum Hall
states are labeled in (b)—(d) and se-
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£ lected QHE plateaus corresponding to
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lines.
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shows a 200 X 200 wm? Raman map of I,p/I, with ~99%
of the area having I,p/I5>2 (and ~90% having I,/15>3),
indicating the film is predominantly monolayer graphene.

The transferred graphene is fabricated into quasi-Hall-
bar devices using e-beam lithography, O, plasma etching and
metallization (evaporated Ti/Au contacts). The optical image
of a representative device (“A”) is shown in Fig. 2(a) inset.
Electrical resistances are measured by low frequency, low
current lock-in detection. The carrier density is tuned by a
back gate voltage (V) applied to the highly doped Si sub-
strate, with the 300 nm SiO, as the gate dielectric. Measure-
ments on several such devices yield similar results. Data
from two devices (“A” and “B”) are presented below.

Figure 2(a) shows 4-terminal longitudinal resistance
(Ryy) versus Vg, measured in device “A” at low tempera-
ture (7=0.6 K) and zero magnetic field. We observe the
characteristic “ambipolar” field effect,3_5 ALIZIGIS ith resis-
tance modulation ratio more than five. The charge neutral
“Dirac point” (Vpp, position of resistance peak) is ~20 V
for this sample (the positive Vpp indicates some extrinsic
“residual” hole-doping, common in fabricated graphene
devices’). The field effect m()bility375’11’12’14’15
~3000 cm*/V's  for  holes  (Vge<Vpp)  and
~1000 cm?/V s for electrons (Vgye>Vpp). Similar field
effect is also observed at room temperature, although we can
access a larger range of Vg, at lower T without gate
leakage.

Figure 2(b) shows R,, and R, (Hall resistance) of de-
vice “A” versus Vg at a high magnetic field (B=18 T,
perpendicular to the sample) and low T (0.7 K). The sign
reversal of R,y from V> Vpp t0 Vg < Vpp is consistent
with the ambipolar field effect (change of carrier types).
Most remarkably, R, exhibits clearly quantized plateaus at
hi(2¢?) for electrons, —h/(2e2), —h/(6¢%), and —=h/(10e?) for
holes, all accompanied by vanishing R,,, where e is the el-
ementary charge and 4 is the Plank constant. Such a “half-
integer” QHE is an electronic hall-mark of monolayer
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graphene.*” The LL filling factor (v) for the observed QHE
states in Fig. 2(b) is indicated near the corresponding Hall
plateaus (R;ylz + ve?/h). We have also measured R, and
R,y versus B at fixed Vg, showing also half-integer QHE for
both electrons in Fig. 2(c) and holes in Fig. 2(d). First ob-
served in exfoliated graphene,‘*’5 half-integer QHE has been
observed only very recently in synthesized %{raphene, includ-
ing epitaxial %raphene grown on sic,**?*" cvD graphene
grown on Ni,'* and now CVD graphene grown on Cu. Ob-
servation of such QHE is an important indication that the
graphene fabricated by these synthetic (and more scalable)
approaches possesses intrinsic graphene properties with elec-
tronic quality comparable with graphene exfoliated from
graphite.

Figure 3(a) shows AR,,(B)=R,,(B)-R,(B=0 T) mea-
sured at various Ts in device “B”. The low T (e.g., 1.5 K)
magnetoresistance displays two following pronounced fea-
tures that weaken (and eventually disappears) at elevated T-
(1) reproducible fluctuations, interpreted as the universal
conductance fluctuation (UCF);*® (2) an overall negative
magnetoresistance at low B, interpreted as due to WL.% Both
UCF and WL are mesoscopic quantum transport phenomena
resulted from the phase coherence of charge carriers. In par-
ticular, WL has been used as a powerful tool to probe carrier
transport (esP. scattering processes) and disorder in
graphene.®*~? We have fitted [Fig. 3(b) inset] our experi-
mental data by WL theory developed for graphene.33 Figure
3(b) shows L, (dephasing length due to inelastic scattering),
L; (elastic intervalley scattering length) and L, (elastic intra-
valley scattering lengths) extracted from such fits and plotted
versus 7. While L increases with decreasing 7" and reaches
~0.3 pwm at 1.5 K, L; and L, are relatively T-insensitive.
The fact that all these scattering lengths (L, L;, and L.) are
much smaller than the sample size (~3 um) suggests the
dominant scattering source is not the edge, but rather disor-
der within the sample, such as impurities trapped near

graphene or defects in the graphene lattice. 2" It has
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FIG. 3. (Color online) (a) Magnetoresistance AR, (B)=R,,(B)

-R,(B=0 T) measured in device “B” at various temperatures. (b) Ex-
tracted characteristic lengths from WL as a function of the temperature.
Dashed lines are guides to the eye. Inset shows the magnetoconductivity
(calculated from measured data and normalized by e?/h) Ao, (B)=0(B)
—04(0 T) at T=1.5 K. Solid line is the fit using the WL theory for
graphene (Ref. 33).

been pointed out that inter-valley scattering, which requires
atomically-sharp disorder (e.g., point defects),*>? is essen-
tial for WL in graphene. The relatively short L;
(<~150 nm) observed indicates that an appreciable
amount of such disorder is present in our sample. The even
shorter L, (<L;) further suggests the presence of additional
source of disorder, such as lattice defects larger than atomic
scale (e.g., line defects, dislocations, ripples, etc.).2’30

In summary, we have synthesized wafer-scale graphene
with dominant monolayer coverage by ambient pressure
CVD on Cu. Our transferable CVD graphene show intrinsic
graphene behavior such as half-integer QHE,** and other ex-
cellent electronic properties characterized by the ambipolar
field effect, carrier mobility and phase coherence. The large,
flexible and transferable graphene films synthesized with a
simple and scalable method and possessing excellent unifor-
mity and electronic quality can enable a wide range of appli-
cations exploiting the exceptional properties of graphene.
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