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Abstract

The lowest order constrained variational method [Phys. Rev. Lett. 88 (2002) 210403] has been generalized for a dilu
sense that the range of interatomic potential,R, is small compared with inter-particle spacingr0) uniform gas of bosons near th
Feshbach resonance using the multi-channel zero-range potential model. The method has been applied toNa(F = 1,mF = 1)
atoms near theB0 = 907 G Feshbach resonance. It is shown that at high densitiesna3 � 1, there are significant difference
between our results for the real part of energy per particle and the one-channel zero-range potential approximation.
out the possibility of stabilization of the uniform condensate for the case of negative scattering length.
 2003 Elsevier Science B.V. All rights reserved.

PACS: 03.75.-b; 05.30.Jp

1. Introduction

The newly created Bose–Einstein condensates (BEC) of weakly interacting alkali-metal atoms [1] stimu
large number of theoretical investigations (see recent reviews [2]). Most of these works are based on the as
that the properties of BEC are well described by the Gross–Pitaevskii (GP) mean-field theory [3].

Recently, it has become possible to tune atomic scattering length to essentially any value, by exploiting F
resonances (FR) [4,5]. A fundamental open problem is how to describe the physics of dilute BEC near FR (
the sense that the range of interatomic potential,R, is small compared with inter-particle spacingr0) in the regime
of a large scattering length,a, which we take to be positive. The GP approach fails in the regime of a larg
parameter,n|a|3, wheren is the particle density.

The dilute BEC for a large gas parameter regime in one-channel approximation has been considered p
in Ref. [6] (for the corresponding problem for a Fermi gas see Ref. [7]).

In this Letter we consider the ground state properties of the dilute homogeneous Bose gas near the FR
multi-channel zero-range potential (ZRP) model of FR.
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In Section 2 we describe the lowest order constrained variational (LOCV) method [6,8] for the one-c
N -body problem. The calculations for model interaction potentials used by Ref. [9] are presented. The des
of the multi-channel ZRP model is given in Section 3. Section 4 develops the LOCV method for the dilut
gas near FR. We conclude the Letter in Section 5 with a brief summary.

2. Lowest order constrained variational method

In a dilute many-body problem in the large gas parameter regime correlations between particles a
important.

The LOCV method [6,8] for the homogeneousN -body system is to assume a Jastrow many-body wave func
of the form

(1)Ψ (�r1, �r2, . . . , �rN)=
∏
i<j

f (�ri − �rj ),

where at short distances,f is solution of the two-particle Schrödinger equation

(2)

(
− h̄

2

m

d2

dr2 + V (r)

)
rf (r)= λrf (r),

while at large distancesf must approach a constant.
In the LOCV method [6,8] the boundary conditions forf (r) are

(3)f (d)= 1, f ′(d)= 0,

the expectation value of the energy is given by

(4)E/N = 2πnλ

d∫
0

f 2(r)r2dr,

andd is defined by the normalization

(5)4πn

d∫
0

f 2(r)r2dr = 1.

In Ref. [6] for the dilute case (R 
 r0, where the inter-particle spacingr0 = (3/(4πn))1/3) inter-atomic
interaction was replaced by the zero-range potential (ZRP) model [9]

(6)
(rf )′

rf

∣∣∣∣
r=0

= −1

a
.

In this case

(7)f (r < d)= d

r

sin(kr + δ)

sin(kd + δ)
,

with k cotδ = −1/a, kd cot(kd + δ)= 1, wherek =
√
mλ/h̄2.

In the smalla/r0 limit, δ = −ka, d = r0 and the LOCV result forE/N [6] is given by

(8)
E

N
= 2π

h̄2a

m
n

and is same as that first found by Lenz [10].
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The ground state energy per particle,E/N , in the low-density regime,na3 
 1, can be calculated using a
expansion in power of

√
na3

(9)
E

N
= 2πh̄2

m
an

[
1+ 128

15
√
π

(
na3)1/2 + 8

(
4π

3
− √

3

)
na3[ln(

na3) +C
] + · · ·

]
.

The coefficient of the(na3)3/2 term (the second term) was first calculated by Lee, Huang, and Yang [11],
the coefficient of the last term was first obtained by Wu [12]. The constantC after the logarithm was considered
Ref. [13].

The expansion (9) is asymptotic, and it was shown in Ref. [14] that the Lee–Huang–Yang (LHY) cor
(second term in Eq. (9)) represents a significant improvement on the mean field prediction (the first term in

In Refs. [15–19] the Lenz–Lee–Huang–Yang (LLHY) expansion (first two terms in expansion (9)) ha
used to study effects beyond the mean field approximation. In Ref. [18], it was found that the correction to
results may be as large as 30% in the ground state properties of the condensate, when the conditions of
experiment for85Rb are considered [5].

In the largea/r0 limit, δ = π/2, kd tan(kd)= −1, and the energy is given by [6]

(10)
E

N
= 13.33h̄2n

2/3

m
= 10.2597

h̄2

2mr2
0

,

which is very close to the Legett’s unpublished variational result

(11)
E

N
= 3π2

2

h̄2n2/3

m

(this was quoted by Baym [20]).
To study the validity of the ZRP model we consider an example of the square-well (SW) potentia

a/r0 → ∞. The calculated energies per particle,E/N , are presented in Table 1. The ratioR/r0 is typically of
the order of 10−2. From Table 1, we can see that even fora/r0 → ∞ the ZRP model is a very good approximati
(the difference forE/N between the ZPR and the SW is less than 1% ifR/r0 ≈ 10−2). In this case the LOCV
results forE/N have universal properties that depend on the interatomic potential only through the sing
energy parametera, even for large gas-parameter regime.

We note that for an attractive potential the atomic BEC is metastable and energy per particle can be w
E/N − iΓ /2. Therefore, the real part of energy in LOCV method would be reliable ifE/N > Γ/2 [6].

In Ref. [14], the authors have used a diffusion Monte Carlo method to calculate the lowest-energy
uniform gas of bosons interacting through four different model potentials that have all the same scattering la.

(i) The hard-sphere potential

(12)V (HS)(r)=
{∞ (r < a),

0 (r > a),

where the diameter of the hard-sphere is equal to the scattering length.

Table 1
Energy per particle,E/N , in units of h̄2/(2mr20) vs.R/r0 for the square-well attractive potential witha = ∞. The ZRP model for this cas

givesE/N = 10.2597̄h2/(2mr20) [6]

R/r0 E/N

10−1 11.1906
5× 10−2 10.7143

10−2 10.3502
5× 10−3 10.3057

10−3 10.2703
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Table 2
Energy per particle,E/N , in units of 2πh̄2na/m, as a function ofR/r0 for soft-sphere potentials.R is the range of potential an
r0 = (3/(4πn))1/3 is the atomic separation

R/r0 E/N E/N [14] R

0.081 1.01961 1.00427 5a
0.161 1.01951 1.00427 10a
0.174 1.04292 1.01382 5a
0.347 1.04288 1.01302 10a
0.374 1.09599 1.04167 5a
0.748 1.0973 1.03689 10a
0.806 1.23315 1.11011 5a

Fig. 1. Ground-state energy per particles,E/N , in units of 2πh̄2na/m, vs.a3n for hard-sphere interactions. The LOCV results are shown
full line. The diffusion Monte Carlo calculations [14] are shown as dashed line.

Fig. 2. Ground-state energy per particles,E/N , in units of 2πh̄2na/m, vs. a3n for hard-core square-well potential (HCSW). Triangles a
circles correspond to the LOCV and the diffusion Monte Carlo [14] results, respectively. Lines are drawn to guide the eyes.
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MC)

q. (15)
(ii) Two soft-sphere (SS) potentials

(13)V (SS)(r)=
{
V0 (r < R0),

0 (r > R0),

with R0 = 5a, V0 = 0.031543̄h2/(ma2) andR0 = 10a, V0 = 0.003408̄h2/(ma2).
(iii) The hard-core square-well (HCSW) potential

(14)V (HCSW)(r)=
{+∞ (r < Rc),

−V0 (Rc < r < R0),

0 (r > R0).

The parameters of the HCSW potential areRc = a/50, R0 = a/10 andV0 = 412.815h̄2/(ma2). The HCSW
potential has a two-body bound state with energy−1.13249̄h2/(ma2) [21].

Comparison the LOCV results for potentials (12)–(14) with the available diffusion Monte Carlo (D
calculations (Table 2, Figs. 1 and 2) shows that the LOCV energies in the case ofR/r0 ≈ 10−2 are in very good
agreement with the DMC results.

3. Zero-range potential model of Feshbach resonance

We start from the coupling channel equation(
− h̄

2

m
∇2 + V P (r)

)
ψP (�r)+ g(r)ψQ(�r)= EψP (�r),

(15)

(
− h̄

2

m
∇2 + VQ(r)+ E

)
ψQ(�r)+ g∗(r)ψP (�r)=EψQ(�r),

whereE is the energy shift of the closed channelQ with respect to the collision continuum. Since potentialsV P (r),
VQ(r) andg(r) have a range typically of the order of interatomic potential range or less, we can replace E
by (

− h̄
2

m
∇2 + V11

)
ψP (�r)+ V12ψ

Q(�r)=EψP (�r),

(16)

(
− h̄

2

m
∇2 + V22 + E

)
ψQ(�r)+ V21ψ

P (�r)=EψQ(�r),
where

(17)Vik(�r)= −4πh̄2

m
M−1
ik δ(�r)

∂

∂r
r

is a multi-channel generalization of the Huang pseudo-potential [22].
Eq. (16) can be rewritten as free equations

(18)− h̄
2

m
∇2ψP (�r)=EψP (�r),

(
− h̄

2

m
∇2 + E

)
ψQ(�r)=EψQ(�r),

with boundary conditions

d(rψP )

dr

∣∣∣∣
r=0

= (
M11rψ

P +M12rψ
Q

)∣∣
r=0,

(19)
d(rψQ)

dr

∣∣∣∣ = (
M21rψ

P +M22rψ
Q

)∣∣
r=0,
r=0
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which is a multi-channel ZRP model [23].
It is easy to show that the Hamiltonian of the particle moving in the field of multi-channel ZPR is Herm

that is, the condition

(20)
∫ [(

φP1
)∗∇2φP2 + (

φ
Q
1

)∗∇2φ
Q
2

]
d3r =

∫ [(∇2φP1
)∗
φP2 + (∇2φ

Q
1

)∗
φ
Q
2

]
d3r

is valid for anyφP1 , φ
Q
1 andφP2 , φ

Q
2 which satisfy the boundary conditions (19) with energy independent con

Hermitian matrixM.
We shall use the following parameterization for the matrixM

(21)M11 = − 1

abg
, M12 =M21 = − β

abg
, M22 = − γ

abg
,

whereabg is the background value of the scattering length. The model (21) withγ = 1 was considered in [23].
Solutions of Eqs. (18), (19) can be written as

(22)ψP (�r)∝ sin(kr + δ), ψQ(�r)∝ e−
√

Ẽ−k2 r ,

with Ẽ =mE/h̄2, k2 =mE/h̄2.
Since the energy shiftE can be converted into an external magnetic fieldB by E ∝ B, the scattering lengtha

depends on the external magnetic field by the dispersive law [24]

(23)a = abg

(
1+ ∆(B)

B0 −B

)
,

where

(24)∆(B)= (1− √
αB0 )(

√
αB + √

αB0 )

α
,

(25)α = 4B0

(2B0 +∆)2
,

β

γ
=

√
∆

∆+ 2B0
,

and∆=∆(B0) characterizes the resonance width.
Two parameters of our model Eq. (21),abg andβ/γ , are completely determined from the external magnetic fi

dependence of the scattering length. For example, in the sodium case [25] the width∆ of the Feshbach resonan
(B0 = 907 G) is 1 G, thereforeα = 1.1013210−3 1/ G, β/γ = 2.3472610−2, andabg = 53 au.

As for parameterγ , it can be determined from the energy dependence of the scattering phase shift,δ

(26)k cotδ = 1

abg

(
−1+ ∆

∆+ 2B0 −
√

4B0B − (kabg(∆+ 2B0)/γ )2

)
.

We note that the multi-channel ZRP model gives the same results for the scattering phase shift as ob
the contact potential model of Ref. [26], which uses a cutoff regularization in the momentum representatio

4. Dilute Bose gas near Feshbach resonance

For a generalization of the LOCV method for a dilute uniform gas of bosons interacting through the two-c
ZRP, Eqs. (18), (19), (21), we assume

(27)ΨP (�r1, �r2, . . . , �rN)=
∏
i<j

f P (�ri − �rj ),
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Fig. 3. Ground-state energy per particles,E/N , ofNa(F = 1,mF = +1) atoms at 907 G in units of 1042ma2
bg/h̄

2, as a function of parameterγ ,

(solid line). Dashed line represent approximation of Ref. [6], Eq. (10). (r0 = 102abg).

whereΨP (�r1, �r2, . . . , �rN) is the Jastrow wave function, indexP denotes the projection onto the Hilbert subsp
of the incident (atomic) channel, andf P at short distance is solution of the Schrödinger equation

(28)− h̄
2

m

d2

dr2 rf
P (r)= λrf P (r),

with boundary conditions

(29)
d(rf P )

dr

∣∣∣∣
r=0

= − 1

aeff
rf P , f P (d)= 1,

df P

dr

∣∣∣∣
r=d

= 0,

where

(30)aeff = abg

(
1+ ∆

2B0 −
√

4B0B − (κabg(∆+ 2B0)/γ )2

)
,

andκ = √
mλ/h̄. The real part of ground-state energy per particle is given by

(31)E/N = 2πnλ

d∫
0

(
f P (r)

)2
r2dr,

andd is defined by the normalization

(32)4πn

d∫
0

(
f P (r)

)2
r2 dr = 1.

We note that the effective scattering length,aeff is a many-body parameter (it depends onE/N ), and, forB = B0,
aeff does not tend to infinity.

The calculated energies per particle,E/N , ofNa(F = 1,mF = 1) atoms at resonance magnetic field (B = B0 =
907 G) forr0 = 102abg are compared with the one-channel approximation, Eq. (10), in Fig. 3. These compa
show that for finite values ofγ there are significant differences between our results and the approximat
Ref. [6]. Our results are much smaller than the Legett’s variational estimate [20].
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Table 3
Energy per particle ofNa(F = 1,mF = 1) atoms,E/N , multiplied by 1062ma2

bg/h̄
2 as a function ofγ andB near theB = 907 G Feshbach

resonance

γ B = 906 G B = 906.5 G B = 906.8 G B = 906.9 G B = 906.98 G B = 908.5 G

0.1 5.147 6.008 6.835 7.185 7.498 0.889
0.5 6.078 8.939 15.59 21.51 29.58 0.998
1.0 6.128 9.225 18.06 29.69 55.30 1.002
2.0 6.141 9.304 19.00 34.94 100.3 1.003
3.0 6.144 9.319 19.20 36.41 137.9 1.003
4.0 6.144 9.319 19.27 36.41 168.2 1.003
5.0 6.145 9.327 19.30 37.27 197.5 1.003
6.0 6.145 9.328 19.32 37.42 215.5 1.003
7.0 6.145 9.329 19.33 37.52 231.4 1.003
8.0 6.145 9.330 19.34 37.58 243.0 1.003
9.0 6.145 9.330 19.34 37.62 254.5 1.003

Table 4
Ratio (Γ /2)/(E/N) of Na(F = 1,mF = 1) atoms vs.γ andB near theB = 907 G Feshbach resonance

γ B = 906 G B = 906.5 G B = 908.5 G

0.1 2.1× 10−3 1.8× 10−2 1.2× 10−3

0.5 1.8× 10−3 1.2× 10−2 1.1× 10−3

9.0 1.8× 10−3 1.2× 10−2 1.1× 10−3

Table 5
Energy per particle ofNa(F = 1,mF = 1) atoms,E/N , multiplied by 1062ma2

bg/h̄
2, effective scattering length,aeff in units of abg, as a

function ofγ atB = 907.1 G with a(B)= −9abg

γ E/N aeff

0.1 8.02 2.59
0.5 49.1 13.8
1.0 146 31.8
1.5 299 49.5
2.0 502 72.6

To consider, so-called, nonuniversal effects [21], i.e., the sensitivity to the parameters of the inte
interactions other than the scattering length, we calculateE/N as a function ofγ . Table 3 shows a strongγ
dependence ofE/N near the FR.

However, near the FR the atomic BEC is metastable, and the LOCVE/N would be reliable ifE/N > Γ/2
[6]. We have extracted the values ofΓ/2 from experimental data of Ref. [25]. Using these values ofΓ/2 we have
calculated the ratio(Γ /2)/(E/N) (see Table 4). From Table 4 we can see that the LOCV results for the rea
energy,E/N , is valid for the experimental conditions of Ref. [25], since(Γ /2)/(E/N)≈ 10−2.

Now suppose thata, Eq. (23), near the FR is negative (abg for theNa(F = 1,mF = 1) atoms is positive). In
one-channel case the uniform condensate for negativea is always mechanically unstable. But the two-chan
consideration can lead to stable uniform solution, since the many-body parameteraeff can be positive. Table
illustrates this stabilization effect. Although the three-body recombination processes [23,25,27–29] can
difficult to observe this effect experimentally, we note that Ref. [30] considered the possibility of suppr
three-body recombinations in a trap. There is a similar case [31] of uniform 1D gas ofN bosons on a ring fo
which inelastic decay processes, such as the three-body recombination, are suppressed in the strongly i
and intermediate regimes.
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5. Summary and conclusion

In summary we have considered the LOCV method for a dilute uniform gas of bosons.
Comparison of the LOCV results for potentials Eqs. (12)–(14) with the available diffusion Monte Carlo (D

calculations shows that the LOCV energies in the case ofR/r0 ≈ 10−2 are in very good agreement with the DM
results.

We have generalized the LOCV method [6,8] for dilute uniform gas of bosons near the FR, using the
channel ZRP model. As an example of application, we have consideredNa(F = 1,mF = 1) atoms near the
B0 = 907 G FR.

At high densityna3 � 1, there are significant differences between our results and one-channel ZRP [6]
real part of energy per particle. For the case of negative scattering length, we point out the possibility of stab
of the uniform condensate.
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