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Abstract

The lowest order constrained variational method [Phys. Rev. Lett. 88 (2002) 210403] has been generalized for a dilute (in the
sense that the range of interatomic potentalis small compared with inter-particle spacirgd uniform gas of bosons near the
Feshbach resonance using the multi-channel zero-range potential model. The method has been Apglieetd, mp = 1)
atoms near thég = 907 G Feshbach resonance. It is shown that at high densites> 1, there are significant differences
between our results for the real part of energy per particle and the one-channel zero-range potential approximation. We point
out the possibility of stabilization of the uniform condensate for the case of negative scattering length.

0 2003 Elsevier Science B.V. All rights reserved.

PACS: 03.75.-b; 05.30.Jp

1. Introduction

The newly created Bose—Einstein condensates (BEC) of weakly interacting alkali-metal atoms [1] stimulated a
large number of theoretical investigations (see recent reviews [2]). Most of these works are based on the assumption
that the properties of BEC are well described by the Gross—Pitaevskii (GP) mean-field theory [3].

Recently, it has become possible to tune atomic scattering length to essentially any value, by exploiting Feshbach
resonances (FR) [4,5]. A fundamental open problem is how to describe the physics of dilute BEC near FR (dilute in
the sense that the range of interatomic potenitalis small compared with inter-particle spacirg in the regime
of a large scattering length, which we take to be positive. The GP approach fails in the regime of a large gas
parameterz|a|3, wheren is the particle density.

The dilute BEC for a large gas parameter regime in one-channel approximation has been considered previously
in Ref. [6] (for the corresponding problem for a Fermi gas see Ref. [7]).

In this Letter we consider the ground state properties of the dilute homogeneous Bose gas near the FR using a
multi-channel zero-range potential (ZRP) model of FR.
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In Section 2 we describe the lowest order constrained variational (LOCV) method [6,8] for the one-channel
N-body problem. The calculations for model interaction potentials used by Ref. [9] are presented. The description
of the multi-channel ZRP model is given in Section 3. Section 4 develops the LOCV method for the dilute Bose
gas near FR. We conclude the Letter in Section 5 with a brief summary.

2. Lowest order constrained variational method

In a dilute many-body problem in the large gas parameter regime correlations between particles are very
important.

The LOCV method [6,8] for the homogeneaMshody system is to assume a Jastrow many-body wave function,
of the form

V(L P, . iw) = [ [ F G =T, @
i<j

where at short distanceg,is solution of the two-particle Schrédinger equation

h2 d2
(— + V(r))rf(r) — A, @)

m dr?
while at large distanceg must approach a constant.
In the LOCV method [6,8] the boundary conditions fb(r) are

fd)y=1, f(d)=0, 3)
the expectation value of the energy is given by

d
E/N:Znnk/fz(r)rzdr, (4)
0
andd is defined by the normalization
d
4nn/f2(r)r2dr =1 (5)
0

In Ref. [6] for the dilute case K < ro, where the inter-particle spacing = (3/(47n))3) inter-atomic
interaction was replaced by the zero-range potential (ZRP) model [9]

rf) 1
=-=. (6)
rf l,=o a
In this case
d sin(kr + 8)
dy=——"——-, 7
S <D= Sinkd 1+ 9) 0
with k cots = —1/a, kd cot(kd + 8) = 1, wherek = \/mA /A2,
In the smalla/rg limit, § = —ka, d = ro and the LOCV result foE /N [6] is given by
E 2
g S @)
N m

and is same as that first found by Lenz [10].
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The ground state energy per particle/N, in the low-density regime;a® « 1, can be calculated using an
expansion in power of/na3
E 2mh? 128 4
== n—an 1+ —(na3)1/2 +8 o V3 nag[ln(na?’) + C] +--- . 9)
N m 3
The coefficient of th&na®)%/? term (the second term) was first calculated by Lee, Huang, and Yang [11], while
the coefficient of the last term was first obtained by Wu [12]. The constaiter the logarithm was considered in
Ref. [13].
The expansion (9) is asymptotic, and it was shown in Ref. [14] that the Lee—Huang-Yang (LHY) correction
(second term in Eq. (9)) represents a significantimprovement on the mean field prediction (the first term in Eq. (9)).
In Refs. [15-19] the Lenz—Lee—Huang-Yang (LLHY) expansion (first two terms in expansion (9)) has been
used to study effects beyond the mean field approximation. In Ref. [18], it was found that the correction to the GP
results may be as large as 30% in the ground state properties of the condensate, when the conditions of the JILA
experiment fof®Rb are considered [5].
In the largea/ro limit, § = /2, kd tan(kd) = —1, and the energy is given by [6]
E 2/3 72
== 13332 — 102597 (10)

2 9
m 2mrO

which is very close to the Legett's unpublished variational result

E 37?2 h%n?3
N 2 m
(this was quoted by Baym [20]).
To study the validity of the ZRP model we consider an example of the square-well (SW) potential with
a/ro — oo. The calculated energies per particke/N, are presented in Table 1. The rafigrg is typically of
the order of 102. From Table 1, we can see that evendgro — oo the ZRP model is a very good approximation
(the difference forE /N between the ZPR and the SW is less than 1% ffo ~ 1072). In this case the LOCV
results forE/N have universal properties that depend on the interatomic potential only through the single low-
energy parameter, even for large gas-parameter regime.
We note that for an attractive potential the atomic BEC is metastable and energy per particle can be written as
E/N —iI'/2. Therefore, the real part of energy in LOCV method would be reliabtg ¥ > '/2 [6].
In Ref. [14], the authors have used a diffusion Monte Carlo method to calculate the lowest-energy state of
uniform gas of bosons interacting through four different model potentials that have all the same scattering length
(i) The hard-sphere potential

V(HS)(}’) — { 80 E: iz;’ (12)

where the diameter of the hard-sphere is equal to the scattering length.

(11)

Table 1
Energy per particleE/N, in units thz/(Zmrg) vs. R/rq for the square-well attractive potential with= co. The ZRP model for this case

givesE/N = 1025972 /(2mr3) [6]

R/ro E/N

1071 11.1906
5x 1072 10.7143

1072 10.3502
5x 1073 10.3057

10-3 10.2703
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Table 2
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Energy per particle,£/N, in units of Z-rhzna/m, as a function ofR/rg for soft-sphere potentialsR is the range of potential and
ro = (3/(47n))Y/3 is the atomic separation

R/rg E/N E/N [14] R

0.081 1.01961 1.00427 a5
0.161 1.01951 1.00427 40
0.174 1.04292 1.01382 a5
0.347 1.04288 1.01302 40
0.374 1.09599 1.04167 a5
0.748 1.0973 1.03689 0
0.806 1.23315 1.11011 a5

25

0.5

Fig. 1. Ground-state energy per particlég/,N, in units of 2ri2na/m, vs.an for hard-sphere interactions. The LOCV results are shown by
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Fig. 2. Ground-state energy per particl&/N, in units of 2ti2na/m, vs.an for hard-core square-well potential (HCSW). Triangles and
circles correspond to the LOCV and the diffusion Monte Carlo [14] results, respectively. Lines are drawn to guide the eyes.
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(ii) Two soft-sphere (SS) potentials

N

with Ro = 5a, Vo = 0.031543i2/ (ma?) and Ry = 10a, Vo = 0.003408°/(ma?).
(iif) The hard-core square-well (HCSW) potential

+oo (r <R,
y (HCSW (r) = { —Vo (R. <r < Rp), (14)
0  (r>Ro).

The parameters of the HCSW potential ag= a/50, Ro = a/10 andVy = 41281532/ (ma?). The HCSW
potential has a two-body bound state with enerdy13249:%/(ma?) [21].

Comparison the LOCV results for potentials (12)—(14) with the available diffusion Monte Carlo (DMC)
calculations (Table 2, Figs. 1 and 2) shows that the LOCV energies in the c&ef 102 are in very good
agreement with the DMC results.

3. Zero-range potential model of Feshbach resonance

We start from the coupling channel equation
12 R R -
(‘EVZ + V”(r>)w"<r> +eny @) = EvP (),

2
(—%v%vQ<r>+6)wQ<F)+g*<r)wP<F)=EwQ<F>, (15)

where€ is the energy shift of the closed chanigeWwith respect to the collision continuum. Since potentiafsr),
v2(r) andg(r) have a range typically of the order of interatomic potential range or less, we can replace Eq. (15)

by

2
(_%# + m)W’(?) + Viy () = Ey" (7),

2
(_%# +Vart 5)¢Q ) + Vary P (7) = Ep2 (7). (16)
where
2
Vi (F) = —“”—hM,-;18<7)3r (17)
m or

is a multi-channel generalization of the Huang pseudo-potential [22].
Eqg. (16) can be rewritten as free equations

2 2

—%vzwf’(?):wp(?), (—%V2+6)wQ<F)=EwQ<F), (18)
with boundary conditions

dry?)

ar | _ = (" M ®)]
0
d(rdlf - (Marry® + Maoryr @), (19)
r=0
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which is a multi-channel ZRP model [23].
It is easy to show that the Hamiltonian of the particle moving in the field of multi-channel ZPR is Hermitian,
that is, the condition

[0y v205 +(02) 52681a% = [[(V261)"0F + (Vo0) 0§1d%r 0)

is valid for any¢f, ¢1Q and¢§, ¢>2Q which satisfy the boundary conditions (19) with energy independent constant
Hermitian matrixM .
We shall use the following parameterization for the mafix

1 B Y
My=—-—, Mp=Ma=-—,  Mp=——:, (21)
anpg Apg dhg

whereapg is the background value of the scattering length. The model (21)pithl was considered in [23].
Solutions of Egs. (18), (19) can be written as

WP @) ocsintkr +8),  wOF) e VERT, (22)

with & = m&/h2, k2 =mE k2.
Since the energy shiff can be converted into an external magnetic fieldy £ « B, the scattering length
depends on the external magnetic field by the dispersive law [24]

a= abg(1+ BAo(f)B) (23)
where
A(B) = (1—«/aBo)(«/aB+\/aBo)’ (24)

o

4B
=B B_ 4 (25)
(2Bo + A)? Y A+ 2By

andA = A(Bg) characterizes the resonance width.

Two parameters of our model Eq. (2&)g andg/y, are completely determined from the external magnetic field
dependence of the scattering length. For example, in the sodium case [25] theAwdtithe Feshbach resonance
(Bo =907 G) is 1 G, therefore = 1.101321031/ G, /y = 2.3472610°2, andapg = 53 au.

As for parametey, it can be determined from the energy dependence of the scattering phase shift,

1 A
kcots = —(—1+ ) (26)
Ghg A+2By— \/4BoB — (kapg(A + 2Bo) /y)?

We note that the multi-channel ZRP model gives the same results for the scattering phase shift as obtained in
the contact potential model of Ref. [26], which uses a cutoff regularization in the momentum representation.

4. Dilute Bose gas near Feshbach resonance

For a generalization of the LOCV method for a dilute uniform gas of bosons interacting through the two-channel
ZRP, Egs. (18), (19), (21), we assume

WP 7, i) =[] PG =7, (27)

i<j
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12

Fig. 3. Ground-state energy per particlegN, of Na(F = 1, mp = +1) atoms at 907 G in units of meagg/hz, as a function of parameter,
(solid line). Dashed line represent approximation of Ref. [6], Eq. (1@).—_(102%9).

wherew £ (71, 72, ..., 7y) is the Jastrow wave function, index denotes the projection onto the Hilbert subspace
of the incident (atomic) channel, arfd” at short distance is solution of the Schroédinger equation

h? d? P P
———=rf () =rrf"(r), (28)
m dr
with boundary conditions
P 1 P
d(rf ) =——rfP, fP(d)Zl, i =O’ (29)
dr |,—g Aeff dr |,—4
where
A
deff = abg(l + >, (30)

2Bg — \/4BOB — (kapg(A + 2Bo)/v)?

andx = +/mA/h. The real part of ground-state energy per particle is given by

d

E/N = 2mm/(ff’(r))2r2 dr, (31)
0
andd is defined by the normalization

d

4nn/(fp(r))2r2dr =1. (32)
0

We note that the effective scattering lengtky is a many-body parameter (it dependsiofiv), and, forB = By,
aeff does not tend to infinity.

The calculated energies per partid®,N, of Na(F = 1, mp = 1) atoms at resonance magnetic fielkd-€ Bo =
907 G) forrg = 102abg are compared with the one-channel approximation, Eq. (10), in Fig. 3. These comparisons
show that for finite values of there are significant differences between our results and the approximation of
Ref. [6]. Our results are much smaller than the Legett’s variational estimate [20].
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Table 3
Energy per particle oNa(F = 1, mp = 1) atoms,E /N, multiplied by l(§"2ma§g/h2 as a function ofy and B near theB = 907 G Feshbach
resonance

y B =906 G B =9065G B =9068G B =9069 G B =90698 G B =9085G
0.1 5.147 6.008 835 7185 7498 0.889
0.5 6.078 8.939 159 2151 2958 0.998
1.0 6.128 9.225 186 2969 5530 1.002
2.0 6.141 9.304 190 3494 1003 1.003
3.0 6.144 9.319 190 3641 1379 1.003
4.0 6.144 9.319 197 3641 1682 1.003
5.0 6.145 9.327 180 3727 1975 1.003
6.0 6.145 9.328 182 3742 2155 1.003
7.0 6.145 9.329 183 3752 2314 1.003
8.0 6.145 9.330 184 3758 2430 1.003
9.0 6.145 9.330 184 3762 2545 1.003
Table 4
Ratio (I'/2)/(E/N) of Na(F =1, mp = 1) atoms vsy and B near theB = 907 G Feshbach resonance

y B =906 G B =9065G B =9085G
0.1 21x 1073 1.8 x 1072 12x10°3
0.5 18x 1073 1.2 x 1072 11x10°3
9.0 18x 1073 1.2 x 1072 11x10°3
Table 5

Energy per particle oNa(F =1, mp = 1) atoms,E /N, multiplied by l(f’Zmagg/hz, effective scattering lengthiess in units of apg, as a
function of y at B=907.1 G witha(B) = —Yapg

Y E/N Aeff
0.1 802 259
0.5 491 138
1.0 146 318
1.5 299 4%
2.0 502 726

To consider, so-called, nonuniversal effects [21], i.e., the sensitivity to the parameters of the interatomic
interactions other than the scattering length, we calcult®&' as a function ofy. Table 3 shows a strong
dependence af /N near the FR.

However, near the FR the atomic BEC is metastable, and the L&ZN would be reliable ifE/N > I"'/2
[6]. We have extracted the values Bf2 from experimental data of Ref. [25]. Using these valuef (2 we have
calculated the ratiol"/2)/(E/N) (see Table 4). From Table 4 we can see that the LOCYV results for the real part
energy,E /N, is valid for the experimental conditions of Ref. [25], sind&/2)/(E/N) ~ 10~2.

Now suppose that, Eq. (23), near the FR is negativa,§ for the Na(F = 1, mr = 1) atoms is positive). In
one-channel case the uniform condensate for negatigealways mechanically unstable. But the two-channel
consideration can lead to stable uniform solution, since the many-body paramgetzan be positive. Table 5
illustrates this stabilization effect. Although the three-body recombination processes [23,25,27—-29] can make it
difficult to observe this effect experimentally, we note that Ref. [30] considered the possibility of suppressing
three-body recombinations in a trap. There is a similar case [31] of uniform 1D géisbafsons on a ring for
which inelastic decay processes, such as the three-body recombination, are suppressed in the strongly interacting
and intermediate regimes.
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5. Summary and conclusion

In summary we have considered the LOCV method for a dilute uniform gas of bosons.

Comparison of the LOCV results for potentials Eqgs. (12)—(14) with the available diffusion Monte Carlo (DMC)
calculations shows that the LOCV energies in the case/ef ~ 10~2 are in very good agreement with the DMC
results.

We have generalized the LOCV method [6,8] for dilute uniform gas of bosons near the FR, using the multi-
channel ZRP model. As an example of application, we have considémgd@ = 1, mr = 1) atoms near the
Bo =907 G FR.

At high densityna® >> 1, there are significant differences between our results and one-channel ZRP [6] for the
real part of energy per particle. For the case of negative scattering length, we point out the possibility of stabilization
of the uniform condensate.
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