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The Landau-Zener (LZ) transition is one of the most fundamental phenomena in quantum dynamics. It
describes nonadiabatic transitions between quantum states near an avoided crossing that can occur in diverse
physical systems. Here we report experimental measurements and tuning of LZ transitions between the dressed
eigenlevels of a Bose-Einstein condensate (BEC) that is synthetically spin-orbit (SO) coupled. We measure the
transition probability as the BEC is accelerated through the SO avoided crossing and study its dependence on
the coupling between the diabatic (bare) states, eigenlevel slope, and eigenstate velocity—the three parameters
of the LZ model that are independently controlled in our experiments. Furthermore, we performed time-resolved
measurements to demonstrate the breaking down of the spin-momentum locking of the spin-orbit-coupled BEC in
the nonadiabatic regime, and we determined the diabatic switching time of the LZ transitions. Our observations
show quantitative agreement with the LZ model and numerical simulations of the quantum dynamics in the
quasimomentum space. The tunable LZ transition may be exploited to enable a spin-dependent atomtronic
transistor.
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I. INTRODUCTION

Controllable “synthetic” gauge fields can be created using
laser-dressed adiabatic states in ultracold atomic gases [1,2].
Rapid experimental progress has, among many other develop-
ments, realized measurements of both bosonic and fermionic
ultracold atoms in synthetic spin-orbit (SO) gauge fields [3–5].
Such developments have motivated many recent proposals for
using more elaborate laser-dressed synthetic gauge fields to
create quantum simulators using ultracold atoms [6] to realize
novel quantum states such as topological insulators [7,8] and
Majorana fermions [9,10].

For the laser-dressed synthetic gauge fields realized in
experiments and proposed in theories, it is typically assumed
that the system adiabatically follows the dressed eigenlevels
[1,2]. Naturally, the hitherto unexplored regimes in which this
adiabatic assumption no longer holds are also of interest,
as more complex studies and coupling schemes proceed. A
unique feature of SO gauge fields is the spin-momentum
locking in which a change of momentum can yield a change
in spin if the system evolves slowly enough to adiabati-
cally follow the eigenlevel. For a SO-coupled Bose-Einstein
condensate (BEC), diabatic transitions between eigenlevels
correspond to a breakdown of the spin-momentum locking.
This work investigates such transitions as a synthetically
SO-coupled BEC is accelerated through the SO eigenlevel
avoided crossing. We find that the Landau-Zener (LZ) theory
provides an excellent quantitative model for understanding
such transitions.
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II. THEORY OF LZ TRANSITIONS IN A
SO-COUPLED BEC

The Landau-Zener model [11] describes the transition of a
quantum state between two adiabatic eigenlevels when some
parameter that controls the eigenstate of the system is linearly
varied in time [12]. The LZ model assumes the time-dependent
Schrödinger equation
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where the diabatic (“bare”) states φ1,2 have energies E1,2

which linearly vary with some adiabatic parameter x and
cross at xc [E1(xc) = E2(xc)]. The difference in slopes
between the energy levels at the crossing is defined as β =
|∂E1(x)/∂x − ∂E2(x)/∂x|x=xc

. � is the coupling between the
two diabatic energy levels. This coupling “dresses” the bare
energy levels and forms new adiabatic eigenlevels separated
by � at the avoided crossing.

If a quantum state begins in one adiabatic eigenlevel
far from the avoided crossing and is given some eigenstate
velocity, v = dx/dt , of the adiabatic parameter in the direction
toward the avoided crossing, it acquires some probability, PLZ,
to make a diabatic transition to the other adiabatic eigenlevel
as it moves past xc. This diabatic transition probability is
determined to be

PLZ = exp[−2π (�/2)2/(�vβ)]. (2)

With small velocities or strong coupling, the adiabatic theorem
holds and negligible transfer occurs. However, with high
velocities or weak coupling, the diabatic transition probability
can be significant.

Previous experimental measurements of LZ transitions have
been performed with diverse physical systems. Some examples
include ultracold atoms in accelerated optical lattices [13–15],
Feshbach associated ultracold molecules [16], Rydberg atoms
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FIG. 1. (Color online) (a, b) Counterpropagating, linearly polarized laser beams coupling the mF = −1,0 states of the 87Rb BEC via a
Raman transition. An external bias magnetic field along the ẑ-direction Zeeman splits the mF states and is used to control the Raman detuning
δ. Gravity acts in the −ŷ direction. (c) Two acceleration methods used to study Landau-Zener transitions at this avoided crossing of the SO
eigenlevels: (i) the acceleration induced by the force of the trapping potential drives transitions from the upper to lower dressed eigenlevel, and
(ii) the acceleration induced by the gravitational force drives transitions from the lower to upper dressed eigenlevel. The dashed black curves
indicate two “bare” spin state energy levels; the solid lines indicate the two SO-coupled eigenlevels [with the color indicating the bare state
spin component, red (blue) for spin mF = −1 (0)], here shown for when δ = 0 Er . Solid and dotted arrows depict the adiabatic (intraband)
motion and diabatic (interband) LZ transition, respectively.

[17], as well as solid-state qubits [18,19] and spin transistors
[20]. In this paper, we measure the LZ transition probability
of a BEC with synthetic one-dimensional (1D) SO coupling
of equal Rashba and Dresselhaus types [3]. The SO coupling
is the result of adiabatic “dressed” states formed by Raman
coupling the “bare” quadratic dispersion curves of two mF

spin states [21,22]. The coupling of the spin states by the
Raman field leads to a SO coupling of the form

HSO =
(

�
2

2m
(q + kr )2 − δ/2 �R/2

�R/2 �
2

2m
(q − kr )2 + δ/2

)
, (3)

where �R is the Raman coupling strength, �kr is the single-
photon recoil momentum from the coupling lasers, m is atomic
mass, δ is the Raman detuning, � is the reduced Planck’s
constant, and �q is the quasimomentum (q is the canonical
momentum conjugate to the position coordinate ŷ). Applying
the Landau-Zener model to a SO-coupled BEC, the adiabatic
parameter is q, the velocity is v = dq/dt , the coupling strength
is �R , and β is defined as the magnitude of the diabatic curve
slope difference, obtained by making a linear approximation
of HSO near the diabatic crossing point, qc.

III. EXPERIMENTAL SETUP

For our experiment, we produce nearly pure three-
dimensional BECs of 1–2 × 104 87Rb atoms in an optical
dipole trap [23], with trapping frequencies tuned in the range
of ωz,y/2π ≈ 180–450 Hz and ωx/2π ≈ 50–90 Hz. To create
synthetic spin-orbit coupling, we employ counterpropagating
Raman beams along the ŷ axis which couple the |mF 〉 states of
the F = 1 ground-state manifold of 87Rb (see Fig. 1), similar to
that of Lin et al. [3,24]. The two Raman beams are generated
from the same laser source (ωL = 2π×383 240 GHz), have
a frequency difference of 	ωL = 2π×3.5 MHz, and have
perpendicular linear polarizations when incident on the BEC
[Fig. 1(a)]. The detuning provided by the quadratic Zeeman
shift on the |mF = +1〉 state (εq ≈ 2π×3.4 kHz) allows for

the system to be approximated by the two-state description of
Eq. (3). (We simplify the actual three-level F = 1 ground state
of 87Rb into the two-level SO-coupled system following the
convention detailed in [3,25].) The natural energy scale for the
SO-coupled system is the recoil energy from the coupling laser

fields, Er = �
2k2

r

2m
= 2π� × 3.75 kHz, where kr = 2π/λ and

λ = 782.26 nm. For the experiments considered in this work,
effects due to atom-atom interactions are negligible because
the interaction energy of atoms in the BEC (Eint ≈ 0.1Er ) is
much smaller than the canonical kinetic energy (Ekin � 4Er ).
The dynamics of the BEC relevant for the experiments here
can therefore be described by a 1D Schrödinger equation,
where the Hamiltonian H = HSO + Htrap. Recalling the re-
lation of position and momentum operators ŷ = i∂/∂q̂, it
is elucidating to express the trapping term in the y axis as

Htrap = −mω2
y

2
d2

dq2 , which shows how the trapping potential
acts as a “kinetic energy” in quasimomentum space [26,27].

IV. MEASUREMENTS OF PLZ

As schematically shown in Fig. 1(c), measurements of
the Landau-Zener transition probability, PLZ, were performed
by first preparing the BEC in either the upper or lower SO
eigenlevel, with initial quasimomentum �qi far from the SO
diabatic crossing at �qc. The BEC was then accelerated [28]
through the diabatic crossing, either by the optical trapping
force or by gravity. Depending on the accelerating force,
the BEC acquired different eigenstate velocities, dq/dt , as
it passed qc (detailed procedures of preparing different dq/dt

are presented in Appendix A). After the crossing and when the
BEC was sufficiently far from the diabatic crossing such that
the diabatic and adiabatic eigenstates matched to better than
97%, the Raman beams and dipole trap were instantly turned
off to map the adiabatic dressed eigenstates to the bare spin
states. A Stern-Gerlach field was then applied to separate the
bare mF spin states in time of flight (TOF), and absorption
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FIG. 2. (Color online) (a, b) Measurement of the LZ transition
probability, PLZ, over a range of Raman coupling strengths, �R , and
with different eigenstate velocities (dq/dt) at the diabatic crossing,
and δ = 0 Er . The data in (b) are from the same experiments as (a),
but plotted to show the effect of dq/dt on PLZ. All solid lines are
calculated from the LZ model using Eq. (2) and the experimental
values of �R , dq/dt , and β = 4Er/kr with no free parameters. The
data with dq/dt = 1.7 kr/ms correspond to the case of acceleration
due to gravity [Fig. 1(c.ii)]; the other dq/dt data are measured by
applying an optical dipole trapping force of different magnitudes
(controlled by the optical trap laser power) to accelerate the BEC
[Fig. 1(c.i)]. All experiments were performed with ∼1 × 104 atoms
in the BEC. Each data point is the average of 3–5 measurements, and
error bars indicate an average 10% uncertainty in atom number due
to technical noise. (c) Measurement of the LZ transition probability
over a range of Raman detuning, δ, from resonance. No discernible
change of PLZ was observed, in agreement with the theoretical model.
Measurement was performed with dq/dt = 1.7 kr/ms (supplied by
gravity) with two values of �R: 0.28Er (closed squares) and 0.43Er

(open circles). The values calculated from Eq. (2) are shown as dashed
lines.

images measured the population of each spin state to determine
PLZ [which is N0/Ntot for the transitions in Fig. 1(c), with N0

and N−1 being the population in mF = 0 and −1, respectively,
and Ntot = N0 + N−1 being the total population].

Figures 2(a) and 2(b) show the measurement of PLZ for
increasing coupling strengths, �R , and different eigenstate
velocities, dq/dt , with the theoretically calculated PLZ from
Eq. (2) shown by the solid curves. In agreement with the LZ
model, the transition probability increases for smaller coupling
strengths or larger dq/dt . The LZ model and experimental
results are in good quantitative agreement to the level of our
experimental resolution of PLZ, which is limited by technical

FIG. 3. (Color online) Measurement of the LZ transition proba-
bility at the upper crossing of the diabatic dispersion relations for the
mF spin states. (a) The full eigenlevels of the three-state system
where the dashed lines indicate the bare state energy levels and
the solid color lines indicate SO-coupled adiabatic eigenlevels with
color representing the mF components (red for |mF = −1〉, blue for
|mF = 0〉, and green for |mF = +1〉). The dashed box, magnified in
(b), indicates the upper crossing. (c) The lower crossing data [black
squares, same data shown in Fig. 2(a)] are measurements of PLZ for
the crossing of the |mF = −1〉 and |mF = 0〉 states where β = 4
Er/kr , and the upper crossing data (gray circles) are measurements
for the crossing of the |mF = −1〉 and |mF = +1〉 states where β = 8
Er/kr . The eigenstate velocity in both cases was dq/dt = 1.7 kR/ms
supplied by gravity.

noise in the experimental imaging. Shown in Fig. 2(c), we also
measured PLZ over a range of Raman detuning δ. The results
further validate the expected LZ behavior, where PLZ does not
depend on δ (since β is independent of δ for this SO-coupled
system).

In the SO-coupled BEC eigenlevel structure, we have the
opportunity to measure v and β independently to further
confirm the validity of the LZ model to this system. To measure
the effect of changing β, however, it is necessary to measure
PLZ at a different diabatic crossing. Shown in Fig. 3(a), the
third-spin state in the system allows probing of the diabatic
crossing of the |mF = ±1〉 states where β = 8Er/kr , twice
the value of the ground-state crossing [29]. The coupling
between the |mF = −1〉 and |mF = +1〉 states is a four-photon
process, and the strength of the coupling is numerically found
to be �4p/Er ≈ 0.12(�R/Er )1.75 [30]. To compare the two
crossings in the LZ model, we present in Fig. 3(c) the PLZ value
over a range of diabatic state coupling strengths, �, which
defines the energy gap at the avoided crossing and is �R for the
lower diabatic crossing and �4p for the excited-state diabatic
crossing. The measurement of the excited-state crossing is
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FIG. 4. (Color online) (a) Experimental measurements of the
bare spin polarization as a function of quasimomentum, q, for
different degrees of adiabaticity as controlled by (dq/dt , �R),
showing that less adiabatic evolutions retain less spin-momentum
locking. When the BEC adiabatically follows the eigenlevel of the
excited band, the spin polarization exhibits the full spin-momentum
locking represented by the solid arrow in (b). Such an adiabatic
evolution, shown by the open circle data in (a), was realized using
�R = 1.4Er with dq/dt = 2.8kr/ms at the avoided crossing, with
corresponding full spin polarization oscillations in the upper band
shown in (c). Diabatic breakdown of the spin momentum locking
was observed for three experimental accelerations at a lower coupling
strength of �R = 0.4Er shown by the red squares, green triangles, and
blue diamonds, with corresponding results from the time-dependent
1D Schrödinger equation simulations shown by the solid curves. Here,
due to LZ transitions to the ground band, the spin-momentum locking
is only partially retained. For all data shown in the figure, δ = 0 Er ,
the BEC acceleration was provided by the trap as in Fig. 1(c.i), and
the error bars in (a) indicate a combination of the uncertainties in the
imaging calibration and the shot-to-shot noise.

again in good agreement with the theoretically calculated PLZ

from the LZ model.

V. TIME-DEPENDENT MEASUREMENTS OF SPIN
POLARIZATION

It is well known that the dressed bands (which are adiabatic
energy eigenlevels) possess “spin-momentum locking” [31],
where the spin composition of the dressed state is tied to its
quasimomentum. Returning to a consideration of the lower
SO avoided crossing, more specifically, in an adiabatically
evolving SO-coupled BEC with δ = 0 [Fig. 4(b)], a change
of the quasimomentum from q = −kr to +kr causes a flip of
the bare state spins and thus reverses the spin polarization
of the BEC (where |↑〉 ≡ |mF = 0〉, |↓〉 ≡ |mF = −1〉, spin
polarization≡ (N↑ − N↓)/Ntot, and Ntot = (N↑ + N↓). For q

sufficiently far from the avoided crossing (such that the BEC
is dominantly in one bare spin state), reversing q simply
reverses the spin direction. It is important to note that the spin-
momentum locking, which is one of the most important general
properties of spin-orbit quantum gases and underlies many
novel physical effects (such as Majorana fermions) [1,9,10],
is rooted in the adiabatic assumption and will break down
when the adiabaticity breaks down (as in the nonadiabatic LZ
transitions).

Utilizing time, momentum, and spin resolved imaging
of the LZ transition process, we measure this breakdown

of the SO locking. We performed such measurements by
instantaneously turning off the Raman coupling during the
LZ transition process (at time t since the BEC starts from
qi at t = 0), and we thus map the BEC dressed states onto
their bare spin component basis. These are then separated by
a Stern-Gerlach pulse and imaged after TOF to determine
both the bare state spin and momentum components of the
BEC [32]. For atoms starting in the upper band with spin up,
as diagramed in Fig. 4(b), adiabatic evolution would lead to
oscillations in the upper band of coupled spin and momentum.
Nonadiabatic LZ transitions, however, cause a breakdown of
the SO locking. By controlling either �R or dq/dt the final
spin polarization of the BEC after it is accelerated across the
SO avoided crossing can be controlled.

As seen in Fig. 4(a), an adiabatic evolution [from a bare
spin |↑〉 BEC at q = −kr to a bare spin |↓〉 BEC at q = kr , as
indicated by the solid black arrow in Fig. 4(b)] was realized by
using an acceleration of 2.8 kr/ms (measured at the crossing)
and �R = 1.4Er where the measured (bare) spin polarization
at different q is shown by the open circles. The time-resolved
adiabatic oscillations of the BEC’s spin polarization for the
same parameters are shown in Fig. 4(c) (with a sufficiently
long hold time so the BEC passes though q = 0 three
times). The breakdown of the adiabaticity, and thus full spin-
momentum locking, is seen in Fig. 4(a) for �R = 0.4Er , where
different rates of BEC acceleration lead to different amounts
of breakdown of the spin-momentum locking. The diabatic
limit (represented by the horizontal dotted line) indicates a
regime where the spin-momentum locking fully breaks down
(e.g., �R = 0Er ), and the adiabatic limit (represented by the
gray solid line) reflects the spin polarization of the adiabatic
band structure calculated from Eq. (3). Given the range of
accelerations accessible in our experimental setup, it is difficult
to go from a fully adiabatic to fully diabatic regime by only
tuning dq/dt at a fixed �R . Varying �R , however, more easily
allows for changing from adiabatic to fully diabatic. These
time-resolved measurements are similar to the work of [33] in
optical lattices. Different from their work, however, this LZ
transition is created using a Raman coupling which gives rise
to spin-dependent eigenstates, which can be “read” out using
Stern-Gerlach separation [34].

This behavior suggests using a tunable LZ transition of SO-
coupled atoms to create a unique spin-dependent “atomtronic”
device [35–37]. This device would be an analog of a spin
transistor in which � acts as the gate voltage, the BEC spin
polarization (the output in one of the spin components) acts as
the current, and the “drift velocity” dq/dt is induced by the
force that acts as the source-drain voltage [note the qualitative
similarity of Fig. 2(b) to transistor characteristic curves]. As
suggested in [35], a Stern-Gerlach field then acts as a spin filter
in the readout.

An important characteristic in such devices is the “switch-
ing time.” The switching time is the internal time of the
device in which the spin is flipped and is thus the minimum
time needed to operate the spin switch. Figure 5(a) shows
the resulting measurements of the BEC spin polarization
as time t is varied for a fixed v at the crossing (dq/dt =
5.0kr/ms) and four different Raman coupling strengths. The
solid lines are results of the numerical simulation of the time-
dependent 1D Schrödinger equation (Appendix B). By fitting
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FIG. 5. (Color online) (a) Measurements of the time-dependent
LZ transition of the BEC passing through the diabatic crossing with
dq/dt = 5.0 kr/ms. Inset: Experimental absorption images (from
left to right, at three representative points in time indicated by the
arrows at t = 0, 180, and 380 μs, respectively, for �R = 0.59Er )
of the time-dependent transition (false color added to distinguish
the spin components). The change in the BEC aspect ratio is due
to a quadrupole mode excited by the state preparation process.
Solid curves in (a) are from direct solution of the time-dependent
Schrödinger equation (TDSE). (b) Measurements of the diabatic
switching time, t switch

dia , for different �R , with dq/dt = 5.0 kr/ms,
β = 4 Er/kr , and ωy/2π = 338 Hz. Here t switch

dia is found by fitting
each set of data to a sigmoid function [14]. The switching time is
scaled by (vβ/2�)1/2 to compare with the theory of [38]. The black
dots are the results from direct solutions of the TDSE.

the experimental measurements to a sigmoid function (similar
to [14]), we extract the time it takes to transition between the
diabatic states (“switching time” t switch

dia ) in Fig. 5(b). We rescale
the extracted switching times to τ switch

dia = t switch
dia (vβ/2�)1/2

and find agreement with [38]’s predicted value of τ switch
dia =

2.5 in the diabatic limit [(�R/2)/(�vβ/2)1/2 << 1]. General
agreement is found with the numerical simulation in both the
final spin polarization value and the time scale of the transition.
Oscillatory “quantum beats” [39] are seen in the numerical
simulation and are the result of a coherence between the split
wave packets in the excited and lower eigenlevels after the LZ
transition but could not be conclusively observed in our data
owing to our limited experimental resolution.

VI. CONCLUSION

In summary, we have measured the interband LZ transition
probability in a SO-coupled BEC. The coupling strength,
diabatic slopes, and eigenstate velocity at the avoided crossing
were each varied independently and shown to agree with the

LZ prediction of Eq. (2). We have also demonstrated the
versatility of using both gravitational and optical trapping
forces to prepare and drive quantum states in synthetic gauge
fields. Finally, the dynamics of the transition process was
directly measured and was in good agreement with our
numerical calculations. The interband transitions studied in
our work are entirely due to the breakdown of adiabaticity
in the system, in contrast to the transitions due to two-body
collisions studied in previous experiments [27,40]. As diabatic
transitions are exploited in various proposals for realizing
novel synthetic gauge fields in optical flux lattices [1,41],
Rydberg atoms [42], and molecules [43], our study of diabatic
transitions in SO-coupled BECs may provide additional tools
in designing laser-induced synthetic gauge fields. In future
work, our approach could be used to probe more complex
synthetic gauge fields and to observe Stueckelberg interference
[15]. Another natural continuation of this work would be to
study the effect of interactions on this LZ transition process
[44].
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APPENDIX A: VARIABLE EIGENSTATE VELOCITY

To achieve the variable eigenstate velocities at the diabatic
crossing point, the BEC was first prepared in an optical dipole
trap in the |mF = 0〉 state at q = 1kr . The trapping potential
was instantly removed and the BEC would fall under gravity
in the |mF = 0〉 diabatic state for 1.2 ms, at which point
it would reach q ≈ −1.0kr . The Raman coupling was then
instantly turned on along with the trapping potential, which
caused the BEC to be “accelerated back” (decelerated in
real space) through the diabatic crossing with an acceleration
dependent on the trap frequency ωy . After passing the crossing,
the population of the BEC in each spin component was
measured to determine PLZ. The eigenstate velocities dq/dt

were determined from time-resolved measurements of the
BEC as it crossed qc (see Table I). [The LZ theory assumes a
constant dq/dt , but in our system dq/dt changes as the atoms

TABLE I. The corresponding optical dipole trap frequency ωy

for each of the measured dq/dt at q = qc, as well as the initial
momentum width of the BEC, where the momentum distribution was
fitted by p(q) = 1√

2πσw
exp[−(q − qi)2/(2σ 2

w)].

ωy/2π (Hz) dq/dt (units of kr/ms) σw (units of kr )

264 2.3 0.31
338 5.0 0.40
397 8.2 0.44
449 9.6 0.47
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are accelerated in the eigenlevels by the optical trap. We find
that using the value of dq/dt at the crossing results in good
agreement with the theory.] For the numerical simulations of
the time-dependent LZ transition shown in Fig. 4, the width
(σw) of the initial condensate momentum distribution was set to
match that of the experimentally recorded values, also shown
in Table I.

APPENDIX B: TIME-DEPENDENT SCHRÖDINGER
EQUATION SIMULATION

To solve the one-dimensional time-dependent Schrödinger
equation for the spin-orbit-coupled BEC in a harmonic trap,
we apply the Chebychev propagation method [45]:

i�∂t�(q,t)= Ĥ�(q,t) =
[
−1

2
mω2 ∂2

∂q2

+
(

�
2

2m
(q + kr )2 − δ/2 �R/2

�R/2 �
2

2m
(q − kr )2 + δ/2

)]

×�(q,t), (B1)

where �(q,t) = {�↑(q,t),�↓(q,t)}T is a two-component col-
umn vector written in the bare state basis ({|mF = −1〉,|mF =
0〉}). Expanding the evolution operator in terms of the Cheby-
chev polynomials with a renormalization of the Hamiltonian
Hnorm whose eigenvalue ranges from [λmin,λmax], we arrive at

Û (dt) = e−iĤ dt/� =
∞∑

n=0

anφn(−iĤnorm)

=
∞∑

n=0

anφn

[−iĤ + Î (λmax + λmin)/2

(λmax − λmin)/2

]
, (B2)

where φn(x) is the complex Chebychev polynomial of order
n. The expansion coefficients are

an = ei(λmax+λmin)dt/2�(2 − δn,0)Jn

[
(λmax − λmin)dt

2�

]
.

(B3)

Jn(x) is the Bessel function of order n. The wave function
at any time is obtained by applying the evolution operator to
a given initial wave function: �(q,t + dt) = Û (dt)�(q,t).
To perform the Hamiltonian operation, we represent our
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FIG. 6. (Color online) Comparison of the exact numerical solu-
tion (shaped symbols) and the Landau-Zener formula (solid curves)
for the nonadiabatic transition probability as a function of the Raman
coupling �R . Different colors correspond to different eigenstate
velocities at the crossing point.

wave functions and operators in the Fourier discrete variable
representation (Fourier-DVR) [46]. The grid points are qi =
qmin + i(qmax − qmin)/(N + 1) for i = 1,2,...,N . We take
{qmin,qmax} = {−6kr ,6kr}, and N = 500. To converge the
series expansion, the degree of the expansion in Eq. (B2) must
be larger than R = (λmax − λmin)dt/2�. In our simulation, we
choose the degree to be the least integer greater than or equal
to 1.5R. Since the parameter R depends on dt , we increase the
efficiency of our codes by appropriately choosing a suitable
time step (dt = 0.01�/Er ) for each time propagation.

In our simulation, a Gaussian wave packet in one of the
adiabatic states serves as the initial wave function. Note that the
adiabatic states ({|+〉,|−〉}) are related to the bare states by a
unitary transformation. With the method mentioned in the first
paragraph, we can evolve our system to any later time to study
nonadiabatic interband transitions. Defining the probability for
an atom to stay in |±〉 as P±(t) = ∑N

i=1 |�±(qi,t)|2, we extract
the asymptotic values of the probability for the atom to be
in the other adiabatic state right after the wave packet passes
the avoided crossing. This probability is the familiar Landau-
Zener transition probability if the energy band is linear in the
bare state basis. Near the avoided crossing region, the energy
bands in the spin-orbit-coupled system are well described by
two linear lines, and Fig. 6 shows that the simple LZ formula
gives a very good approximation to the nonadiabatic interband
transition probability in the spin-orbit-coupled BEC.

[1] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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