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Optical theorem formulation of low-energy nuclear reactions
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We present a detailed description of a recently proposed optical theorem formulation of nonresonant low-
energy nuclear reactions between two charged nuclei. Based on the optical theorem formulation, we obtain an
analytic formula for the reaction cross sections(E) which exhibits explicitly the energy and charge depen-
dences ofs(E). The formula may provide a physical understanding of the anomalous low-energy enhancement
of s(E) observed in sub-barrier heavy-ion fusions and also in light nuclei fusions relevant for primordial
nucleosynthesis and stellar evolution. As examples of its application, the new formulation is used to analyze
astrophysical S factors for 7Li( p,a)4He, 6Li( d,a)4He, and 6Li( p,a)3He reactions.
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I. INTRODUCTION

Primordial big-bang nucleosynthesis and the nucleos
thesis involved in stellar evolution are qualitatively unde
stood, but there are many questions which need to be
swered before we can reach a more quantita
understanding of the primordial nucleosynthesis and ste
evolution. In particular, there remain uncertainties due to
unknown rates and cross sectionss(E) for many nuclear
reactions involved in nuclear astrophysics calculations. Si
s(E) at energies~< a few keV! relevant to primordial and
stellar nucleosyntheses cannot be measured in the labora
they are extracted from laboratory measurements ofs(E) at
higher energies by an extrapolation procedure based
nuclear theory. However, the energy dependence of
nuclear reaction cross sections(E) cannot be obtained rig
orously from first principles since many-nucleon scatter
problems cannot be solved exactly even if the nucle
nucleon force is given. Therefore, one must rely on phy
cally reasonable nuclear reaction models, such as optica
tential models~OPM’s! @1,2#, cluster models based on th
resonating group method~RGM! @3–6# or on the generato
coordinate method~GCM! @7#, and theP-matrix method@8#.
Recently, we introduced an alternative theoretical formu
tion @9# of nuclear reactions which is based on the opti
theorem. Our new formulation can be applied to both re
nance and nonresonant nuclear reactions. In this paper
present a more detailed description of our optical theor
formulation for the nonresonant case.

For nonresonant nuclear reactions, it is customary to
tract the astrophysicalS factorS(E) from the experimentally
measureds(E) using the formula

sG~E!5
S~E!

E
e22ph~E!, ~1!

*Permanent address: Department of Physics, Cheju National
versity, Cheju 690-756, Republic of Korea.
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whereh(E)5ZaZbe
2/\v is the Sommerfeld parameter an

e22ph(E) is the Gamow factor representing the probability
bringing two charged nuclei to zero separation distan
S(E) is expected to be a slowly varying function ofE. Re-
cent results fors(E) from laboratory beam experiments fo
nuclear reactions involving light nuclei at low energies~.3
keV! show that the extractedS(E) increased toward lowe
energies instead of being a constant extrapolated f
higher-energy data, indicating the possibility of the impo
tance of electron screening. However, recent theoretical
culations@10,11# of the electron screening effect yield limit
ing values which are much smaller~by ;1/2! than those
extracted from the experimental data for the reactio
3He(d,p)4He @12,13#, 6Li( p,a)3He, 6Li( d,a)4He,
7Li( p,a)4He @14#, 10B(p,a)7Be, and 11B(p,a)8Be @15#.
This discrepancy between the experimental data and
theoretical estimate for the electron screening effect is
well understood at present.

In this paper, as examples of the application of the opti
theorem formulation, we present an analysis of the lo
energy fusion reactions6Li( p,a)3He, 6Li( d,a)4He, and
7Li( p,a)4He @14#. The investigation of these reactions
important in two aspects:~i! These reactions are domina
depletion processes for6Li and 7Li, and their improved re-
action rates could provide an explanation for the extrem
low lithium abundance and also could improve the pres
theories of spallative and big-bang nucleosynthesis gen
tion of light elements @16#, and the fusion reactions
6Li( p,a)3He and 6Li( d,a)4He are relatively clean energ
sources as well as highly efficient mechanisms for ene
generation among exotic nuclear fuel elements~Li, Be, and
B! @17#. Reaction rates for6Li( p,a)3He and 6Li( d,a)4He
are approximately 1024 and 1023, respectively, of that for
T(d,n)4He at an incident ion energy of;25 keV. These
reaction rates are relatively large compared to those for o
exotic nuclear fuels.

In Sec. II, we give a derivation of the low-energ
‘‘partial-wave’’ optical theorem@9#, which is different from
the conventional optical theorem. The relationship betwe
i-
801 © 1997 The American Physical Society
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802 55KIM, KIM, ZUBAREV, AND YOON
the total reaction cross section and theT matrix is also given
in the partial-wave form. In Sec. III, using a separable fo
of the T matrix with several parameters, we obtain an a
lytical formula for the reaction cross section, which exhib
explicitly the energy and charge dependences of the reac
cross section. In Sec. IV, the analytic formula for the cro
section derived in Sec. III is applied to an analysis of expe
mental data for the fusion reactions6Li( p,a)3He,
6Li( d,a)4He, and 7Li( p,a)4He. A summary and conclu
sions are given in Sec. V.

II. OPTICAL THEOREM FORMULATION

In this section, we introduce a low-energy ‘‘partial-wave
optical theorem and use it to develop the optical theor
formulation of low-energy nuclear reactions.

The conventional optical theorem first introduced
Feenberg@18# is given by

s t5
4p

k
Im f ~0!, ~2!

wheres t is the total cross section andf (0) is the elastic
scattering amplitude in the forward direction~u50!. There
are many other forms of the ‘‘optical theorem,’’ all of whic
are physically related to the interference@19#. A generalized
optical theorem for the case of the Coulomb interaction p
nuclear forces was developed and improved by Marty@20#
~see also@21#!.

To avoid complications associated with the singularity
the forward Coulomb scattering amplitudef c(0) as in the
case of the conventional optical theorem, for two-poten
scattering involving two charged nuclei, we describe a d
ferent formulation based on a partial-wave optical theor
involving angle-integrated and/or angle-independent qua
ties in the following.

For the elastic scattering involving the Coulomb intera
tion and nuclear potential, the scattering amplitude can
written as a sum of two amplitudes:

f ~u!5 f c~u!1 f̃ ~u!, ~3!

where f c(u) is the Coulomb amplitude andf̃ (u) is the re-
mainder.f̃ (u) can be expanded in partial waves@22# as

f̃ ~u!5(
l

~2l11!e2id l
c
f l
N~el!Pl~cosu!, ~4!

whered l
c is the Coulomb phase shift,f l

N(el)5(Sl
N21)/2ik,

andSl
N is the l th partial waveSmatrix for the nuclear part

The partial-wave expansion of the nuclear elastic cross
tion sN(el) is given bysN(el)5( l(2l11)s l

N(el) with s l
N(el)

5(p/k2)uSl
N21u2.

For the reaction cross sections (r ), the partial-wave
expansion is given by s (r )5( l(2l11)s l

(r ), where
s l

(r )5p(12uSl
Nu2)/k2. Using the expressions o

s l
(r ) and s l

N(el) derived above, we can writes l
(r )

1s l
N(el)52p(12ReSl

N)/k2. Combining this with Imfl
N(el)

5(12ReSl
N)/2k, we obtain the partial-wave optical theore

for the two-potential scattering case as
-

on
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s
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Im f l
N~el!5

k

4p
~s l

~r !1s l
N~el!!, ~5!

which is a rigorous result.
For low energies, f l

N(el)}e22ph/k and hences l
N(el)

54pu f l
N(el)u2}e24ph/k2. Since s l

(r )}e22ph/k2, we have
s l
(r )@s l

N(el) at low energies, and hence we can write Eq.~5!
as

Im f l
N~el!'

k

4p
s l

~r ! , ~6!

which is still a rigorous result at low energies. We note th
Eqs.~5! and ~6! are nonradiative nuclear reactions and ne
to be modified for radiative nuclear reactions.

In terms of the partial waveT matrix, Tl , the elastic
nuclear scattering amplitudef l

N(el)5(Sl
N21)/2ik can be

written as

f l
N~el!~E!52

2m

\2k2
^c l

cuTl uc l
c&, ~7!

wherec l
c is the l th partial-wave regular Coulomb functio

and m is the reduced mass. Using the low-energy opti
theorem Eq.~6! with Eq. ~7!, we obtain thel th partial-wave
reaction cross sections l(E) [5s l

(r )(E)] as

s l~E!'
4p

kE E
0

`

c l
c~r !Ul~r ,r 8!c l

c~r 8!dr dr8, ~8!

where E5\2k2/2m and Ul(r ,r 8)52Im^r uTl ur 8& with Tl
representing thel th partial-wave contribution of theT-matrix
operator. The total reaction cross sections(E) is given by
s l(E)5( l(2l11)s l(E).

It is important to note that our optical theorem formul
tion of nuclear reactions, Eq.~6!, can be applied to both
nonresonant and resonance reactions using theT matrix
given in Eq.~7!. In the following, we consider only the non
resonant case.

Using the Feshbach projection method@23#, the Schro¨-
dinger equation for a multichannel system can be written

S 2
\2

2m i

d2

dri
2 1

\2l i~ l i11!

2m i r i
2 1

Za
~ i !Zb

~ i !e2

r i
Dc i~r i !

1(
j
E Vi j ~r i ,r j8 ,E!c j~r j8!dr j85~E1Qi !c i~r i !,

~9!

where m i is the reduced mass,Z a
( i ) and Z b

( i ) are nuclear
charges, andQi is the energy release for thei th channel. For
the two-channel case, Eq.~9! is

S 2
\2

2m1

d2

dr1
2 1

\2l 1~ l 111!

2m1r 1
2 1

Za
~1!Zb

~1!e2

r 1
Dc1~r 1!

1E V11~r 1 ,r 18 ,E!c1~r 18!dr18

1E V12~r 1 ,r 28 ,E!c2~r 28!dr285Ec1~r 1! ~10!
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and

S 2
\2

2m2

d2

dr2
2 1

\2l 2~ l 211!

2m2r 2
2 1

Za
~2!Zb

~2!e2

r 2
Dc2~r 2!

1E V22~r 2 ,r 28 ,E!c2~r 28!dr28

1E V21~r 2 ,r 18 ,E!c1~r 18!dr185~E1Q!c2~r 2!.

~11!

To avoid complications associated with nonorthogona
of the basis statesuf i& @24#, we describe a formulation base
on the Faddeev-type differential equation@25# in Appendix
A, which have a unique solution under some asympto
boundary conditions only if binary~two-body! channels are
open. The general properties ofVi j (r i ,r j8 ,E) are

Vi j ~r i ,r j8 ,E!5Vji ~r j8 ,r i ,E!, ~12!

andVi j (r i ,r j8 ,E) in this case are real functions. The symm
try in Eq. ~12! is due to the fact that Eq.~9! is T invariant.
Vi j (r i ,r j8 ,E) is expected to be a slowly varying function o
energy for low-energy nonresonant fusion reactions. We n
that in the Faddeev-type RGM approximation,Vi j , are inde-
pendent of energy, as shown in Appendix A.

To convert Eq.~11! into an integral equation, we intro
duce two linearly independent solutionsf(r 2)5X(r 2) and
f(r 2)5Y(r 2) of the equation

S 2
\2

2m2

d2

dr2
2 1

\2l 2~ l 211!

2m2r 2
2 1

Za
~2!Zb

~2!e2

r 2
Df~r 2!

1E V22~r 2 ,r 28 ,E!f~r 28!dr285~E1Q!f~r 2!. ~13!

For larger 2 , solutionsX(r 2) andY(r 2) of Eq. ~13! satisfy

X2~r 2!5sinS k2r 22 l 2p

2
2h2 ln 2k2r 21d l2

c 1d l2D
and

Y2~r 2!5cosS k2r 22 l 2p

2
2h2 ln 2k2r 21d l2

c 1d l2D ,
respectively, and hence the WronskianY2X282X2Y285k2
with k25[2m2(E1Q)/\2] 1/2. Using the above relations, w
can rewrite Eq.~11! in the integral form

c2~r 2!52
2m2

\2k2
E G2~r 2 ,r 28 ,E!V21~r 28 ,r 18 ,E!

3c1~r 18!dr28dr18 , ~14!

where

G2~r 2 ,r 28 ,E!5HX2~r 2!@Y2~r 28!1 iX2~r 28!#, r 2,r 28 ,

@Y2~r 2!1 iX2~r 2!#X2~r 28!, r 28,r 2 .

Substituting Eq.~14! into Eq. ~10! yields
y

c

-

te

S 2
\2

2m1

d2

dr1
2 1

\2l 1~ l 111!

2m1r 1
2 1

Za
~1!Zb

~1!e2

r 1
Dc1~r 1!

1E Vs~r 1 ,r 18 ,E!c1~r 18!dr185Ec1~r 1!, ~15!

where an effective potentialVs(r 1 ,r 18 ,E) is given by
Vs(r 1 ,r 18 ,E)5VRe

S (r1,r18 ,E)2iVIm
S (r1,r18 ,E), and

VIm
S ~r 1 ,r 18 ,E!5

2m2

\2k2
E V12~r 1 ,r 28 ,E!X2~r 28!dr28

3E X2~r 29!V21~r 29 ,r 18 ,E!dr29 , ~16!

VRe
S ~r ,r 8,E!5V11~r 1 ,r 18!2

2m2

\2k2
E V12~r 1 ,r 28 ,E!

3ReG2~r 28 ,r 29 ,E!V21~r 9,r 8,E!dr28dr29 .

~17!

From Eqs.~12!, ~16!, and~17!, we can see that the imaginar
part ofVs(r 1 ,r 18 ,E) is separable and

Vs~r 1 ,r 18 ,E!5Vs~r 18 ,r 1 ,E!. ~18!

For l50, the effective Hamiltonian in the elastic chann
has the form

Hel52
\2

2m

d2

dr2
1
ZaZbe

2

r
1VRe

S 2 iV Im
S . ~19!

TheT matrix for Eq.~19! satisfies

T5~VRe
S 2 iV Im

S !1~VRe
S 2 iV Im

S !
1

E2H02VC1 i e
T

5~VRe
S 2 iV Im

S !1T
1

E2H02VC1 i e
~VRe

S 2 iV Im
S !,

~20!

where

H052
\2

2m

d2

dr2

andVC5ZaZbe
2/r . Using Eqs.~16!, ~17!, and~18!, it can be

shown that the imaginary part of theT matrix is separable
and symmetric~see Appendix B!:

T~r 1 ,r 18 ,E!5T~r 18 ,r 1 ,E!. ~21!

III. REACTION CROSS-SECTION FORMULA

SinceU0(r ,r 8) in Eq. ~8! is separable and symmetric fo
the two-channel case, we can writeU0(r ,r 8) as

U0~r ,r 8!5lg~r !g~r 8!, ~22!

wherel is expected to be a slowly varying function of e
ergy for the nonresonant case.~For the case of resonanc
reactions, the energy dependence ofl can be parametrized
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by the Breit-Wigner expression.! It should be noted that on
advantage of Eq.~22! is that we can parametrize only on
real functiong(r ). However, to constructg(r ) exactly would
be as difficult as solving the original two-channel equatio

For the l50 case, the Coulomb wave functionc 0
c(r ) is

given by

c0
c~r !5C0~h!Mih,1/2~2ikr !/2i , ~23!

where C 0
2(h)52ph/(e2ph21) and Mih,1/2(2ikr ) is the

Whittaker function. The reaction cross section, Eq.~8!, in the
case ofg(r )5e2br , can be written as

s0~E!5
4pl

kE S E
0

`

c0
c~r !e2brdr D 2

5
pl

kE
C0
2~h!S 1i E0`Mih,1/2~2ikr !e2brdr D 2. ~24!

The integral in Eq.~24! can be evaluated exactly:

1

i E0
`

Mih,1/2~2ikr !e2brdr

5
1

i
@~2ik !G~2!~b2 ik ! ih21~b1 ik !2 ih21#

5
2k

b21k2
e2fh, ~25!

where f5arctan(k/b). Thus, the reaction cross sectio
s0(E), in Eq. ~24!, is

s0~E!5
4p2l

RBE

e4fh

~e2ph21!~b21k2!2
, ~26!

which for the low-energy case reduces to

s0~E!5
S̃0~E!e4fh

E
e22ph, ~27!

with

e4fh5exp F4a
mc2

\c S ZaZbk DarctanS kb D G , ~28!

where S̃0(E)54p2l/[RB(b
21k2)2] with RB

5\2/(2mZaZbe
2). The exponential factore4fh ~enhance-

ment factor! can be applied to both light-nuclei reaction
~smallZa andZb! and heavy-ion reactions~largeZa andZb!
such as sub-barrier heavy-ion fusion reactions wheree4fh

can be very large. The use of a general form
g(r )5e2br(( i50

N cir
i) instead ofe2br in Eq. ~22! also leads

to the same enhancement factore4ph. Therefore, the en-
hancement factore4fh is independent of shape of the sep
rable functiong(r ) used in Eq.~22!.

The enhancement factore4fh is obtained together with
the Gamow factor from our derivation and can be regar
as a modification of the Gamow factor, affecting it only
low energies, or as a part of theS factor if we still wish to
keep the conventional formula, Eq.~1!. We note that the
.

r

-

d
t

reaction cross section for a transition from elastic channe
to reaction channel 2 can be written in the form

s0~E!}uT12~E!u2, ~29!

where

T12~E!}E g~r !c0
c~r !dr, ~30!

without using the optical theorem and the Feshbach pro
dure @23#. However, our previous derivation provides som
qualitative justification thatg(r ) can be real and a slowly
varying function of energy for the nonresonant case, an
also provides a physical interpretation thatg(r ) is related to
the imaginary part of the elastic scattering amplitude.

IV. EXAMPLES OF AN APPLICATION

In this section, as examples of an application, we cal
late the astrophysicalS factors S(E) for 7Li( p,a)4He,
6Li( d,a)4He, and6Li( p,a)3He reactions using the exper
mental data@14# and the analytic formula fors(E) based on
the optical theorem formulation. Recent results fors(E)
from laboratory beam experiments for nuclear reactions
volving light nuclei at low energies~.3 keV! show that the
extractedS(E) increases toward lower energies instead
being a constant, indicating the possibility of a significa
effect of the electron screening.

In the previous analyses@14# of 7Li( p,a)4He,
6Li( d,a)4He, and 6Li( p,a)3He fusion reactions,S(E) in
Eq. ~1! is modified to SG(E) by an enhancement facto
f U(E)'exp(phU/E), which is attributed to the electron
screening effect, andSG(E) is parametrized as

SG~E!' f U~E!S~E!' f U~E!(
i50

n

ciE
i , ~31!

where U is the electron screening energy an
S(E)5( i50

n ciE
i is the bare nuclear contribution. The fits o

Eq. ~31! ~with up to three or four terms! to the experimental
data @14# yield unphysical values ofU, which are substan-
tially larger than the expected values from the Thomas-Fe
model @26,27#, given by

U530.7ZaZb~Za
2/31Zb

2/3!1/2 eV, ~32!

which is obtained using the screening distan
a50.8853a0(Z a

2/31Z b
2/3)21/2 with the Bohr radiusa0 .

In our analysis of these reactions, we use the elect
screening energyU ~5161.6 eV! calculated from Eq.~32!
instead of treating it as a free fitting parameter. Based on
cross-section formula, Eq.~27! with Eq. ~28!, we parametrize
theS factor using the formula

S~E!' f U~E!S̃N~E!' f U~E!
a1bE

~b21k2!2
e4fh, ~33!

whereS̃N(E) is the bare nuclear contribution. To fit the e
perimental data@14# to extract theS factor, we have used
only two or three parameters~a, b, andb! for the energy
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TABLE I. Parameters used in the calculations of theS factor, Eq.~33!, and normalization factorN for
7Li( p,a)4He, 6Li( d,a)4He, and6Li( p,a)3He reactions.

Reactions
a

~keV b fm24!
b

~10233b fm24!
b

~fm21! N x2

7Li( p,a)4He 0.412 0.699 0.3589 0.960 0.96~0.50!a
6Li( d,a)4He 1.043 0.1837 0.835 0.45
6Li( p,a)3He 2.039 0.2193 0.835 2.47

aThex2 value of 0.50 will result if the data point atE580.58 keV is eliminated from thex2 calculation.
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range of 10 keV,E,500 keV. The parameters used in o
calculations are given in Table I.

For 100 keV,E,500 keV, there are 5, 9, and 9 da
points available from the inverse incident kinematics ca
of H~7Li,a!4He, D~6Li,a!4He, and H~6Li,a!3He reactions, re-
spectively, while forE,100 keV, there are 22, 21, and 2
data points available from the original incident kinemat
cases of7Li( p,a)4He, 6Li( d,a)4He, and6Li( p,a)3He re-
actions. We used different normalizationsN between the in-
verse and the original cases. Our values ofN agree fairly
well with those given in Ref.@14#. The calculated results fo
the astrophysicalS factor are shown in Figs. 1–3. Each fig
ure includes both the original and inverse kinematics of e
reaction. As shown in the figures and Table I, we have
tained good fitting results withx2 values less than 0.5 for th
6Li( d,a)4He reaction. Thex2 value is about 1.0 per dat
point for the 7Li( p,a)4He reaction, but it reduces to;0.5 if
we eliminate one data point atE580.58 keV in the fitting
procedure. For the6Li( p,a)3He reaction, thex2 value is
2.47 per data point, indicating a poor fit to the experimen
data@14#. For this reaction, a value of the electron screen
energy much larger than the expected value given by
Thomas-Fermi model@25,26#, Eq. ~32!, is required for ob-
taining better fits. Our extrapolated values ofS̃N(0)
5(6.760.2)31022 MeV b and~2562! MeV b for the bare
nuclear contribution to theS factor, S̃N(E), in Eq. ~33!, at
zero energy,E50, are substantially larger than the previo
results @14# of 5.931022 MeV b and 17.4 MeV b for the
reactions7Li( p,a)4He and6Li( d,a)4He, respectively. This
s

h
-

l
g
e

indicates large uncertainties for theseS factors as inputs for
calculations of the primordial nucleosynthesis and ste
evolution.

There are two main assumptions made for our calcu
tions: ~a! two open channels are assumed and~b! a nonreso-
nant reaction is assumed. In the case of the6Li( d,a)4He
reaction, there are several open channels~7Li1p, 7Be1n,
5Li1t!, requiring more than one term forU0(r ,r 8), i.e.,
U0(r ,r 8)5S il igi(r )gi(r 8). Although the optical theorem
gives us a total reaction cross section which includes
effect of all open channels, our use of a simple one-te
approximation~corresponding to only two open channel!
yields results which are consistent with the experimen
data. The resonance state in8Be at an excitation energy o
22.2 MeV may be important if this state is assumed to c
sist of two closely lying mixed 21 states where the lower on
has a largea width @28#. However, a good fit obtained from
our calculation does not appear to support this hypothes

To understand the characteristics of the enhancement
tor e4fh in the energy range considered, we plot this fac
as a function ofE for the 6Li( d,a)4He reaction in Fig. 4 as
an example. We can see from this figure that the enhan
ment factore4fh has a value ofe2/(RBb)529.8 at zero en-
ergy, decreases asE increases, and reaches to a val
ep/kRB51 for large E. Therefore, this factor can play a
important role in explaining the anomalous enhancemen
theS factor at low energies.

Electron screening effects have been investigated ex
sively by the Münster-Bochum group@14#. The determina-
t

m

r

FIG. 1. AstrophysicalS factor in the original
incident kinematics ~atomic target! for the
7Li( p,a)4He reaction and in the inverse inciden
kinematics~molecular target! for the H~7Li,a!4He
reaction. The experimental data are taken fro
Ref. @14#. The solid curves are our calculatedS
factor obtained from Eq.~33! using the paramete
values given in Table I.
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FIG. 2. AstrophysicalS factor in the original
incident kinematics ~atomic target! for the
6Li( d,a)4He reaction and in the inverse inciden
kinematics~molecular target! for the D~6Li,a!4He
reaction. The experimental data are taken fro
Ref. @14#. The solid curves are our calculatedS
factor obtained from Eq.~33! using the paramete
values given in Table I.
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en-
tion of the electron screening energy requires not only hi
precision measurements, but also an accurate determin
of the effective energy in the target or, equivalently, of t
energy loss. Recently, it has been claimed@29# that observed
enhancements of the fusion3He(d,p)4He cross section are
due to an underestimate of the degraded beam energy ar
from an overestimate of the stopping energy loss@30#.

V. SUMMARY AND CONCLUSION

Based on the partial-wave optical theorem

Im f l
N~el!5

k

4p
~s l

~r !1s l
N~el!!'

k

4p
s l

~r !

@Eqs. ~5! and ~6!#, we have developed an optical theore
formulation of the nonresonant low-energy nuclear reacti
between two charged nuclei. We have derived a relations
between the total cross section and the imaginary part of
elasticT matrix in the partial-wave form@Eq. ~8!#. The use
of a separable exponential form of theT matrix with several
-
ion

ing

s
ip
e

parameters~strength, range, etc.! leads to an analytic formu
lation @Eqs. ~26!–~28!# for the reaction cross section whic
exhibits explicitly the energy and charge dependence of
reaction cross section. In particular, it contains an enhan
ment factor@e4fh, Eq. ~28!# which increases toward low en
ergies.

As examples of application, we have analyzed t
7Li( p,a)4He, 6Li( d,a)4He, and 6Li( p,a)3He reactions
@14# over the center-of-mass energy range ofE from 10 to
500 keV using the parametrization of the cross section fo
low-energy nuclear reaction based on the optical theo
formulation. Using the reasonable electron screening ene
~U5161.6 eV! obtained from the Thomas-Fermi mod
@26,27# instead of treating it as a free fitting parameter
done in the previous calculations, we obtain reasonably g
fits to the astrophysicalS factor extracted from the experi
mental data for7Li( p,a)4He and 6Li( d,a)4He reactions.
However, in the case of the6Li( p,a)3He reaction, our fits
are poor in the lower-energy range~10 keV,E,100 keV!,
which implies that much larger values of the electron scre
t

m

r

FIG. 3. AstrophysicalS factor in the original
incident kinematics ~atomic target! for the
6Li( p,a)3He reaction and in the inverse inciden
kinematics~molecular target! for the H~6Li,a!3He
reaction. The experimental data are taken fro
Ref. @14#. The solid curves are our calculatedS
factor obtained from Eq.~33! using the paramete
values given in Table I.
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FIG. 4. Enhancement factore4fh, Eq.~28!, as
a function of energyE for the 6Li( d,a)4He re-
action.
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ing energy than the estimated value obtained from Thom
Fermi model@26,27# are needed to obtain a better fit to th
experimental data.

Since the enhancement factore4fh is a general feature
arising from the strong and Coulomb interactions for b
nuclei without electrons~i.e., not from the electron screenin
effect! and since it is also applicable to all strong-interacti
nonresonant nuclear reactions~excluding radiative capture
reactions! between two charged nuclei occurring in the p
mordial nucleosynthesis and stellar evolutions, it may hav
far-reaching astrophysical importance. Our investigation
the enhancement factor demonstrates that this factor
play an important role in understanding and/or explaining
experimental data which exhibit an anomalous increase
theS factor toward low energies.

One of the authors~Y.J.K.! acknowledges a partial sup
port provided by a faculty exchange agreement between
due University and Cheju National University.

APPENDIX A

To investigate the effective potential for a multichann
system, we consider a three-body problem with two op
channels

11~2,3!→11~2,3!,
~A1!

11~2,3!→21~1,3!.

In terms of Faddeev-type componentsc̃ i , the three-body
Schrödinger equationHc5Ec can be rewritten as the
Faddeev-type differential equation@25#

~E2H02V1
C2V23!c̃15~V121V232V2

C!c̃2 ,
~A2!

~E2H02V2
C2V13!c̃25~V121V132V1

C!c̃1 ,

whereV 1
C andV 2

C are effective Coulomb potentials in elast
and fusion channels, respectively, andc̃ i is related toc by

c5c̃11c̃2 . ~A3!
s-

e

a
f
ay
e
of

r-

l
n

Equation~A2! has a unique solution under some asympto
boundary conditions if only binary channels are open@25#.
We introduce the projection operators in terms off1(rW23)
andf2(rW13), which describe the bound states for subsyste
~2,3! and ~1,3!, respectively:

P15uf1&^f1u, P25uf2&^f2u,

Q1512P1 , Q2512P2 . ~A4!

The use of operatorsPi andQi , Eq. ~A2!, yields the follow-
ing equation for the two-channel case:

~E2H02V232V̂11!P1uc̃1&5V̂12P2uc̃2&,
~A5!

~E2H02V132V̂22!P2uc̃2&5V̂21P1uc̃1&,

where the effective potential operatorsV̂i j are given by

V̂i j5Pi H ai j1 (
k51

2

aikGkAk jJ Pj , ~A6!

Gk5Qk

1

Qk~E2H02Vk2Akk!Qk
Qk ,

Vk[Vi j ~ iÞ jÞk!,
~A7!

aii5Vi
C ,

a125V121V232V2
C , a215V121V132V1

C ,

and

A115a12Q2

1

Q2~E2H02V22a22!Q2
Q2a211a11,

A125a12Q2

1

Q2~E2H02V22a22!Q2
Q2a221a12,

~A8!

A215a21Q1

1

Q1~E2H02V12a11!Q1
Q1a111a21,
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A225a21Q1

1

Q1~E2H02V12a11!Q1
Q1a121a22.

Equation~A5! can be arranged to obtain Eqs.~10! and~11!.
In the case of the RGM approximation, we have

V̂i j
RGM5Piai j Pj . ~A9!

Since ai j given by Eq. ~A8! are independent of energy
V̂i j
RGM in Eq. ~A9! is also energy independent.

APPENDIX B

In this appendix, we show that the imaginary part of theT
matrix is separable and symmetric. We can rewrite Eq.~20!
as

T~r ,r 8,E!5VRe
S ~r ,r 8,E!2 iV Im

S ~r ,r 8,E!

1E @VRe
S ~r ,r 9,E!2 iV Im

S ~r ,r 9,E!#

3G~r 9,r-,E!T~r-,r 8,E!dr9dr-, ~B1!

where

G~r ,r 8,E!52
2m

\2kHX~r !@Y~r 8!1 iX~r 8!#, r,r 8,

@Y~r !1 iX~r !#X~r 8!, r 8,r ,
~B2!

with two linearly independent solutionsX(r ) andY(r ) in the
absence of the strong potential (VRe

S 2iVIm
S ) in Eq. ~19!.

Equation~B2! can be written in the form

G~r ,r 8,E!5g~r ,r 8,E!2 i
2m

\2k
X~r !X~r 8!, ~B3!

with Im g(r ,r 8,E)50. Using Eq. ~B3! and
X(r ) 5 C0(h)(kr)e

2 ikrM (12 ih,2,2ikr )@C 0
2(h) 5 2ph/

(e2ph21) andM is the Kummer’s function#, we obtain

2 i
2m

\2k E @VRe
S ~r ,r 9,E!2 iV Im

S ~r ,r 9,E!#

3X~r 9!X~r-!T~r-,r 8,E!dr9dr-

;O~e22ph!. ~B4!

Therefore, for the case of low energiese22ph,1, we can
use Eq.~B4! and rewrite Eq.~B1! as
T~r ,r 8,E!5VRe
S ~r ,r 8,E!2 iV Im

S ~r ,r 8,E!

1E @VRe
S ~r ,r 9,E!2 iV Im

S ~r ,r 9,E!#

3g~r 9,r-,E!T~r-,r 8,E!dr9dr- ~B5!

or

T~r ,r 8,E!5TRe~r ,r 8,E!2 iT Im~r ,r 8,E!, ~B6!

whereTIm(r ,r 8,E) satisfies

TIm~r ,r 8,E!5^r uṼur 8&1E ^r uK̂ur 9&TIm~r 9,r 8,E!dr9,

~B7!

with

Ṽ5VIm
S @11ĝ~12VRe

S ĝ!21VRe
S #, ~B8!

K̂5@VRe
S 2VIm

S ĝ~12VRe
S ĝ!21VIm

S #ĝ, ~B9!

^r uĝur 8&[g~r ,r 8,E!,

^r uVIm
S ur 8&[VIm

S ~r ,r 8,E!,

and

^r uVRe
S ur 8&[VRe

S ~r ,r 8,E!.

We can write the solution of Eq.~B7! as

TIm~r ,r 8,E!5E G~r ,r 9,E!^r 9uṼur 8&dr9, ~B10!

whereG is the resolvent of the operatorK̂. Equation~B10!
shows thatTIm is separable ifṼ is separable. SinceVIm

S is
separable,Ṽ is separable due to Eq.~B8!, and henceTIm is
also separable due to Eq.~B10!.

To prove thatT(r ,r 8,E) is symmetric, we writeT as

T~r ,r 8,E!5TS~r ,r 8,E!1TA~r ,r 8,E!, ~B11!

where

TS~r ,r 8,E!5TS~r 8,r ,E!,
~B12!

TA~r ,r 8,E!52TA~r 8,r ,E!.

We can rewrite Eq.~20! as
T~r ,r 8,E!5VS~r ,r 8,E!1E E VS~r ,r 9,E!G~r 9,r-,E!T~r-,r 8,E!dr9dr-

5VS~r ,r 8,E!1E E T~r ,r 9,E!G~r 9,r-,E!VS~r-,r 8,E!dr9dr-. ~B13!

Substituting Eqs.~B11! and ~B12! into Eq. ~B13!, we obtain
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TS~r ,r 8,E!6TA~r ,r 8,E!5VS~r ,r 8,E!1E E VS~r ,r 9,E!G~r 9,r-,E!@TS~r-,r 8,E!6TA~r-,r 8,E!#dr9dr-

5VS~r ,r 8,E!1E E @TS~r ,r 9,E!6TA~r ,r 9,E!#G~r 9,r-,E!VS~r-,r 8,E!dr9dr-, ~B14!

which can be written as

TS5VS1VSGTS5VS1TSGV
S ~B15!

and

TA5VSGTA5TAGV
S. ~B16!

From Eq.~B16!, we haveTA50, and henceT(r ,r 8,E) is symmetric.
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