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Mapping the 3D surface potential in Bi2Se3
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Bi2Se3 initially emerged as a particularly promising host of topological physics. However, in

actual materials, several issues have been uncovered including strong surface band bending

and potential fluctuations. To investigate these concerns, we study nominally stoichiometric

Bi2Se3 using scanning tunnelling microscopy. Here we identify two distinct distributions of

BiSe antisites that act as nanometer-scale sensors for the surface band-bending field. To

confirm this, we examine bulk Cu-doped Bi2Se3 and demonstrate a significantly reduced

surface band-bending field. In addition, we find that in the case of unintentionally doped

Bi2Se3, lateral fluctuations of the Dirac point can be directly correlated with specific near-

surface point defects, namely Se vacancies.
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B
i2Se3 has emerged as a particularly interesting host of
topological physics due to its non-trivial surface state1–3.
Initial studies indicated that theoretical predictions were

largely true—topological protection reduces scattering and
carriers are helical Dirac-like fermions4–7. However, further
investigation raised several issues with its physical and structural
properties in actual materials: BiSe antisites may allow scattering
from the surface to the bulk8,9, strong band bending creates an
additional, topologically trivial, surface state10–13, and deep,
unobservable charges may cause fluctuations in the Dirac point4.

To address these concerns, we conducted scanning tunnelling
microscopy (STM) studies on nominally stoichiometric Bi2Se3.
We have identified two distinct BiSe antisite distributions using
spectroscopic imaging and ab initio simulations; their energy
states are sensitive to the local valence band position and operate
as depth-dependent potential sensors. Using these sensors, we
generate nanometer-scale measurements of a strong surface
band-bending (SBB) field that is tunable with bulk dopants,
which we demonstrate with measurements on CuxBi2Se3.
In addition by mapping the lateral fluctuations of the Dirac
point with dI/dV imaging, we show spatial correlation of the
potential fluctuations with specific near-surface point defects.
Disparate influences are observed for different defects: Se
vacancies cause Dirac point shifts, whereas BiSe defects follow
the Dirac point shifts.

Results
Band bending. Early STM reports of the surface of Bi2Se3

revealed two primary forms of native point defects: triangular
topographic features and purely electronic defect states14. The
triangular defects have been identified as Se vacancies, which
n-dope the sample15, and are prominently visible in Fig. 1a. The
second defect type is the BiSe antisite (where a Bi atom replaces a
Se lattice site) and is best observed near or below the Dirac point
by dI/dV imaging (Fig. 1b), which provides a map proportional to

the local density of states at a given bias. The peculiar features
observed for BiSe, like those shown in the atomic resolution
topograph in Fig. 1c, has led some recent studies to attribute them
to surface-bulk scattering near the Dirac point8—however, angle-
resolved photoemission spectroscopy (ARPES) results have not
observed a side lobe to the valence band, necessary for this
interpretation, and the feature geometry does not change at
different biases (Supplementary Figs S1 and S2), which is
inconsistent with the proposed scattering states. We therefore
attribute the defect features to impurity states unassociated with
bulk-surface scattering.

We observed that BiSe defects show tunnelling amplitude
maxima at vastly different voltages—for example, Fig. 1h shows
dI/dV spectroscopy for two defects whose tunnelling maxima are
separated by B150 meV. By analyzing the dI/dV spectra from
numerous BiSe defects, a histogram analysis shows that there is a
bimodal distribution (Fig. 2a). Therefore, contrary to previous
reports14, these nearly identical features are due to BiSe defects at
two separate Se layers. From ab initio calculations, we can rule
out the middle layer (BiSe2) due to its high energy of formation16,
which means that the defects are in structurally equivalent
locations (that is, the top or bottom of a quintuple layer—these
positions are symmetric). Structurally equivalent defects at
different depths should be energetically degenerate. However, in
this case, the degeneracy is broken by surface band-bending
mapping the defect energies at different depths maps the local
band bending. On the basis of our ab initio simulations of STM
topographs for these defects (Fig. 1d,e), we attribute the higher
amplitude defect (square in Fig. 1b) to BiSe on the 5th layer and
the lower amplitude defect (circle in Fig. 1b) to BiSe on the 6th
atomic layer, which correspond to the bottom of the 1st quintuple
layer and the top of the 2nd quintuple layer, respectively (see
Fig. 1g and Supplementary Fig. S3). The n-shifted defect has a
higher tunnelling amplitude, meaning that it is closer to the
surface/STM tip, demonstrating downward SBB of the bulk
conduction and valence bands. Downward SBB is consistent with
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Figure 1 | Topographic and spectroscopic identification of BiSe defects. (a) Topography showing Se vacancies and corresponding dI/dV image (b)

showing BiSe defects in Bi2Se3 at � 380 meV, I¼ 500 pA. (c) 2.9� 3.5 nm atomic resolution imaging of a BiSe defect at � 500 meV and ab initio STM

simulations for a BiSe defect in the 5th (d) and 6th (e) layer at the same scale. (f) Contours from d overlaid on c. (g) Atomic structure of Bi2Se3, where

hexagons separate the quintuple layers. (h) dI/dV spectroscopy on two defect types, taken on their lobes: the dim defect type, labelled with a circle in b,

and a bright defect type, labelled with a square in b, as well as spectroscopy taken away from any defects. The bright and dim defects show a significant

difference in their energy position on undoped Bi2Se3. To physically distinguish the defects, the lobes on the dim defects are slightly further from the centre,

more likely corresponding to a deeper defect as per the simulation in e, whereas the bright defect is more compact, better corresponding to d. The scale bar

in a and b is 30 nm.
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ARPES observations10, and is possibly due to more Se vacancies
forming at the sample–vacuum interface following the ultra high
vacuum (UHV) sample cleave.

These defects should retain their position relative to the valence
band, so adding an n-type dopant, like incorporating Cu into the
bulk, should n-shift the entire electronic structure including the
BiSe distributions, without altering the nature of the BiSe defect
itself (see Supplementary Fig. S4 for more information). We have
observed several sub-surface Cu defect types in the topography
(Fig. 3a), but they do not appear to have changed the shape of the
BiSe defects in a significant way, as shown in the dI/dV images in
Fig. 3b–f. The identification of these Cu defects varies in the
literature17,18, so the implications of their structural
configurations within the lattice are left to future studies.
Regardless of the defects’ identities, the observed Cu defect
density does not suggest that significant structural changes have
occurred, allowing us to consider them, simply, as dopants. Upon
adding Cu, we observed the two BiSe distributions shift closer
together (Fig. 2a). From the band-bending picture, this means
that the SBB is reduced (Fig. 2b). As more carriers are introduced
with higher n-type doping (more of the bulk conduction band is
below the Fermi level), we believe screening effects are causing the
reduction in the band-bending potential field.

We have considered the possibility that the band bending was
induced by the electric field from the STM tip, an effect known as
tip-induced band bending (TIBB). We performed spatial spectro-
scopic imaging at a variety of tunnelling set points (150–500 pA)
and observed less than a 5-meV shift in the impurity peak
position (Supplementary Fig. S5), indicating that TIBB is not the
dominant source of the energy shift. Presumably, as the surface
is already n-doped even in the case of zero Cu doping, the
available free carrier concentration is high enough to screen out
the tip-induced field.

To quantitatively approximate the magnitude of SBB as a
function of doping (Fig. 4a), the energy separation of the defect
distributions is divided by the approximate separation between
the Se layers terminating adjacent quintuple layers, as determined
by local-density approximation energy relaxation calculations.
We note that intercalation of Cu increases the separation between
layers18, and any TIBB effects would further amplify the observed
bending. Therefore, the values we have measured are upper
bounds.

Several groups have observed bulk two-dimensional electron
gas (2DEG) states appearing on samples left in vacuum, and the
ARPES data suggest band bending is the culprit10–13. STM is
surface sensitive, so this calls into question the results of all STM

studies above the conduction band minimum on this material: is
the measured surface state really of topological origin, or simply
due to a traditional bulk 2DEG? If a 2DEG exists, it can be
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Figure 2 | Defect distributions and detecting near-surface band bending. (a) Histograms of the BiSe defect energies in CuxBi2Se3, extracted from

multipass dI/dV images, show a decreasing gap between the peaks as the Cu content is increased. (b) Schematic of the proposed band-bending

mechanism responsible for the energy difference between the defects; the orange profile represents the BiSe defect’s observable states on the Bi2Se3

surface. Cross-sectional dI/dV linescans from two different defects on Bi2Se3 are shown for direct comparison, as well. Colour scale ranges in b: left,

1.4� 10� 11 pA meV� 1, right, 5.0� 10� 12 pA meV� 1.
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Figure 3 | Cu defects in Bi2Se3. Cu doping introduces a number of new

defects, as shown in the topograph in a. However, as shown in the dI/dV

data in b–f, the distinct BiSe defect is still present. Indeed, it still shows up at

different biases depending on its layer, as highlighted by the circled and

squared defects. Scale bar in b is 10 nm.
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eliminated by reducing the SBB. To ensure that future STM
studies are truly investigating the topological surface state in
Bi2Se3, control of the surface potential will be essential—bulk
n-type doping provides one such mechanism, as shown
schematically in Fig. 4b.

Correlating potential fluctuations. The Dirac point shifts rigidly
with bulk band fluctuations4 (Fig. 5a) and the dI/dV data
B200 meV below the Dirac point are effectively linear with bias,
allowing us to map the dI/dV value below the Dirac point to the
fluctuations of the Dirac point. This technique has been
successfully applied to graphene19, and we confirmed the
validity of this technique for Bi2Se3 from line spectroscopy data,
as shown in Fig. 5b,c. However, dI/dV images can contain
additional information that could be interpreted as quasiparticle
scattering20 or variations in the apparent barrier height21, so we
quantitatively demonstrated that above the Dirac point (Fig. 5f),
the dI/dV image is a reversal of the dI/dV image below Dirac
point with a cross-correlation coefficient of � 0.5. Therefore, the
dI/dV images in Fig. 5d,e are best described as maps of Dirac
point shifts.
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Figure 5 | Correlating potential fluctuations with point defects. (a) Two

dI/dV curves taken from different regions on Bi2Se3 show how the Dirac point

shift can be correlated, to first order, with the intensity shift in dI/dV

intensity—this allows single-pass dI/dV scans to map the Dirac point

fluctuations. (b) A scatter plot determined from line spectroscopy data across

300 nm of Bi2Se3 shows the first-order relation between the Dirac point and

the lock-in signal at � 540 meV; R2¼0.72. (c) Seven-point moving average

from the line spectroscopy visually shows the correlation from b. A

350� 50 nm region of Bi2Se3 is then investigated with this technique:

topography (d) at � 200 meV shows Se vacancies, and the dI/dV image of the

same region taken at � 540 meV shows fluctuations in the Dirac point (e).

In e, the red circles represent bright triangular defects, determined from d.

(f) dI/dV image at � 270 meV showing that the dI/dV map gives an inverse

image of e above the Dirac point. The cross-correlation coefficient is �0.5,

quantitatively confirming the contrast reversal despite the higher noise level in

f. A visualization of the deviations from the distribution mean for dim-type BiSe

defects is shown in g, where red points indicate a BiSe defect with an energy

state that is more positive than the distribution mean, and blue points indicate

a BiSe defect below the distribution mean (see inset). The dI/dV image at

� 350 meV (h) shows both dim and bright type defects. The fluctuations in

the BiSe defect energy scale correlates directly with the fluctuations in the Dirac

point; a few extreme examples are highlighted in boxes in e–h. Colour scales: d,

40 pm; e, 30 meV; h, 10 pA/V.
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Figure 5d and e shows the topography and corresponding map
of Dirac point fluctuations, respectively, in nominally stoichio-
metric Bi2Se3. Se vacancies observed in Fig. 5d, indicated with red
circles in Fig. 5e, can be correlated with n-shifts in the Dirac
point. The energy of formation for Se vacancies increases as the
sample is n-doped16—so they would preferentially form in more
positively shifted regions. Therefore, their correlation with
negatively shifted regions suggests they are causing the n-type
fluctuations. It is also apparent that these defects are the origin of
the fluctuations (responsible for the finite width of the peak
energy distributions in Fig. 2a) in the BiSe distributions: negatively
shifted BiSe defects are on negatively shifted regions of the sample
and positively shifted BiSe defects are found on positively shifted
regions of the sample (Fig. 5e–h). Significantly, while these BiSe

defects do have strong electronic interactions, they do not appear
to have strong effects on the position of the Dirac point, rather,
they appear to follow the bulk fluctuations.

Discussion
Our re-evaluation of the BiSe defect as an impurity state suggests
that bulk-surface interactions are not directly evident. Further-
more, this classification allows the band bending to be directly
visualized, highlighting the concerns that non-topological surface
states may be inadvertently formed on Bi2Se3. To prevent the
formation of such a state, it will be important to deliberately tailor
the band bending using advanced synthesis techniques such as
molecular beam epitaxy. Furthermore, by correlating observable
defects with the fluctuations in the Dirac point through dI/dV
imaging, we have shown that different defects influence the Dirac
point disparately—as different preparation techniques produce
different characteristic defects, an understanding of the interplay
between specific defects and the local electronic structure is
critical. We expect that such atomic-scale insights will enable
application-optimal doping and growth schemes. Ultimately,
Bi2Se3 remains a model system for exploring topological physics.

Methods
Sample growth. Ternary CuxBi2Se3 bulk crystals were grown by the vertical
Bridgman technique using a three-zone high-temperature furnace. The tempera-
ture profiles in the growth zone were designed to produce a 3–5 �C axial gradient.
The starting materials used for crystal growth (6 N Bi and 6 N Se) were deoxidized
and outgassed under vacuum directly before use. Stoichiometric amounts of Bi and
Se along with 6 N purity deoxidized Cu were enclosed in a graphitized fused quartz
ampoule, evacuated for several hours and sealed off under a dynamic vacuum of
B10� 8 torr. The pre-loaded charge was then placed in the middle zone of the
furnace. After the preliminary reaction was completed at 400 �C, the charge was
slowly heated up to 770 �C for B6 h and then the melt was allowed to homogenize
for 24 h under a high linear temperature gradient to promote mixing. The melt
was solidified with a rate of about 1.5 mm h� 1 at a small linear gradient of
3–5 �C cm� 1.

Ab initio calculations. Our calculations are based on density functional theory
with the Perdew-Burke-Ernzerhof approximation22. Interactions between ion cores
and valence electrons are described by the projector augmented wave method23,24,
as implemented in the VASP package25,26. Plane-waves with a kinetic energy
cutoff of 270 eV were used as the basis set. We used a (7� 7) double quintuple slab
containing 196 Bi and 294 Se atoms with gamma point sampling of the Brillouin
zone. All atoms were allowed to relax with a convergence criterion for the
structural relaxations of 0.04 eV Å� 1. To compare with experiment, we simulate
the STM images based on the theory of Tersoff and Hamann27. When simulating
STM images for comparison with experimental images, care has to be taken
with regard to the location of the experimental Fermi energy. To correspond
to the observed images at a � 500 meV bias, the Fermi energy window used to
construct the charge density for the simulated images range from conduction band
minimum þ 300 meV to the valence band maximum þ 100 meV. This window is
chosen relative to the band edges because the use of only two slabs increases the
theoretical gap.

STM measurements. Samples were cleaved in an UHV with a base pressure
o10� 10 torr, then immediately transferred to the STM at liquid nitrogen tem-
perature. The STM is a Pan-type STM scan head from RHK in a home-built

UHV chamber. Electrochemically etched tungsten STM tips were cleaned by
e-beam irradiation under UHV. STS data were taken using the built-in lock-in
amplifier on a Nanonis STM controller at 780 Hz and 10-mV modulation ampli-
tude. STM topographs were taken in constant current mode and the bias was
applied to the sample. BiSe peak positions were determined from multipass scan
data at constant current, unless otherwise noted, and were extracted from the lobes
of the defects; the background spectra, averaged on either side of the given lobes,
were subtracted from the impurity peak spectra to remove systematic offsets due to
the shape of the nearby dI/dV spectra. More information is provided with
Supplementary Fig. S6.
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