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Modeling potentiometric measurements in topological insulators including parallel channels
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The discovery of spin-polarized states at the surface of three-dimensional topological insulators (TI) like Bi2Te3

and Bi2Se3 motivates intense interests in possible electrical measurements demonstrating unique signatures of
these unusual states. Here we show that a three-terminal potentiometric set-up can be used to probe them by
measuring the voltage change of a detecting magnet upon reversing its magnetization. We present numerical results
using a nonequilibrium Green’s function (NEGF)-based model to show the corresponding signal quantitatively
in various transport regimes. We then provide an analytical expression for the resistance (the measured voltage
difference divided by an applied current) that agrees with NEGF results well in both ballistic and diffusive limits.
This expression is applicable to TI surface states, two-dimensional electrons with Rashba spin-split bands, and
any combination of multiple channels, including bulk parallel states in TI, which makes it useful in analyzing
experimental results.
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I. INTRODUCTION

Following the discovery of spin-polarized states at the
surface of three-dimensional topological insulators (TI), such
as Bi2Te3 and Bi2Se3 (see, for example, Refs. 1 and 2,
and references therein), there is intense interest in possible
electrical measurements demonstrating unique signatures of
these unusual states.3–5 A recent interesting proposal6 suggests
that a unique signature of TI material should be a change in
the conductance measured between a normal contact and a
ferromagnetic (FM) contact when the magnetization of the
latter is reversed.

We believe that in order to observe this effect it is
important to use a multiterminal measurement in the linear
response regime. Any two-terminal resistance measurement
using magnetic contacts on a material described by a time-
reversal invariant (TRI) Hamiltonian should obey a gener-
alized Onsager relation of the form R( �M) = R(− �M) (see,
for example, Refs. 7–9 and references therein), with �M
being a magnetization in the linear response regime. For
multiterminal measurements, Onsager relation requires that
Rab,cd ( �M) = Rcd,ab(− �M), where the first and second pair of
indices are used to denote contacts to supply current and
measure the voltage difference, respectively. However, there
is no requirement for Rab,cd ( �M) to equal Rab,cd (− �M). Indeed
in this paper we will show how the quantity R12,13( �M) −
R12,13(− �M) measured using a specific three-terminal (3T)
potentiometric set-up8 with R12,13( �M) = V ( �M)/I [Fig. 1(a)]
can be related to the spin orientation of the eigenstates of the
channel.

We establish this result starting from a quantitative nonequi-
librium Green’s function (NEGF)-based model that allows us
to (1) go seamlessly from the ballistic to the diffusive limits and
(2) include multiple conduction paths described by different
Hamiltonians that may be in parallel with the TI channel. We
will show that the numerical results from the NEGF model can

be described well by the following expression, which we will
also justify using simple physical arguments:

[V ( �M) − V (− �M)]/I = RB( �p · �m), (1)

with

�p =
∑

i

∑
vx (�k)>0 ŝi(�k)δ[EF − εi(�k)]∑

i

∑
vx (�k)>0 δ[EF − εi(�k)]

, (2)

where 1/RB is a ballistic conductance of the channel, which
is given by q2/h times the number of modes or conducting
channels ∼kF W/π for each Fermi circle (kF , Fermi wave
number; W , width of channel) and EF is the Fermi energy.
The effective magnet polarization is represented by PFM =
(GM − Gm)/(GM + Gm), which defines �m = PFMM̂ , with
GM(m) being the contact conductance for majority (minority)
spins and I is the applied current along the x direction. The
channel property �p can be viewed as the degree of the spin
polarization per unit current in the x direction and applies to
arbitrary dispersion εi(�k) and spin orientation ŝi(�k), including
combinations of TI surface states (TI SS) channels and Rashba
spin-orbit coupling (SOC) materials (Fig. 2) each represented
by a channel index i. The quantity �p provides a measure of
the average spin polarization of all states with positive group
velocity [vx(�k) = ∂ε/h̄∂kx > 0], which for TRI material is the
negative of the average spin polarization of states with negative
group velocity. As a result there is no spin polarization at
equilibrium, but there is a current induced spin polarization,
as discussed in the literature (see, for example, Refs. 10
and 11). If we reverse the current, I , the measured voltage,
V ( �M) − V (− �M) will also reverse.

Two points: (1) The above expression is valid both in the
ballistic and diffusive limits, which, we will show, is supported
by NEGF results (Fig. 3).
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FIG. 1. (a) Schematic view of three-terminal potentiometric set-
up with two current probes (1 and 2) and one FM voltage probe (3). (b)
NEGF model: Hamiltonian (H ) with four different self energies. �1

and �2 are used to model contacts 1 and 2. �FM is used to model a FM
contact. �S is responsible for incoherent processes in the diffusive
limit.

(2) To the best of our knowledge, this type of signal has
not been observed in TI yet but it has been experimentally
confirmed in Rashba SOC materials.12 The expression given
here applied to Rashba channel is consistent with the one
that has been used in the past to describe experimental results
quantitatively.13

In order to ensure that the potentiometric set-up measure
a channel property ( �p) in a minimally invasive way, it is
advisable to use a weakly coupled contact, which also enhances
the signal as seen in experimental work on Rashba SOC
materials.14,15

FIG. 2. Schematic view of Fermi circles at a given energy for
(a) TI SS and (b) Rashba materials from a given dispersion relation
εi(�k) with positive h̄vF and α. The occupation factors for positive and
negative propagating states are given by f + and f −, respectively.
Arrows are unit vectors representing the spin direction ŝi(�k) of each
eigenstate.

FIG. 3. (Color online) Results of NEGF and simple Eqs. (12) and
(13). Occupation factor [f3( �m)] along the length of the channel when
there is a charge current in the diffusive limit (spin randomizing)
for the case of (a) TI SS and (b) Rashba channel at EF = 0.2 eV
with dm = 10−3 eV2, a = 5 Å, width= 50 nm. Two cases of �m (= ŷ,
−ŷ) are plotted. (c) The magnitude of �p between TI SS and Rashba
channel as a function of energy with their dispersion relations. The
NEGF result in (c) assumed a ballistic transport and periodic boundary
condition along the width direction. Parameters: h̄vF = 3.3 eVÅ,
m = 0.28me, α = 0.79 eV Å.19

II. MODEL DESCRIPTION

For the two-dimensional (2D) top surface of a three-
dimensional TI, we adopt the following model Hamiltonian
on a discrete lattice:

HTISS = h̄vF

a
{σxsin(kya) − σysin(kxa)

− σz[cos(kxa) + cos(kya) − 2]}, (3)

where the �σs are the Pauli spin matrices, a is the lattice spacing,
and vF is the Fermi velocity. The additional σz term is added
to avoid fermion doubling problem on a discrete lattice (see
Ref. 16 and references therein). Although this term breaks
time-reversal symmetry, it is smaller than the first two terms
by a factor (ka) around k = 0 and we have checked that all
numerical results presented here are not affected if we change
a or the sign of the σz term.

For 2D Rashba SOC materials we use the standard form for
H :

HRashba = h̄2

2m

(
k2
x + k2

y

)
I2 + α(σxky − σykx), (4)

where I2 is 2 by 2 identity matrix and α is a Rashba SOC
strength.

The sign of (ŝ × �k)z for a given Fermi circle depends on
whether ẑ is chosen as the outward or inward normal to the
surface. We have chosen it as the outward normal, which
makes α in Eq. (4) and h̄vF in Eq. (3) positive, based on
the experimental results.20,21
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We model the two contacts 1 and 2 as semi-infinite left
and right contacts [Fig. 1(b)] and their self-energies are
described by �1(2) = τ1(2)gsτ

†
1(2), where τ is a coupling matrix

between the contact and the channel and gs is the surface
Green’s function of each contact. Contact 3 is modeled with
�FM = −iγ /2(I2 + �m · �σ ) ⊗ Iw, where we use a value of
γ � h̄vF /a to simulate a weakly coupled probe. γ represents
the strength of the coupling of the contact and Iw is an identity
matrix whose size is same as the width of the channel with ⊗
a tensor product.

The incoherent scattering is included through self energies
�s in the self-consistent Born approximation. We assume
isotropic momentum randomizing scattering along with two
types of spin scatterings. Following the notations in Ref. 17,
the momentum randomizing scattering is described by[

�s,�
in
s

]
ij

= dmδij δikδjl[G,Gn]kl, (5)

where i, j , k, and l are real space indices. The spin-preserving
and spin-randomizing scattering17 are described by[

�s,�
in
s

]
ab

= δacδbd [G,Gn]cd , (6)

and [
�s,�

in
s

]
ab

= (�σac · �σdb)[G,Gn]cd , (7)

respectively, where a, b, c, and d are used to indicate spin
indices.

The charge current I between contact 1 and 2 is calculated
assuming f1 = 1 and f2 = 0, where fj is the occupation factor
for contact j . The value of f3 of a FM contact is a quantity
of interest for subsequent discussions. For coherent transport
it is common to write Ii ∼ ∑

j T ij (fi − fj ), obtaining T ij

from Trace[�iG�jG
†] and then solve for I1 = −I2 = I and

f3 assuming f1 = 1, f2 = 0, and I3 = 0.18 However, with
incoherent scattering present there is no simple expression
for T ij and we evaluate these coefficients numerically using
T ij = −∂Ii/∂fj .

III. RESULTS

The NEGF method described in the previous section
is quite general, but we focus here on a weakly coupled
FM contact that does not perturb the channel properties
appreciably. By setting I = 0 in the NEGF equation18 for
current [I ∼ (Trace[�A]f − Trace[�Gn])], we can write f

for the given probe as Trace[�Gn]/Trace[�A] in the limit of
γ → 0. For a given energy EF we first plot the occupation
factor of contact 3 [f3( �m)] for two cases of �m(= ŷ, − ŷ)
by continuously moving it point by point along the current
flow direction. As shown in Figs. 3(a) and 3(b) for TI SS and
Rashba channels, with nonzero slopes when spin randomizing
scattering processes are included in the channel. The slope
of each line is proportional to the magnitude of dm [see
Eq. (5)] and can be related to the conventional ohmic drop
due to momentum relaxation processes.18 When we compare
f3 with two opposite magnet directions ŷ and −ŷ, there is
a noticeable splitting between them, which is uniform along
the channel, and this is true for both ballistic and diffusive
transport limits with spin preserving and spin randomizing
scattering. In the small bias and low-temperature limit NEGF

results at a single energy can be related to the experimentally
measurable quantities using the following expression:

V ( �m) − V (− �m)

I
= 1

(q2/h)T (E)

f3( �m) − f3(− �m)

f1 − f2
, (8)

obtained by combining f3( �m) − f3(− �m) =
(−∂f0/∂E)[μ3( �m) − μ3(− �m)], with I = (q/h)T (E)(μ1 −
μ2), μj being the chemical potential of contact j and f0,
the Fermi function in equilibrium. This resistance value is,
in general, energy dependent but is relatively independent of
whether we are in the ballistic or diffusive limits. Figure 3(c)
shows the values of �p deduced from the numerically
calculated [V ( �m) − V (− �m)]/I , using Eq. (1), which are
labeled “NEGF.” These agree well with the lines obtained
from the analytical expressions in Eq. (2), which we will now
justify.

IV. DISCUSSION

The occupation factor for the FM contact, which draws no
net charge current, is given by

f3( �m) =
∑

i

∑
�k f (�k)[1 + �m · ŝi(�k)]δ[E − εi(�k)]∑

i

∑
�k[1 + �m · ŝi(�k)]δ[E − εi(�k)]

, (9)

assuming that the current due to each state �k is [f3( �m) −
f (�k)][1 + �m · ŝi(�k)]. This gives

f3( �m) − f3(− �m) = �m ·
∑

i

∑
�k f (�k)ŝi(�k)δ[E − εi(�k)]∑
i

∑
�k δ[E − εi(�k)]/2

,

(10)
assuming

∑
i

∑
�k ŝi(�k)δ[E − εi(�k)] = 0, which is true for TRI

Hamiltonian since each time reversal pair is composed of
two opposite spins and group velocities [εi(�k,ŝi(�k)] = εi[−�k,

− ŝi(�k)]. Assuming that the occupation factor f (�k) equals
f +, f − for states with positive and negative group velocities,
respectively, we obtain

f3( �m) − f3(− �m)

f + − f − = �p · �m, (11)

where we have made use of the fact that in TRI material the
factor �p defined in Eq. (2) for positive group velocity states is
the negative of that for for negative group velocity states. We
can recover Eq. (1) by noting that I (E)/(f + − f −) is same
as q/h times the number of conducting channels.18 It also
suggests that the signal is relatively independent of scattering
processes in the channel since the above argument is applicable
to both ballistic and diffusive limits.

A. TI SS channel

We can evaluate the expression �p in Eq. (2) in the
case of TI SS based on, for example, ε(�k) = |h̄vF k| and
ŝ(�k) = sgn(h̄vF )(x̂sinθ − ŷcosθ ) when ε > 0 from the TI SS
Hamiltonian Eq. (3) as shown in Fig. 2(a) with tanθ = ky/kx .
Using these, one can get

�p(E) = sgn(h̄vF )(0, −2/π,0). (12)
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As defined, �p represents the intrinsic spin polarization of the
channel of current carrying electrons and 2/π comes from an
angular averaging of 2D electrons. Since �p is a vector along
the y axis, Eq. (1) suggests that the signal is maximum when
the magnet points along the y direction in the plane of the TI
SS.

B. Rashba channel

The same procedure can be applied to materials with
Rashba SOC using, for example, ε(�k) = h̄2k2/2m ± αk and
ŝ(�k) = sgn(α)(±x̂sinθ ∓ ŷcosθ ) when ε > 0 with tanθ =
ky/kx from the Rashba Hamiltonian Eq. (4). Upper and lower
signs represent inner and outer Fermi circles, respectively, as
shown in Fig. 2(b). Following the same procedure, one can get

�p(E) = sgn(α)

(
0,

2

π

k2 − k1

k2 + k1
,0

)

= sgn(α)

{
[0,(2/π )(1 + 2Eh̄2/mα2)1/2,0], if E � 0,

[0,(2/π )(1 + 2Eh̄2/mα2)−1/2,0], if E � 0,

(13)

where k1 and k2 are inner and outer radius of Fermi circles,
respectively. Note that: (1) even Rashba channels give nonzero
�p(E) as demonstrated earlier [see, for example, Eqs. (12) and
(13)]; (2) both Eq. (13) for Rashba and Eq. (12) for TI SS come
out of the same general result stated earlier in Eq. (2). The
polarization for Rashba is reduced with respect to TI SS due to
the imperfect cancellation of two Fermi circles [corresponding
to two different “i” in Eq. (2)]with opposite spin orientations.
Similar cancellation could also occur for TI SS with multiple
bands.

FIG. 4. (Color online) Results of NEGF and simple Eq. (14) for
multiple channels. (a) Dispersion relation of TI SS (dashed line)
together with Rashba bands (dashed-dotted line). (b) y component of
�p for the case of multiple channels (TI SS and Rashba channels) as a
function of energy. The NEGF result assumed a ballistic transport and
periodic boundary condition along the width direction. Parameters
are the same as those described in the legend of Fig. 3(c), except for
0.4 eV shift with Rashba channel.

C. Multiple channels

The coexistence of bulk states with TI SS is one of the
main obstacles to detect and identify surface states in transport
measurements. When there are multiple channels with their
own channel polarizations the general expression for �p is given
by a density of states (DOS) average of each �pi for a given
channel index i,

�p(E) =
∑

i �piDOSi∑
i DOSi

, (14)

by noting that DOSi = 2
∑

vx (�k)>0 δ[E − εi(�k)]/A, with A the
area of 2D surface. Recent experimental reports20,21 suggest
the coexistence of Rasbha bands together with TI SS with spin
orientations corresponding to positive h̄vF and α in Eqs. (3)
and (4). It implies that their contribution to py will have
opposite signs, which could even cause a change in the sign of
py around E = 0.4 eV, depending on the relative DOS of TI
SS and Rashba bands as shown in Fig. 4(b). This aspect can
be probed experimentally by changing EF .

V. SUMMARY

In summary, we have shown that a three-terminal potentio-
metric measurement should show a change in resistance upon
reversing the magnetization of a voltage detecting FM contact,
and this change can be used as a quantitative measure of the
channel polarization �p using Eq. (2), which is applicable to TI
SS and/or Rashba channels. The key result is summarized
in Eqs. (1) and (2), which have been justified using an
NEGF-based quantum transport model as well as simple
semiclassical arguments.
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APPENDIX: DERIVATIONS OF EQS. (12) AND (13)

Here we assume positive h̄vF , α, and ε. In the case of TI
SS, there is single band given by ε(�k) = h̄vF k and ŝ(�k) =
x̂sinθ − ŷcosθ . We start the derivation from Eq. (2).

�p =
∑

vx (�k)>0 ŝi(�k)δ[EF − ε(�k)]∑
vx (�k)>0 δ[EF − ε(�k)]

=
∫ +π/2
−π/2 dθ (x̂sinθ − ŷcosθ )

∫ +∞
0 kdkδ[EF − εi(�k)]∫ +π/2

−π/2 dθ
∫ +∞

0 kdkδ[EF − εi(�k)]

= − 2

π
ŷ,

which is Eq. (12).
In the case of Rashba channel, first note that we have two

Fermi circles with inner and outer radius k1 and k2, respec-
tively [εinner(�k) = h̄2k2/2m + αk, ŝinner(�k) = x̂sinθ − ŷcosθ
and εouter(�k) = h̄2k2/2m − αk, ŝouter(�k) = −x̂sinθ + ŷcosθ ].
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For the denominator we have∑
i

∑
vx (�k)>0

δ[EF − εi(�k)]

=
∑

vx (�k)>0

{δ[EF − εinner(�k)] + δ[EF − εouter(�k)]}

= A

(2π )2

∫ +π/2

−π/2
dθ

∫ +∞

0
kdk

{
δ

[
h̄2

2m
(k − k1)(k + k2)

]

+ δ

[
h̄2

2m
(k + k1)(k − k2)

]}
= A

(2π )2

2mπ

h̄2 .

Based on these,

�p = k1

π (k1 + k2)

∫ +π/2

−π/2
dθ (x̂sinθ − ŷcosθ )

+ k2

π (k1 + k2)

∫ +π/2

−π/2
dθ (−x̂sinθ + ŷcosθ )

= 2

π

k2 − k1

k2 + k1
ŷ,

which is Eq. (13). The cases for negative values of h̄vF , α, or
ε < 0 can be shown similarly.
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