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The dynamics of strongly interacting trapped dilute two-component Fermi gases(dilute in the sense that the
range of interatomic potential is small compared with interparticle spacing) is investigated in a single-equation
approach to the time-dependent density-functional theory. For the ground-state energy per particle of the
system in the homogeneous phase, we have constructed an Padé parametrization based on Monte Carlo data
and asymptotic behavior. Our numerical results for collective frequencies in the BCS-BEC crossover regime
are in good agreement with recent experimental data obtained by the Duke University group. In addition, we
show that the calculated corrections to the hydrodynamic approximation may be important, even for systems
with a rather large number of atoms.
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The recently reported ultracold trapped Fermi gases with
tunable atomic scattering length[1–11] in the vicinity of a
Feshbach resonance stimulated a large number of theoretical
investigations. Some of these works are based on the as-
sumption that the properties of strongly interacting dilute
Fermi gas at zero temperature are well described by the hy-
drodynamic approximation(HA) [12–15]
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wheren is the density,esnd is the ground-state energy per
particle of the homogeneous system andvW is the velocity
field.

In this paper the dynamics of strongly interacting trapped
dilute Fermi gases(dilute in the sense that the range of in-
teratomic potential is small compared with inter-particle
spacing) is investigated in the single equation approach to
the time-dependent density-functional theory covering the
whole crossover region at zero temperature. It is shown for
the case of elongated cigar-shaped harmonic traps that the
calculated corrections to the HA may be important even for
systems with a rather large number of atoms.

We mention here Ref.[16] where an extension of the
density-functional theory(DFT) to superconducting systems
[17] was generalized to a number of nuclear and atomic sys-
tems. Let us consider a Fermi gas consisting of a 50-50 mix-
ture of two different states confined in a harmonic trap
VextsrWd=sm/2dfv'

2 sx2+y2d+vz
2z2g. In Eq. (2), the kinetic-

energy densitytsnd is approximated by the Thomas-Fermi
(TF) kinetic-energy densitytTFsnd=s3/10dn"2kF

2 /m, where
kF=s3p2nd1/3. For slowly varying densities characterized by

the conditionu¹nu /n4/3!1, the kinetic energy density is well
represented by the Kirzhnitz gradient expansion(KGE) [18]
tsnd= tTFsnd+ tWsnd /9+¯, where tWsnd=f"2/ s8mdgs¹nd2/n
is the original von Weizsäcker density(OWD) [19], which
gives the entire kinetic energy density of noninteracting
bosons.

In the case of large but finite number of atomsN, the
density n is not constant. At small distances the ratio
u¹nu /n4/3 is small and both the Kirzhnitz correction and the
OWD are negligible. On the contrary, near the surface the
Hartree-Fock(HF) type densities are proportional to the
square of the last occupied state. Therefore, the OWD is
important in this case and it is expected to determine the
asymptotic behavior of the density at large distances. It is
also expected that the OWD is important in the case of the
tight radial trapping,l!1. In Ref.[20], the OWD was con-
sidered as a correction to the TF kinetic-energy density.

Adding the OWD totTFsnd we have
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We define the density of the system asnsrW ,td= uCsrW ,tdu2, and
the velocity field vW as vWsrW ,td="sC* ¹C
−C¹C* d / f2imnsrW ,tdg. From Eqs.(1) and(3), we obtain the
following nonlinear Schrödinger equation:
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which is equivalent, to a certain extent, to the single equation
approach of Debet al. [21] to the time-dependent density-
functional theory(TDDFT).

If the trap potentialVext is independent of time, one can
write CsrW ,td=FsrWdexps−imt /"d, wherem is the chemical po-
tential, andF is normalized to the total number of particles,
edrWuFu2=N. Then Eq.(4) becomes
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where the solution of the equation(5) minimizes the energy
functional E=NkFu−s"2/2md¹2+Vext+esnduFl, and the
chemical potentialm is given bym=]E/]N.

In order to take into account atoms lost by inelastic colli-
sions, we model the loss by the rate equation

dN

dt
= −E xsrW,tddrW,

wherexsrW ,td=ol=1kln
lglsnd, nlgl is the locall-particle corre-

lation function andkl is the rate constant for thel-body atoms
loss. The generalization of Eq.(4) for the case of inelastic
collisions reads[22–25]
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For the negativeS-wave scattering length between the two
fermionic speciesa,0 in the low-density regimekFuau!1,
the ground state energy per particleesnd is well represented
by an expansion in power ofkFuau [26]
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whereEF="2kF
2 / s2md. In the opposite regime,a→−` (the

Bertsch many-body problem, quoted in Ref.[27]), esnd is
proportional to that of the noninteracting Fermi gas

esnd = s1 + bd
3

10

"2kF
2

m
, s8d

where a universal parameterb [10] is estimated to beb=
−0.56 [28].

In the a→ +0 limit the system reduces to the dilute Bose
gas of dimers[29]

esnd = EFf− 1/skFad2 + amkF/s6pd + ¯ g, s9d

where am is the boson-boson scattering length. While the
BCS mean-field theories[30] predictam=2a [31], a solution
of four-fermion problem for contact scattering provided the
valueam<0.6a [32].

Very little is known about the correct form ofesnd in the
intermediate range. Therefore, a simple interpolation of the
form esnd<EFPskFad with a smooth functionPsxd mediating
between the known limits suggests itself as a pragmatic al-
ternative.

In Ref. [33] it has been proposed af2/2g Padé approxi-
mant for the functionPsxd for the negativea
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where d1=0.106103, d2=0.187515, d3=2.29188, d4
=1.11616. Equation(10) is constructed to reproduce the first
four terms of the expansion(6) in the low-density regime
and also to reproduce exactly results of the recent Monte
Carlo calculations[28] b=−0.56, in the unitary limitkFa
→−`.

For the positivea case(the interaction is strong enough to
form bound molecules with energyEmol) we consider af2/2g
Padé approximant

Psxd =
Emol

2EF
+

a1x + a2x
2

1 + a3x + a4x
2 , s11d

where parametersa are fixed by two continuity conditions at
largex, 1 /x→0, and by two continuity conditions at smallx.
For example,a1=0.0316621,a2=0.0111816,a3=0.200149,
anda4=0.0423545 foram=0.6a.

Figures 1 and 2 show the comparison betweenf2/2g Padé
approximations, Eqs.(10) and (11), and the lowest order
constrained variational(LOCV) approximation[34] and the
BCS mean-field theory foresnd. The LOCV calculations
agree very well with thef2/2g Padé approximation results on
the BCS sidesa,0d. It is evident the difference between our
results and the BCS mean-field theory calculations. For ex-
ample, the BCS mean-field givesb=−0.41. We mention here
that esnd /EF on the BCS side sa,0d and fesnd
+ uEmolu /2g /EF on the BEC sidesa.0d show a smooth
monotonic behavior as a function ofkFa.

The predictions of Eq.(5) with esnd from Eq.(10) for the
axial cloud size of strongly interacting6Li atoms are shown
in Fig. 3 [35,36]. It indicates that the TF approximation of
the kinetic energy density is a very good approximation for
the experimental conditions of Ref.[11], Nl<104 (inclusion
of the OWD gives a negligible effect,,0.5%) [37–41].

FIG. 1. The ground state energy per particleesnd in units of
3"2kF

2 / s10md as a function of the gas parameterskFad−1. The solid
line, the long dashed line and the short dashed line represent the
results calculated using thef2/2g Padé approximation(10), the
LOCV approximation, and the BCS mean-field theory, respectively.
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It can be proved[24] that every solution of Eq.(4) is a
stationary point of an action corresponding to the Lagrangian
density
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which for C=eifsrW,tdn1/2srW ,td can be rewritten as
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For a time-dependent harmonic trap,VextsrW ,td
=sm/2doi=1

3 vi
2stdxi

2, a suitable trial function can be taken as

fsrW ,td=xstd+m/ s2"doi=1
3 histdxi

2, nsrW ,td=n0fxi /bistdg /zstd,
where zstd=P jbj. With this ansatz, the Hamilton principle,
dedteL0d

3r =0, gives the following equations for the scal-
ing parametersbi:
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wherebis0d=1, ḃis0d=0 andvi =vis0d fix the initial configu-
ration of the system, corresponding to the densityn0srWd and
kTil=−"2/ s2mNden1/2s]2/]xi

2dn1/2d3r, kxi
2l=s1/Ndenxi

2d3r.
Expanding Eq.(12) around equilibriumsbi =1d we get the

following equations for the collective frequenciesv
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where ki =4kTil / smvi
2kxi

2ld and xi =en0
3]2e / s]n0
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2kxi
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In Table I we give the calculated values of the radial
breathing mode frequency,n=vrad/ s2pd of highly degener-
ate gas of6Li atoms near a Feshbach resonance at 822 G
[41]. It can be seen from Table I, that the difference between
two approximations, Eqs.(1), (2), and (4), is less than
0.75%, and both approximations give a very good agreement
with experimental data of Ref.[1]. The parameterlN for this
case is very largelNù104.

In Fig. 4, we present the calculations for the frequency of
the radial compression modevrad as a function of the dimen-
sional parametersN1/6a/ahod−1 in the case of an anisotropic
trap svx=vy=v' ,vz/v'=ld. One can easily see that the
corrections to the hydrodynamic approximation(HA), Eqs.
(1) and(2), are important even for relatively largeN andlN.

FIG. 2. The ground-state energy per particleesnd+ uEmolu /2, in
units of "2kF

2 / s2md as a function of the gas parameterskFad−1. The
dashed line, the dotted-dashed line and the solid line represent the
results calculated using the BCS mean-field theory, thef2/2g Padé
approximation(11) with am=2a andam=0.6a, respectively.

FIG. 3. Axial cloud size of strongly interacting6Li atoms after
normalization to a non-interacting Fermi gas withN=43105 atoms
as a function of the magnetic fieldB [32]. The trap parameters are
v'=2p3640 Hz,vz=2ps600B/kG+32d1/2 Hz. The solid line and
dashed line represent the results of theoretical calculation that in-
cludes the OWD or uses the TF approximation for the kinetic en-
ergy density, respectively. The circular dots indicate experimental
data from the Innsbruck group[11].

TABLE I. Radial breathing mode frequenciesn=vrad/ s2pd of
highly degenerate gas of6Li atoms near a 822(G) Feshbach reso-
nance[36]. B is applied magnetic field,nexp indicate experimental
data from the Duke University group[1], n andnTF represent the-
oretical calculations that use Eq.(4) and the hydrodynamic approxi-
mation [Eqs. (1) and (2)], respectively. The trap parameters are
v'=2p31549,vz=2p370.

BsGd N (units of 103) nexp (Hz) [1] n (Hz) nTF (Hz)

860 294 2857 2810 2793

870 288 2837 2804 2787

870 225 2838 2806 2786

870 379 2754 2803 2788

870 290 2775 2804 2787

870 244 2779 2805 2787

880 258 2836 2800 2783

910 268 2798 2792 2775

TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY… PHYSICAL REVIEW A 70, 033612(2004)

033612-3



For example, the correction tovrad in unitary limit is larger
than 11 and 25% forl=10−2, N=104 and l=10−2, N=103,
respectively.

In the HA, vrad is independent ofN for a fixed
sN1/6a/ahod−1. The deviation from this behavior does not
demonstrate the crossover to the 1D behavior, sincelN.1
[42]. It demonstrates that the validity of the HA depends on
the properties of the trap. In Ref.[43] it was shown that, for
the case of isotropic trap,l=1, with N=20 andN=240, the
TF approximation reproduces the energy within accuracies
of 2 and 1%, respectively.

In Fig. 5, the calculated radial compressional frequency is
compared with experimental data[1] in the BCS-BEC cross-
over region. There is a very good agreement between calcu-
lations and experimental data[1]. However our calculations
for vrad disagree with experimental data of Ref.[44].

In the present paper, we have used Eq.(4). The next step

is to develop the Kohn-Sham time-dependent DFT[45] for
two-component Fermi gases in elongated trapssl!1d,
which we will consider in our future work.

In conclusion, we have investigated a possible improve-
ment of the hydrodynamics approach by adding the
quantum-pressure term to the TF kinetic energy,(4). We have
also introduced Padé approximations for the equations of
state of the uniform dilute Fermi gas across the BCS-BEC
crossover, and have compared the predicted collective fre-
quencies to experimental data. It is shown that the calculated
corrections to the hydrodynamic approximation may be im-
portant even for systems with a rather large number of at-
oms.

Note added.Recently some papers[46] appeared in which
the authors calculate the equation of stateesnd using the
quantum Monte Carlo method. Their results are in a good
agreement with our Padéf2/2g approximation for both nega-
tive and positive scattering lengths.
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