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Abstract:  Based on Hartree-Fock theory with correlations, approximate solutions of the many-

body Schrödinger equation are examined for their use for calculations of nuclear reaction rates 

for charged Bose nuclei confined in a harmonic trap.  It is shown that the nuclear reaction rate 

calculated with the Hartree-Fock mean field solution makes a significant contribution even in the 

presence of two-body correlations. 

 

The nuclear reaction rates for charged Bose nuclei confined in a harmonic trap has been 

calculated based on the optical theorem formulation of low-energy nuclear reactions [1] using 

approximate solutions of the many-body Schrödinger equation [2-15].  The effect of two-body 

correlations are examined in the context of the Hartree-Fock theory with correlation effects [3]. 

For N charged Bose nuclei (Z=1) confined in a harmonic trap, the many-body Schrödinger 

equation is given by 
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Since we cannot solve the above many-body Schrödinger equation to obtain the exact solution 

for the ground bound-state wave function Ψ, we seek approximate solutions  ̅  for the case of 

N>> 1 satifying 

                                                             ( ) ( )0i iH E                                                                   (3) 

with 
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where  f(i)(r1,r2) is a two-body correlation function. 

  ̅    is the solution of the Hartree-Fock mean field equation which has been solved analytically 

[4]. The solution was used to derive an analytical formula for the nuclear reaction rates [4].  The 

analytical formula for the nuclear reaction rates [4] agrees with the results obtained by an 

independent method [2] within a factor of two (the result of [4] is a factor of 2 larger than that of 

[2]).   

For i > 1,   ̅    have not been solved. We need to carry out numerical calculations and 

simulations in order to obtain numerical solutions for  ̅     .  In the following, we make 

qualitative theoretical analysis of the nuclear reaction rates using   ̅    based on expected general 

properties of   ̅    without obtaining its numerical solutions.   

Since  ̅    satisfy Eq. (3), they are degenerate eigenfunctions with the same eigenvalue. They are 

not orthogonal in general. We can construct an orthonormal set,  ̂    , from the set,  ̅   , using 

the Schmidt orthogonalization procedure: 
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where αj are determined from the Schmidt orthogonalization procedure. 

In terms of  ̂   , we can construct a general solution  for the bound-state wave function 

satisfying Eq. (1) or Eq. (7):   
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where  is a combination of linearly independent orthonormal eigenfunctions ( )i given by Eq. 

(6). 

For N identical Bose nuclei, we require the total wave function Ψ in Eq. (1) and also   in Eq. 

(7) to be completely symmetric. Hence we need to symmetrize   in Eq. (7).  The completely 

symmetric wave function   is obtained from   by 

                                                             S                                                                              (9) 

using the symmetrization operator S defined as 
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where P(i) is the permutation operator with (i) representing an arbitrary permutation of the first N 

integers.  We note that  ̅    given by Eq. (4-1) is already symmetric, i. e.    ̅     ̅   . 

Using  , Eq. (9), we can now proceed to calculate the total fusion rate Rt  as [4]. 
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with                                                           
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where            . 

 

In calculating Rt from Eq. (11) with Eq. (12), we need to evaluate  

                                                        ⟨  ̅   | ∑          |  ̅   ⟩                                                  (13)   

     

For the case of (i) = (1), we have  ⟨  ̅   | ∑          |  ̅   ⟩ = ⟨ ̅   | ∑          | ̅   ⟩ which 

were already calculated in [4]. 

 

For the case of (i) = (2), we need to evaluate many terms from  ⟨  ̅   | ∑          |  ̅   ⟩   The 

terms (Eqs. (14) and (15)) involving              : 

                                       ⟨            |      |            ⟩                                             (14)  

and                                        ⟨            |      |                  ⟩                                         (15) 

are expected to be very small (      is the Gamow factor) and hence they may not contribute 

significantly to Rt, Eq. (11). However, other terms (Eq. (16)) invloving                                                                                          

                                          ⟨                  |      |                  ⟩                                  (16) 

are expected to contribute to Rt, Eq. (11). 

 

Therefore, the use of Eq. (4-2) in Eq. (3) is expected to provide additional contributions from the 

terms involving these terms (Eq. (16) to the total reaction rate Rt , Eq. (11).  However, it is most 

unlikely that contributions originating from both   ̅    and  ̅    could cancel exactly leading to 

      in evaluating Rt , Eq. (11).  
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