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Optical theorem formulation of low-energy nuclear reactions
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We present a detailed description of a recently proposed optical theorem formulation of nonresonant low-
energy nuclear reactions between two charged nuclei. Based on the optical theorem formulation, we obtain an
analytic formula for the reaction cross sectiofE) which exhibits explicitly the energy and charge depen-
dences otr(E). The formula may provide a physical understanding of the anomalous low-energy enhancement
of o(E) observed in sub-barrier heavy-ion fusions and also in light nuclei fusions relevant for primordial
nucleosynthesis and stellar evolution. As examples of its application, the new formulation is used to analyze
astrophysical S factors for “Li(p,a)*He, SLi(d,a)*He, and SLi(p,a)®He reactions.
[S0556-281®7)03602-9

PACS numbgs): 24.10-i, 25.10+s, 25.70.Jj, 26.26:f

I. INTRODUCTION where 7(E) =Z,Z,e*/%v is the Sommerfeld parameter and

Primordial big-bang nucleosynthesis and the nucleosyn?_zwn(E) IS the Gamow factor representing the probability of

thesis involved in stellar evolution are qualitatively under—brlnglng two charged nuclei to zero separation distance.

stood, but there are many questions which need to be ar$—(E) is expected to be a slowly varying funct|0|j Bf Re-
swered before we can reach a more quantitativé:em results fowr(E) from laboratory beam experiments for

understanding of the primordial nucleosynthesis and stellaé(rf'UCIeaL reacrtllonshlnvolvmg IghEt nyclel at Igw enerdgtles3
evolution. In particular, there remain uncertainties due to th ev) show that the extracte (E) increased toward lower
unknown rates and cross sectioa$E) for many nuclear energies instead Of_ bgmg_ a constan; _gxtrapolate_d from
reactions involved in nuclear astrophysics calculations. Sincglgher—energy data, |nd|_cat|ng the possibility of the Impor-
o(E) at energies< a few keV) relevant to primordial and tance of electron screening. However, recent theoretical cal-
stellar nucleosyntheses cannot be measured in the laborato ,Iat|o|ns[10,1h1'1 cr)lf the elect;]on sc:le(;nlng 1e/f2fecrt1 y|elth|m|t-
they are extracted from laboratory measurements(&) at ihg va ugsfw Ic hare muct Smalédy N f ) than those
higher energies by an extrapolation procedure based ngdragte 4 rom t 2e eXpeg'”.‘e”ta 3 ata ‘6“. t de zeactlons
nuclear theory. However, the energy dependence of theHe€(d:p) He (1213,  °Li(pa)°He, ~°Li(d,a)’He,
nuclear reaction cross sectio(E) cannot be obtained rig- _ Li(P-@)"He [14], TB(p,«)'Be, and “B(p,a)"Be [15].
orously from first principles since many-nucleon scattering! NS discrepancy between the experimental data and the
problems cannot be solved exactly even if the nucleontheoretical estimate for the electron screening effect is not

nucleon force is given. Therefore, one must rely on physi\Ve! uEQerstood at presen;t. tth lication of the optical
cally reasonable nuclear reaction models, such as optical po- In this yfaaperi as examples of the app |ca|t|0_n 0 ft (aopltlca
tential models(OPM's) [1,2], cluster models based on the theorém formulation, we present an analysis of the low-
resonating group metho®RGM) [3-6] or on the generator ENErYY fkjsmn reactions'Li( p,)°He, °Li(d,a)*He, and
coordinate methodGCM) [7], and theP-matrix method8]. _ Li(p,a) He [14]. The myestlgatlon of _these reactlo_ns is
Recently, we introduced an alternative theoretical formula!MPortant in two asp%cf(]) These reactions are dominant
tion [9] of nuclear reactions which is based on the opticald€pletion processes fdiLi and ‘Li, and their improved re-
theorem. Our new formulation can be applied to both reso@ction rates could provide an explanation for the extremely
nance and nonresonant nuclear reactions. In this paper, W@ lithium abundance and also could improve the present
present a more detailed description of our optical theoreri€0ries of spallative and big-bang nucleosynthesis genera-
formulation for the nonresonant case. tion of light elements[16], and the fusion reactions
For nonresonant nuclear reactions, it is customary to ex-Li(p,a)°He and °Li(d,a)*He are relatively clean energy

tract the astrophysica factor S(E) from the experimentally Sources as well as highly efficient mechanisms for energy
measuredr(E) using the formula generation among exotic nuclear fuel elemgihis Be, and

B) [17]. Reaction rates fofLi( p,a)3He and®Li(d,a)*He
are approximately 10* and 103, respectively, of that for
oG(E)=S(—E) e~ 2mn(E) 1) T(d,n)*He at an incident ion energy of25 keV. These
E ' reaction rates are relatively large compared to those for other
exotic nuclear fuels.

In Sec. Il, we give a derivation of the low-energy
*Permanent address: Department of Physics, Cheju National Uni‘partial-wave” optical theoren{9], which is different from
versity, Cheju 690-756, Republic of Korea. the conventional optical theorem. The relationship between
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the total reaction cross section and thenatrix is also given

in the partial-wave form. In Sec. Ill, using a separable form Im f|N<eI>:E (o + o), 5
of the T matrix with several parameters, we obtain an ana-

lytical formula for the reaction cross section, which exhibitswhich is a rigorous result.

explicitly the energy and charge dependences of the reaction ror |ow energies, fN®ce 277/k and hence o]
cross sectlpn. I|_1 Sec. IV, _the aqalytlc formula f(_)r the Cross_ 4 - le(e|)|20<e—47T7;/k2_ Since O_I(r)o(872171]/k2, we have
section derived in Sec. Il is apphed toan anegS|s 03f experi- (s, NE) gt jow energies, and hence we can write B,
mental data for the fusion reaction€Li(p,a)3He, ! !

6Li(d,«)*He, and 'Li(p,a)*He. A summary and conclu- >
sions are given in Sec. V. Kk
Im f|N<E'>~E ol", (6)

Il. OPTICAL THEOREM FORMULATION

hi . introd | “partial which is still a rigorous result at low energies. We note that
In this section, we introduce a low-energy "partial-wave” gqq (5) and (6) are nonradiative nuclear reactions and need

optical theorem and use it to develop the optical theorem, o modified for radiative nuclear reactions.

for¢#lation of I(t)_w-er|1ergyt/_ nt:cltiar reactif(_)n?._ roduced by M {€rms of the partial wavel matrix, T, the elastic
€ conventional optical theorem HIrst INOGUCEA BY 1\ clear scattering amplitudé]®)= (SN~ 1)/2ik can be
Feenberd 18] is given by written as

4

2
7 im 1(0), @ NEE) = — S (U E), ™

o=

where o, is the total cross section anfd0) is the elastic wherey{ is thelth partial-wave regular Coulomb function
scattering amplitude in the forward directigd=0). There and u is the reduced mass. Using the low-energy optical
are many other forms of the “optical theorem,” all of which theorem Eq(6) with Eq. (7), we obtain thd th partial-wave
are physically related to the interferende®]. A generalized reaction cross sectioa (E) [=o((E)] as
optical theorem for the case of the Coulomb interaction plus 4
. [
?suecée;;:[ozr;](;.s was developed and improved by Ma2] UI(E)%E fo YEOU,(r,r ) gf(r)dr dr”, (8)
To avoid complications associated with the singularity of
the forward Coulomb scattering amplitud&0) as in the where E=%%k?/2, and Uy(r,r')=—Im({r[T||r") with T,
case of the conventional optical theorem, for two-potentiarepresenting théth partial-wave contribution of th&-matrix
scattering involving two charged nuclei, we describe a dif-operator. The total reaction cross sectiofE) is given by
ferent formulation based on a partial-wave optical theorenv(E)=2,(21+1)0(E).
involving angle-integrated and/or angle-independent quanti- It is important to note that our optical theorem formula-
ties in the following. tion of nuclear reactions, Eq6), can be applied to both
For the elastic scattering involving the Coulomb interac-nonresonant and resonance reactions using Tthenatrix
tion and nuclear potential, the scattering amplitude can b@iven in Eq.(7). In the following, we consider only the non-

written as a sum of two amplitudes: resonant case. )
Using the Feshbach projection methfB], the Schre
f(0)=1°(0) +'f'( 0), (3y  dinger equation for a multichannel system can be written as
~ 2 42 2 H7(1)a2
where f°(9) is the Coulomb amplitude anf{#6) is the re- _ ﬁ_d_2+ f I‘(I‘tl) + ZaZp® Gilr)
mainder.f(6) can be expanded in partial wavig22] as 2p; dr; 2 ri n
'f'(a):ZI (21+1)e? S tNEP (cos 6), (4) +; fvi,»(ri,rj E)g(rj)dry=(E+Qu¢i(r),

(€)

where ; is the reduced masg{’ and Z{’ are nuclear
(g_harges, an®®; is the energy release for thth channel. For
the two-channel case, E) is

where ¢ is the Coulomb phase shiftN®=(sV—1)/2ik,
andS) is thelth partial waveS matrix for the nuclear part.
The partial-wave expansion of the nuclear elastic cross se
tion oN® is given by oN=3,(21+ 1) with oM
=(m/k%)|S' -1

For the reaction cross section", the partial-wave
expansion is given by c"=3,(2I+1)c(”, where
ocV=m(1-|SN?/K?. Using the expressions of
o{? and oM derived above, we can writes{" +f Via(re,rs E) g (ridry
+ oM =27(1-ReSY/K2. Combining this with Imf]N©
=(1-Re S’,\‘)/Zk, we obtain the partial-wave optical theorem
for the two-potential scattering case as

72 d? w2y (l,+1)  Z0zZEe?
—— = +
2u dr? 2uqrs r

U1(rq)

+fVlz(rl,ré'E)lﬁz(ré)dré:E%(M) (10
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and A2 d2 R2,(1,+1) zf.j)zgl)ez) .
-5 r
B2 a2 wly(,+1) ZPZPe? 2uydrf " 2par] o)
-5 r
20, dr2 202 r (1) )
fv(rlvrlaE)lr/fl(rl)drl Ega(ry), (19

+fv22(r2,r;,E)wz<ré>dré

fV21(r2 r1,E)gn(rpdri=(E+Q)yy(ry).
(11)

To avoid complications associated with nonorthogonality

of the basis statgsp;) [24], we describe a formulation based
on the Faddeev-type differential equatib] in Appendix

A, which have a unique solution under some asymptotic

boundary conditions only if binargtwo-body) channels are
open. The general properties \&f; (r; ,rJ—’ ,E) are

IiE),

andV”(r, , E) in this case are real functions. The symme-
try in Eq. (12) is due to the fact that Eq9) is T invariant.
Vi (ri ,rj’ ,E) is expected to be a slowly varying function of

V”(I',, i E)= le(r (12

energy for low-energy nonresonant fusion reactions. We note

that in the Faddeev-type RGM approximatih; , are inde-
pendent of energy, as shown in Appendix A.

To convert Eg.(11) into an integral equation, we intro-
duce two linearly independent solutioggr,)=X(r,) and

¢(r,)=Y(r,) of the equation
)g2
) #(r>)

+J Vour2,15,E) p(r2)dry=(E+Q) ¢(r>).

72 d?
T 2ppdr}

h2,(1,+1) Z2P2z{2
2/.L2r§ I’2

13

For larger,, solutionsX(r,) andY(r,) of Eq. (13) satisfy

DYy
Xz(rz):S|n( k2r2_ 27_ 2 |I’l 2k2r2+ 5f2+ 5|2

and

|27T
Yz(r2)=CO k2r2_ 7_ n2 In 2k2r2+5f2+5|2 y

respectively, and hence the Wronskiaf3X;—X,Y;=k,
with k,=[2u,(E+ Q)/#%?] Y2 Using the above relations, we
can rewrite Eq(11) in the integral form

2M ! ! !
PYo(ry)= k2 sz(rznrzyE)Vn(rzarlaE)
Xy (ry)dradr] (14
where
s £ Xo(r)[Ya(ra) +iXa(ra)], ra<rj,
o r =
2202 B [y ) 4 X1 Xalr)), 1<T.

Substituting Eq(14) into Eqg. (10) yields

where an effective potentiaVs(r,,r;,E) is given by
VS(rq,r},E)=Vadry.r; E)—iVi (ro.r} E), and

2u2

Vﬁn(rllrirE):ﬁz_kz

JV12(|’1-FE.E)X2(r£)dr§

Xf XZ(rZ)V21(rgvri!E)drg! (16)
2u
Re(rr E)=Viq(rq,ry)— k fvlz(rl,rz.E)
XReGy(ry,r5,E)Voy(r",r" ,E)dridry.
17

From Eqs(12), (16), and(17), we can see that the imaginary
part of V3(r,,r1,E) is separable and

V3(rq,r;,E)=V3(ry,rq,E). (18
For1=0, the effective Hamiltonian in the elastic channel

has the form

n? d?  z,z,€? _
el= — ﬂ d—rz + T"‘Vge— |Vﬁn (19)
The T matrix for Eq.(19) satisfies
_ s s
T=(V3—iVE) +(Va—iVe, EoH— oo T
=(V§e—iVﬁn)+TmT(V —iVi),
(20)
where
72 d?
o=~ Zuar

andVC¢=2,7,e’/r. Using Eqs(16), (17), and(18), it can be
shown that the imaginary part of tHe matrix is separable
and symmetrigsee Appendix B

T(rq,ry,E)=T(ry,rqy,E). (21)

Ill. REACTION CROSS-SECTION FORMULA

SinceUq(r,r’) in Eq. (8) is separable and symmetric for
the two-channel case, we can wrltg(r,r’) as

Uo(r,r")=xg(r)g(r’),

where\ is expected to be a slowly varying function of en-
ergy for the nonresonant casd@-or the case of resonance
reactions, the energy dependencexofan be parametrized

(22
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by the Breit-Wigner expressionit should be noted that one
advantage of Eq(22) is that we can parametrize only one
real functiong(r). However, to construai(r) exactly would

be as difficult as solving the original two-channel equations.

For thel=0 case, the Coulomb wave functiah§(r) is
given by
¥o(r)=Co( MM, 1A 2ikr)/2i, (23
where C§(n)=2m7/(€*""—1) and M;, 1,(2ikr) is the
Whittaker function. The reaction cross section, 8), in the
case ofg(r)=e #", can be written as

- 2
(f wg(r)e‘ﬁfdr)
0
2

1 0
cg(n)(i— fo Min,l,z(Zikr)e‘Brdr) .

4\
Uo(E)ZE

TN

=%E (24)

The integral in Eq{(24) can be evaluated exactly:

1 (= .
.—f M;, 1A 2ikr)e”#dr
| 0 '

1 H . H . .
T L@IKT(@)(B—ik) " H(B+ik) 77

2k

e??7, (25)

where ¢=arctank/B). Thus, the reaction cross section
oo(E), in Eq.(24), is

472\ et¢7
O-O(E): RBE (827”7—1)(B2+k2)2’ (26)
which for the low-energy case reduces to
'S.(E)e*47
Uo(E)z SO( é 6727777, (27)
with
2
,LLC ZaZb k
Adn— == _
e exp|4a e ( K arctarélg } (28
where  Sy(E)=47\[Rg(B2+k?)?Y  with Rg

=#1%/(2uZ,Z,e?). The exponential factoe*®” (enhance-
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reaction cross section for a transition from elastic channel 1
to reaction channel 2 can be written in the form

oo(E)x|T1AE)|?, (29

where

le(E)OCJ g(r)gg(r)dr, (30

without using the optical theorem and the Feshbach proce-
dure[23]. However, our previous derivation provides some
qualitative justification thag(r) can be real and a slowly
varying function of energy for the nonresonant case, and it
also provides a physical interpretation tlggt) is related to

the imaginary part of the elastic scattering amplitude.

IV. EXAMPLES OF AN APPLICATION

In this section, as examples of an application, we calcu-
late the astrophysicaB factors S(E) for Li(p,a)*He,
bLi(d,)*He, and®Li( p,a)3He reactions using the experi-
mental datd14] and the analytic formula fow(E) based on
the optical theorem formulation. Recent results tef(E)
from laboratory beam experiments for nuclear reactions in-
volving light nuclei at low energieé&>3 keV) show that the
extractedS(E) increases toward lower energies instead of
being a constant, indicating the possibility of a significant
effect of the electron screening.

In the previous analyses[14] of ’Li(p,a)*He,
8Li(d,a)*He, and éLi(p,a)He fusion reactionsS(E) in
Eqg. (1) is modified to S5(E) by an enhancement factor
fu(E)~exp(mnU/E), which is attributed to the electron
screening effect, an8g(E) is parametrized as

n

Se(E)=fy(E)S(E)~fy(E) Y, ¢E,

1=0

(31

where U is the electron screening energy and
S(E) =2 [_,c;E' is the bare nuclear contribution. The fits of
Eq. (31) (with up to three or four term<o the experimental
data[14] yield unphysical values of)J, which are substan-
tially larger than the expected values from the Thomas-Fermi
model[26,27], given by

U=30.72,Z,(Z23+ 2232 ev, (32

which is obtained using the screening distance

ment factoy can be applied to both light-nuclei reactions @=0-88520(Z5"*+2'®) "2 with the Bohr radiusa, .

(smallZ, andZ,) and heavy-ion reactiorgargeZ, andZ;)
such as sub-barrier heavy-ion fusion reactions whedf&’

In our analysis of these reactions, we use the electron
screening energy (=161.6 eV calculated from Eq(32)

can be very large. The use of a general form forinstead of treating it as a free fitting parameter. Based on our

g(r)=e P (=N ,c;r') instead ofe™ #" in Eq. (22) also leads
to the same enhancement fac&f ”. Therefore, the en-

hancement factoe*?” is independent of shape of the sepa-

rable functiong(r) used in Eq(22).
The enhancement fact@*?” is obtained together with

cross-section formula, E€R7) with Eq. (28), we parametrize
the S factor using the formula

E)~f,(E)Sy(E)~f ELbE 461 (33
S(E)~fy(E)SN(E)~Tfy( )(,32+k2)2e '

the Gamow factor from our derivation and can be regarded ~
as a modification of the Gamow factor, affecting it only atwhereSy(E) is the bare nuclear contribution. To fit the ex-

low energies, or as a part of ti&factor if we still wish to
keep the conventional formula, Eql). We note that the

perimental datd14] to extract theS factor, we have used
only two or three parameter®, b, and B) for the energy
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TABLE |. Parameters used in the calculations of Siéactor, Eq.(33), and normalization factoN for
Li(p,a)*He, °Li(d,a)*He, and®Li( p,«)3He reactions.

a b B
Reactions (keV b fm™% (107 3xb fm™% (fm™Y N ¥
"Li(p,a)*He 0.412 0.699 0.3589 0.960 0.96.50?
8Li(d,a)*He 1.043 0.1837 0.835 0.45
8Li(p,)3He 2.039 0.2193 0.835 2.47

The 2 value of 0.50 will result if the data point &=280.58 keV is eliminated from thg? calculation.

range of 10 ke E<<500 keV. The parameters used in our indicates large uncertainties for theSdactors as inputs for
calculations are given in Table |. calculations of the primordial nucleosynthesis and stellar
For 100 ke\KE<500 keV, there are 5, 9, and 9 data evolution.
points available from the inverse incident kinematics cases There are two main assumptions made for our calcula-
of H('Li, @)*He, D(°Li, a)*He, and HCLi, ®)*He reactions, re- tions: (a) two open channels are assumed én)da nonreso-
spectively, while forE<100 keV, there are 22, 21, and 24 nant reaction is assumed. In the case of fhid,a)*He
data points available from the original incident kinematicsreaction, there are several open chanréls+p, 'Be+n,
cases of’Li( p,a)*He, °Li(d,a)*He, and®Li(p,a)®He re-  SLi+t), requiring more than one term fddy(r,r’), i.e.,
actions. We used different normalizatioNsbetween the in-  Uy(r,r’)=3;N;g;(r)g;(r'). Although the optical theorem
verse and the original cases. Our valuesNofgree fairly —gives us a total reaction cross section which includes the
well with those given in Refl14]. The calculated results for effect of all open channels, our use of a simple one-term
the astrophysicab factor are shown in Figs. 1-3. Each fig- approximation(corresponding to only two open channels
ure includes both the original and inverse kinematics of eaclgields results which are consistent with the experimental
reaction. As shown in the figures and Table |, we have obdata. The resonance state 4Be at an excitation energy of
tained good fitting results witly? values less than 0.5 for the 22.2 MeV may be important if this state is assumed to con-
®Li(d,@)*He reaction. They® value is about 1.0 per data sist of two closely lying mixed 2 states where the lower one
point for the ’Li( p,a)*He reaction, but it reduces t60.5if  has a larger width [28]. However, a good fit obtained from
we eliminate one data point &=80.58 keV in the fitting our calculation does not appear to support this hypothesis.
procedure. For théLi(p,a)®He reaction, they? value is To understand the characteristics of the enhancement fac-
2.47 per data point, indicating a poor fit to the experimentator €*#” in the energy range considered, we plot this factor
data[14]. For this reaction, a value of the electron screeningas a function of for the Li(d,a)*He reaction in Fig. 4 as
energy much larger than the expected value given by than example. We can see from this figure that the enhance-
Thomas-Fermi moddl25,26], Eq. (32), is required for ob- ment factore*®” has a value o&?®Ref) =298 at zero en-
taining better fits. Our extrapolated values & (0) ergy, decreases aB increases, and reaches to a value
=(6.7=0.2)x10 2 MeV b and(25+2) MeV b for the bare e™*Re=1 for large E. Therefore, this factor can play an
nuclear contribution to th& factor, Sy(E), in Eq. (33), at  important role in explaining the anomalous enhancement of
zero energyE=0, are substantially larger than the previousthe S factor at low energies.
results[14] of 5.9x10 2 MeV b and 17.4 MeV b for the Electron screening effects have been investigated exten-
reactions’Li( p,«)*He and®Li(d,a)*He, respectively. This sively by the Munster-Bochum groupl4]. The determina-

0.10 T

008 L | FIG. 1. Astrophysicab factor in the original
' incident kinematics (atomic target for the
"Li( p,a)*He reaction and in the inverse incident

kinematics(molecular targétfor the H'Li, a)*He

007 - 1 reaction. The experimental data are taken from
Ref. [14]. The solid curves are our calculat&d

factor obtained from Eq:33) using the parameter

0.06 - . values given in Table I.

S-factor(MeV b)

Li(p,o)*He H("Li,)*He

0.05 [ B

10 100 1000
E(keV)
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30 T

8Li(d,c)*He D(®Li,0*He 8

FIG. 2. Astrophysicab factor in the original
incident kinematics (atomic target for the
6Li(d, a)*He reaction and in the inverse incident
kinematics(molecular targetfor the D(°Li, a)*He
reaction. The experimental data are taken from
Ref. [14]. The solid curves are our calculat&d
factor obtained from Eq33) using the parameter
values given in Table I.

15

S-factor{(MeV b)

10

0 1
10 100 1000
E(keV)

tion of the electron screening energy requires not only highparametergstrength, range, efcleads to an analytic formu-
precision measurements, but also an accurate determinatidetion [Eqs. (26)—(28)] for the reaction cross section which
of the effective energy in the target or, equivalently, of theexhibits explicitly the energy and charge dependence of the
energy loss. Recently, it has been clainj2€] that observed reaction cross section. In particular, it contains an enhance-
enhancements of the fusiotHe(d,p)*He cross section are ment factorfe*®”, Eq.(28)] which increases toward low en-
due to an underestimate of the degraded beam energy arisigggies.
from an overestimate of the stopping energy IE&6]. As examples of application, we have analyzed the
"Li(p,a)*He, SLi(d,a)*He, and °Li(p,a)3He reactions
V. SUMMARY AND CONCLUSION [14] over the center-of-mass energy rangeEofrom 10 to
Based on the partial-wave optical theorem 500 keV using the paramgtrization of the cross gection for a
low-energy nuclear reaction based on the optical theorem
N(el) )+ NGy " formulation. Using the reasonable electron screeni.ng energy
Im £ =7— (o + oy )= 70 (U=161.6 eV obtained from the Thomas-Fermi model
[26,27 instead of treating it as a free fitting parameter as
[Egs. (5) and (6)], we have developed an optical theoremdone in the previous calculations, we obtain reasonably good
formulation of the nonresonant low-energy nuclear reactiondits to the astrophysiceb factor extracted from the experi-
between two charged nuclei. We have derived a relationshipental data for’Li( p,«)*He and 5Li(d,a)*He reactions.
between the total cross section and the imaginary part of thelowever, in the case of théLi( p,«)3He reaction, our fits
elasticT matrix in the partial-wave forniEg. (8)]. The use are poor in the lower-energy rang&0 keV<E<100 keV),
of a separable exponential form of tlematrix with several which implies that much larger values of the electron screen-

6.0 .

50 H 8Li(p,)*He H(®Li,0)°He -

{ ﬁ { } FIG. 3. Astrophysicab factor in the original
= 40} i incident kinematics (atomic target for the
g 8Li( p,a)®He reaction and in the inverse incident
g kinematics(molecular targétfor the H®Li, «)*He
E {} H reaction. The experimental data are taken from
@ 80r { { ] Ref. [14]. The solid curves are our calculat&d
ﬂ factor obtained from Eq:33) using the parameter
values given in Table I.
20} } _
10 L

10 100 1000
E(keV)
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30 T

25 - 1

FIG. 4. Enhancement factef?”, Eq.(28), as
a function of energyE for the 8Li(d,a)*He re-
action.

20 | .

enhancement factor

8Li(d,0)*He

15 1

10 L
10 100 1000
E(keV)

ing energy than the estimated value obtained from Thomas=quation(A2) has a unique solution under some asymptotic
Fermi model[26,27] are needed to obtain a better fit to the boundary conditions if only binary channels are op2i].
experimental data. We introduce the projection operators in terms¢of(r o)

Since the enhancement factet?” is a general feature ande,(r;3), which describe the bound states for subsystems
arising from the strong and Coulomb interactions for barg2,3) and(1,3), respectively:
nuclei without electrongi.e., not from the electron screening
effech and since it is also applicable to all strong-interaction Pi=[¢1)(d1l, Pa=|h2)(2l,
nonresonant nuclear reactiofsxcluding radiative capture
reaction$ between two charged nuclei occurring in the pri-
mordial n_ucleosynthesng anq stellar evolut|on§, it may have %he use of operator; andQ; , Eq. (A2), yields the follow-
far-reaching astrophysical importance. Our investigation og - :

. ng equation for the two-channel case:

the enhancement factor demonstrates that this factor may

Qi=1-Py, Q=1-P,. (A4)

play an important role in unders'gandlng and/or explammg the (E—Ho—Vas— \‘/ll) P1|Al/;1>=\A/12P2|’I,Zz>,
experimental data which exhibit an anomalous increase of (A5)
the S factor toward low energies. (E—Ho—Vis— Vo) Pl %) = VoiP1| ),

One of the authorgY.J.K.) acknowledges a partial sup- ] ) - )
port provided by a faculty exchange agreement between Pul¥here the effective potential operatdrg are given by
due University and Cheju National University.

2
Vij= Pi[ at > aikGiAkj( Pj» (AB)
APPENDIX A k=1
To investigate the effective potential for a multichannel
system, we consider a three-body problem with two open Gy=Qx STV Q.
channels Qr(E—Ho—Vi— Ak Qk
1+(2,39—1+(2.3), VisVi (i#j#k), -

(A1) _\C
1+(213)_>2+(1,3). a'II V| ’

- B e - e

In terms of Faddeev-type components, the three-body a15=Vipt Vo= V5, a;=ViptVig— V7,
Schralinger equationHy=Ey can be rewritten as the

Faddeev-type differential equati¢85] and

(E—Ho—V§—Vaa) 1= (Vio+ Voz—V5) 4y, A11=2a1Q; Qzaz1+ay,

(A2) Q2(E—Hp—V;,—2a2)Q,

(E—Ho—V5— V13)Al/;2: (V12+Viz— Vg_:):rl;l ,

Ap=a1Q; TRV Qqaztayy,
whereV§ andV$ are effective Coulomb potentials in elastic Q2(E—Ho=Vo—a2)Q;
and fusion channels, respectively, apidis related toy by 1 (A8)

zp:ElJr},ZZ. (A3) Aa=2a Qi(E—Ho—=Vi—a;9)Q, Quurtaz,
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T(r,r’ ,E)=Vadr,r’,E)—iVy(r,r',E)

Agr=2aQ; OE—Ho—V,—a;)0; Qiaotay,.

f[VRe(r r"E)—iVy (r,r",E)]
Equation(A5) can be arranged to obtain Eq40) and(11).
In the case of the RGM approximation, we have xg(r”,r" E)T(r”,r" ,E)dr"dr”  (B5)

VRCV=p P, . a9y o

T(r,r' ,E)=Tgdr,r',E)=iT,(r,r",E), (B6)
Since a;; given by Eq.(A8) are independent of energy,
VRG"’I in Eq. (A9) is also energy independent. whereT,(r,r’,E) satisfies

T,m(r,r’,E)z(r|T/|r’>+f <r|k|r”>T,m(r”,r’,E)dr”,

APPENDIX B 87
In this appendix, we show that the imaginary part of the
matrix is separable and symmetric. We can rewrite )  with
as
V=VS[1+3(1-VSg) Vs (B8)
T(r,r',E)=Vadr,r',E)—=iVi(r.r'E) [ 1+ rel
K=[VR3e~Vind(1- Vi) *Vi10, (B9
f[VRe(r ", E)—iV5(r,r",E)]
(rlglr"y=g(r,r',E),
XG(r",r" E)T(r" ' E)dr"dr”, (B1)
rV r V I E),
where (rVimlr )= )
oo g 20 [XODYO XA, r<r, and
(r.r’,B)= #2k| [Y(N)+iX(D]X(r"), r'<r, (r|[Vadr' y=Vadr.r,
(B2)
We can write the solution of EqB7) as
with two linearly independent solutiongr) andY(r) in the dB7)
absence of the strong potential{,—iVy.) in Eq. (19). -
Equation(B2) can be written in the form T|m(r,f’,E)=f L(r,r”, E)X(r"|V[r")dr",  (B10)

G(r,r' ,E)y=g(r,r' ,E)—i ZT'“ X(X(r"), (B3 wherel is the resolvent of the operatb(r Equatlon(Blo)
hk shows thatT,,, is separable iV is separable. Sinc¥}, is
separableV is separable due to E¢B8), and henceT,,, is
also separable due to E@10).
To prove thatT(r,r',E) is symmetric, we writel as

with  Img(r,r',E)=0. Using Eq. (B3 and
X(r) = Co(m)(kr)e”""M(1 —i7,2,2kr)[C§(n) = 2mn/
(e?™7—1) andM is the Kummer’s functioh we obtain

T(r,r" \E)=Tg(r,r",E)+Tu(r,r',E), (B11
zk f [VRr,r",E) =iV (r,r",E)] here
XX(I’”)X(I””)T(I’W,Y,,E)dl’”drm TS(r r, E):Ts(r, r E)

~O0(e 277), (B4) (B12)
Ta(r,r’,E)=—=Tu(r',r,E).
Therefore, for the case of low energies®"7<1, we can
use Eq.(B4) and rewrite Eq(B1) as We can rewrite Eq(20) as

T(r,r’,E)=VS(r,r’,E)+f fVS(r,r”,E)G(r”,r”’,E)T(r”’,r’,E)dr”dr”’

=V5(r,r’,E)+ffT(r,r”,E)G(r”,r’”,E)VS(r”’,r’,E)dr”dr”’. (B13)

Substituting Egs(B11) and (B12) into Eq. (B13), we obtain
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Ts(r,r',E)iTA(r,r',E)=v3(r,r',E)+f f VE(r, 1" E)G(r",r" E)[T(r"”,r' ,E) = T(r",r',E)]dr"dr"”

:VS(r,r’,E)+ff[Ts(r,r”,E)iTA(r,r”,E)]G(r”,r”’,E)VS(r”’,r’,E)dr”dr”’, (B14)
which can be written as
Ts=VS+VSGTg=VS+TGVS (B15)
and
Tao=VSGT,=TAGVS. (B16)

From Eq.(B16), we haveT,=0, and hencé& (r,r’,E) is symmetric.
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