Ambipolar graphene field effect transistors by local metal side gates

J. F. Tian,1,2,a L. A. Jauregui,2,3 G. Lopez,2,3 H. Cao,1,2 and Y. P. Chen1,2,3,a

1Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
2Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
3School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

(Rceived 29 March 2010; accepted 7 June 2010; published online 1 July 2010)

We demonstrate ambipolar graphene field effect transistors individually controlled by local metal side gates. The side gated field effect can have on/off ratio comparable with that of the global back gate, and can be tuned in a large range by the back gate and/or a second side gate. We also find that the side gated field effect is significantly stronger by electrically floating the back gate compared to grounding the back gate, consistent with the finding from electrostatic simulation. © 2010 American Institute of Physics. [doi:10.1063/1.3459136]

Graphene, composed of a two-dimensional (2D) hexagonal carbon lattice, stands out as a potential candidate for nanoelectronics and devices applications.1–3 Its unusual band structure has a linear energy–momentum relation near the Dirac point where the valence and conduction bands meet, making graphene a zero-gap semiconductor. Both the type (electron or hole) and density of carriers in graphene can be easily controlled by using an electric field. Such an ambipolar electric field effect underlies a large number of work on electronic transport under gate control. The 3D schematic of the device and corresponding circuits used in the measurements. All resistance measurements [four-terminals, see Fig. 1(b)] are performed at room temperature and in vacuum (<6 m Torr) by lock-in detection with a driving current of 100 nA. All the gate voltages are applied by dc source meters. Figure 1(c) shows the room temperature back gate field effect for device “1”. A characteristic ambipolar field effect is observed with a global Dirac point (V_{DBP}) at 24 V. The positive V_{DBP} indicates p-type doping, probably due to polymethyl methacrylate residue or adsorption of molecules (such as water) on the graphene surface. Our fabricated graphene devices have typical carrier mobilities of 2000–5000 cm²/V s extracted from both Hall effect and back-gated field effect measurements.

We have investigated the field effect controlled by both side and back gates. Data measured in device “1” are presented in Fig. 2. For simplicity, only one of the side gates [SG1, Fig. 1(a)] is used (using SG2 gives similar results). Figure 2(a) shows the resistance (R) as a function of the side gate voltage (V_{SG}) at a series of back gate voltages (V_{BG}).

FIG. 1. (Color online) (a) AFM image of a GFET (device “1”) with two local metal side gates (“SG1” and “SG2”). The dashed line marks the edge of graphene, separated by ~370 nm from the side gates for this device. (b) The 3D schematic of the device and corresponding circuits used in the measurements. (c) The global field effect of device “1” by sweeping the back gate voltage. The FET mobility of this device is ~3500 cm²/V s.

Ti+30 nm Au) are fabricated in a one-step process using e-beam lithography, metal deposition, and lift-off. No gate dielectric deposition or etching of graphene is needed in the process. Figure 1(a) shows the atomic force microscopy (AFM) image of a representative GFET device with two metal side gates (device “1”). The typical distance between the side gate electrodes and edge of graphene ranges from several tens to hundreds of nanometers and is ~370 nm for this device. A smaller distance gives stronger capacitive coupling between the side gate and graphene.

Our graphene samples are prepared by micromechanical exfoliation of graphite on top of 300 nm SiO₂ on heavily doped p-type (p++) Si substrate.25 Monolayer graphene can be identified by its optical contrast25 and distinctive Raman spectrum.26 Metal side gates and contacts electrodes (5 nm

Electron address: tian5@purdue.edu and yongchen@purdue.edu.

Electronic addresses: tian5@purdue.edu and yongchen@purdue.edu.
varied from 14.2 to 25.4 V with a step of 0.8 V. When the V_{bg} = 14.2 V (much lower than V_{SDP} = 24 V, and the entire graphene being heavily p-type), R increases with the increasing V_{sg} within the measurement range. When the V_{bg} \approx 15.8 V, a clear “side gate Dirac point” (V_{SDP}) with maximal R appears around 40 V. Upon further increasing V_{bg}, V_{SDP} decreases (from positive toward negative) while the maximal R of the device increases till V_{bg} reaches \sim21.4 V then decreases again. These results show that the side-gated field effect can be continuously tuned by applying a voltage to V_{bg} within the measurement range. When the V_{bg} varies, the resistance modulation ratio of side-gated field effect can be calculated by COMSOL, for a device structure similar to that of device “2” at a representative point (1 nm above graphene and 250 nm from the left edge) as a function of V_{sg} at various V_{bg}. All data measured in device “1” using SG1 as the side gate and become comparable to that of back gated field effect measured in another device “2”.

We have also observed that the side-gated field effect is sensitive to the electrical grounding of the back gate. This is demonstrated in Fig. 3(c), with measurements performed on a device “2” with only one local metal side gate but otherwise similar to device “1.” It can be seen that the side-gated field effect with the back gate floating is much stronger than the case with the back gate grounded. We have performed finite element simulations to calculate the spatial electric field profile with various gate configurations. Figure 3(d) shows the calculated electric field strength at a representative point above graphene as a function of V_{sg} for the two different back gate conditions. It can be seen that the electric field at graphene is stronger with a floating back gate (than a grounded back gate), leading to the stronger field effect observed [Fig. 3(c)].

In summary, we have demonstrated metal-side-gated ambipolar GFETs, fabricated in a one-step process without any gate dielectric deposition or graphene etching. The local metal side gates show promising ability to tune the field effect in graphene and can be used to control individual inhomogeneity23,27,28 induced by the nonuniform electric field from the side gate.

We have also investigated the field effect due to the side gate only and how it may be affected by another side gate as shown in Figs. 3(a) and 3(b). An ambipolar field effect is observed by sweeping the side gate voltage only. In Fig. 3(a), all of the curves show clear side gate “Dirac points.” For SG1, V_{SDP1} \approx 70 V, which is lower than V_{SDP2} \approx 90 V. This difference may be due to the better capacitive coupling between SG1 and graphene or the charge inhomogeneity in the graphene27. When both side gates are used simultaneously, the “joint” field effect has a further reduced V_{SDP} \approx 50 V. Furthermore, we find that the side-gated field effect due to SG1 can be continuously tuned by applying a voltage to SG2 (V_{sg2}) as shown in Fig. 3(b). Increasing V_{sg2} from \sim80 to 80 V tunes the field effect due to SG1 from p-type behavior (R increases with increasing V_{sg1} within the measurement range) to ambipolar, with V_{SDP1} decreasing from positive to 0 V and even to negative [Fig. 3(b)]. Similar results are also obtained when we sweep V_{sg2} at various V_{sg1}. The on/off resistance modulation ratio of side-gated field effect can reach \sim2 and become comparable to that of back gated field effect [Fig. 1(c)]. The limited on/off ratio from side gated graphene FET may be related to the charge

FIG. 2. (Color) (a) Resistance (R) of the graphene device as a function of side gate voltage (V_{sg}) at various back gate voltages (V_{bg}). (b) R as a function of V_{bg} at various V_{sg}. (c) 2D color plot of R as a function of V_{bg} and V_{sg}. Curves in (a) and (b) correspond to similar side-gated and back-gated field effect configurations. Figure 2(a) shows the calculated electric field strength at a representative point above graphene as a function of V_{sg} for the two different back gate conditions. It can be seen that the electric field at graphene is stronger with a floating back gate (than a grounded back gate), leading to the stronger field effect observed [Fig. 3(c)].

In summary, we have demonstrated metal-side-gated ambipolar GFETs, fabricated in a one-step process without any gate dielectric deposition or graphene etching. The local metal side gates show promising ability to tune the field effect in graphene and can be used to control individual inhomogeneity23,27,28 induced by the nonuniform electric field from the side gate.

We have also observed that the side-gated field effect is sensitive to the electrical grounding of the back gate. This is demonstrated in Fig. 3(c), with measurements performed on a device “2” with only one local metal side gate but otherwise similar to device “1.” It can be seen that the side-gated field effect with the back gate floating is much stronger than the case with the back gate grounded. We have performed finite element simulations (COMSOL Multiphysics 3.5a) to calculate the spatial electric field profile with various gate configurations. Figure 3(d) shows the calculated electric field strength at a representative point above graphene as a function of V_{sg} for the two different back gate conditions. It can be seen that the electric field at graphene is stronger with a floating back gate (than a grounded back gate), leading to the stronger field effect observed [Fig. 3(c)].

In summary, we have demonstrated metal-side-gated ambipolar GFETs, fabricated in a one-step process without any gate dielectric deposition or graphene etching. The local metal side gates show promising ability to tune the field effect in graphene and can be used to control individual inhomogeneity23,27,28 induced by the nonuniform electric field from the side gate.

We have also observed that the side-gated field effect is sensitive to the electrical grounding of the back gate. This is demonstrated in Fig. 3(c), with measurements performed on a device “2” with only one local metal side gate but otherwise similar to device “1.” It can be seen that the side-gated field effect with the back gate floating is much stronger than the case with the back gate grounded. We have performed finite element simulations (COMSOL Multiphysics 3.5a) to calculate the spatial electric field profile with various gate configurations. Figure 3(d) shows the calculated electric field strength at a representative point above graphene as a function of V_{sg} for the two different back gate conditions. It can be seen that the electric field at graphene is stronger with a floating back gate (than a grounded back gate), leading to the stronger field effect observed [Fig. 3(c)].

In summary, we have demonstrated metal-side-gated ambipolar GFETs, fabricated in a one-step process without any gate dielectric deposition or graphene etching. The local metal side gates show promising ability to tune the field effect in graphene and can be used to control individual inhomogeneity23,27,28 induced by the nonuniform electric field from the side gate.

We have also observed that the side-gated field effect is sensitive to the electrical grounding of the back gate. This is demonstrated in Fig. 3(c), with measurements performed on a device “2” with only one local metal side gate but otherwise similar to device “1.” It can be seen that the side-gated field effect with the back gate floating is much stronger than the case with the back gate grounded. We have performed finite element simulations (COMSOL Multiphysics 3.5a) to calculate the spatial electric field profile with various gate configurations. Figure 3(d) shows the calculated electric field strength at a representative point above graphene as a function of V_{sg} for the two different back gate conditions. It can be seen that the electric field at graphene is stronger with a floating back gate (than a grounded back gate), leading to the stronger field effect observed [Fig. 3(c)].

In summary, we have demonstrated metal-side-gated ambipolar GFETs, fabricated in a one-step process without any gate dielectric deposition or graphene etching. The local metal side gates show promising ability to tune the field effect in graphene and can be used to control individual inhomogeneity23,27,28 induced by the nonuniform electric field from the side gate.

We have also observed that the side-gated field effect is sensitive to the electrical grounding of the back gate. This is demonstrated in Fig. 3(c), with measurements performed on a device “2” with only one local metal side gate but otherwise similar to device “1.” It can be seen that the side-gated field effect with the back gate floating is much stronger than the case with the back gate grounded. We have performed finite element simulations (COMSOL Multiphysics 3.5a) to calculate the spatial electric field profile with various gate configurations. Figure 3(d) shows the calculated electric field strength at a representative point above graphene as a function of V_{sg} for the two different back gate conditions. It can be seen that the electric field at graphene is stronger with a floating back gate (than a grounded back gate), leading to the stronger field effect observed [Fig. 3(c)].

In summary, we have demonstrated metal-side-gated ambipolar GFETs, fabricated in a one-step process without any gate dielectric deposition or graphene etching. The local metal side gates show promising ability to tune the field effect in graphene and can be used to control individual inhomogeneity23,27,28 induced by the nonuniform electric field from the side gate.
graphene nanodevices, with many potential applications in carbon-based electronics.

We thank Miller Family Endowment, Midwest Institute for Nanoelectronics Discovery (MIND), Indiana Economic Development Corporation (IEDC), NSF (Grant No. ECCS-0833689), DHS, and DTRA for partial support of this research.