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Ground state of charged bosons confined in a harmonic trap
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We study a system composed Nfidentical charged bosons confined in a harmonic trap. Upper- and
lower-energy bounds are given. It is shown in the lakgbmit that the ground-state energy is determined
within an accuracy of-8% and that the mean-field theory provides a reasonable result with a relative error of
less than 16% for the binding energy.
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[. INTRODUCTION mean-field theory for bosons in the following form given in
Ref. [8]:

We study a system composedMfdentical bosons inter-
acting via the Coulomb repulsive force that are confined in
an isotropic harmonic trap.

Investigations of charged Bose gases have been reported
in a number of papefd—7]. In a recent papd6], the mean-  where W () is the normalized ground-state wave function,
field theory for bosons in the form given in Rg8] was used V() =mw?r?/2 is a harmonic trap potential with?=x?
to describe the ground state of a bosonic Thomson atom. The y2+ 22 v,(F)= [dFV,,(F—F')| ¥ (")|? is the Hartree
equivalence of the Coulomb systems in a harmonic trap t@otential with an interacting potentiaf (), andN is the

the Thomson atom modef9] was discussed in Refs. nymper of particles in a trap. The chemical potengials
[6,10,11. The model approximately simulates a number of q|ateq to the mean-field ground-state enegyand particle
physical situations such as systems of ions in a three

dimensional trap(radiofrequency or Penning trpp10,11], numberN by the general thermodynamic identity
electrons in quantum dof42,13, etc. IEw

Since no exact general solution of tiNebody problem = (2
has been found, to investigate the validity of the mean-field N
approximation for the case of systems of charged boson
confined in a trap, we propose in this paper to compare th
mean-field energy with lower and upper bounds. Such a
approach was used to establish the asymptotic accuracy of 22 N—1
the Ginzburg-Pitaevskii-Gross ground-state energy for diluteg,, = N( (W] = = A| W) +(V|V | ¥)+ ——
neutral Bose gas with repulsive interactidi]. 2m 2

We find that our lower and upper bounds provide the )
actual value of ground-state energy withitB% accuracy.
We also show that, for the case of larlje the mean-field

hZ
(‘ o AT V(D) +(N=D)Vy(1) | (F)=p ¥ (F), (1)

or N—oo, where the mean-field ground-state enekyy is
Igpiven by

V)|

We note that the mean-field theory, Ed), cannot describe
the Wigner-crystallization regimgl7] (see also Ref.6]).
less than 16% for the binding energy. We introduce dimensionless units by making the follow-

The paper is organized as follows. In Sec. I, we describdng transformations: (i) Fr—ar, wherea= y#/(mw), and
an outline of the mean-field method. Energy and singledii) the energy and chemical potential are measured in units
particle density are found analytically in the larlydimit. In ~ of Zw.
Sec. lll, we generalize a lower-bound method developed by Using the above dimensionless notation, we can rewrite
Post and Hal[15] for the case of charged bosons confined inEg. (1) as
a harmonic trap. In Sec. IV, we describe the strong-coupling 2
perturbative expansion method. In Sec. V, we describe our | v _ 2 _— 27\ (2 >
calculation of upper bounds using the effective linear two- 24+ 2 +(N 1)f AP VinF= PO (FOI7 )W (P)
body equationELTBE) method[16]. In Sec. VI, we con- R
sider the Wigner-crystallization regime. A summary and =u ¥ (r). )

conclusions are given in Sec. VIl. In the limit N> 1, the nonlinear Schadinger equatior(4)

Il. MEAN-EIELD METHOD can be simplified by omitting the kinetic energy, yielding the
following integral equation:

To describe ground-state properties of a system of inter- )

acting bosons confined in a harmonic trap, we start from the r ., L, _,
5 +N| AP Vi(F= )T () P= 4, (5)
*Email address: yekim@physics.purdue.edu wherer?< 2% and|W(r)|?=0; if r2>27, 7 is to be deter-
TEmail address: zubareva@physics.purdue.edu mined from the minimum of the energy functional,
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EM 2 f |\P(r)|2 Zdr

N
+7f W (P2 (F) |2V F— )P T
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where

(12

Now we introduce the Jacobi coordinateg;=R

This method Eq. (5)] is another possible implementation of =(1/N){L,F;, the center-of-mass coordinate, arie-@)

the Thomas-Fermi treatment of neutral,

see Ref[20].
To make a proper choice for the larfedimit of the

dilute vapors
[18,19. For review of the Thomas-Fermi theory of atoms,

Hamiltonian for bosons interacting via the Coulomb poten-Using

tial

Vin(r)= 72 ©)

with  y.=Z%a\mc/(hw)>0, we rescale variables’

=(Nv,)¥3z. Now we can rewrite Eq(4) as

6A+ 72— R?
2

dz' . .
+f |2>_2>r| |\I}(Z )|2>\P(Z)_01 (7)

whereR?=2u/(Nvy.)?3 e=1/(Ny.)*? andN>1.
In the caseNy.>1, the solution of Eq(5) is found to be

N ~_ .2
W (F) = gy 02 T), ®
where # denotes the unit positive step function, and
-~ M
=73 9

Straightforward calculations with¥ ()| from Eq. (8)
yield
w=3(7:N)?3,
(10

E % ( Ye )2/3N 5/3

Equation(8) is obtained by neglecting th@/2)A W term

in Eq. (7) and provides an accurate description of the exact
solution where the gradients of the wave function are small.

1 i—1
li= 1-0)r; + r 13
N N
> rP=NRe+ 2, i, (14)
=1 i=2
we can rewrite Eq(11) as
1 N N
H=—oNAr— 52 A HENREEE Y (742 V).
= i=2 i<
(15
Hence we have for the ground-state energy
N N
E=3+(y| —%i:EZ Agﬁ%izz §?+i2<j Vij)|¢>, (16)

where (fy,r,,...,fy) is the ground-state wave function.
Using symmetric properties af, we can rewrite Eq(16) as

1,2, N
+3545+ 2V12(‘/2§2) l4).
(17)

Projecting|¢) on the complete basis), generated by the
effective two-body eigenvalue problem

=%+<</f|<N—1>(——

N
H<°>|n>=<N—1>[—%Ag2+%§§+5v12<f2§2>}|n>=enln>,
(18

we get

:%+§ elUIN)P=(3 + €). (19)

In a boundary layer of a narrow region near surface, the

approximation(8) breaks down. We expect that the thickness

of this boundary layer approaches zeroeas0. Recent nu-
merical calculation$6] support our analytical results. Equa-

Hence the ground-state energy of the effective two-body

Hamiltonian H(®), ¢, is a lower bound ofE— 2. Equation
(19 is a generalization of the Post and Hall lower-bound

tion (10) provides an upper bound for the ground-state en! method[15] for the case of a system of interacting particles

ergy in the largeN limit (N>1 andNy >1).

IIl. LOWER BOUNDS

In this section, we consideX identical charged bosons
confined in a harmonic isotropic trap with the following
Hamiltonian:

N N
_%2 %2 +E Vljl (11)

i<j

confined in a harmonic trap. In the particular case of bosons

with the Hooke interaction, this procedure, E49), gives
the exact value of the ground-state enefgge the Appendix
for details.

To find ¢, for the Coulomb interaction case, E®), we
need to solve the effective two-body problem,

d’¢
“2az’

A
%§2¢+Z¢>=~6¢, (20

whereA =Ny /(2v2) andé=¢y/(N—1).
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For the case ofA<1, the weak-coupling-perturbation
(WCP) calculation leads to the ground-state en€éggiven
by [24]

€=3+1.128379-0.15578.%+- - . (21

IV. STRONG-COUPLING PERTURBATIVE EXPANSION

The two-body problem with the so-called spiked har-1

monic oscillator (SHO) V(r)=r2+[1(I+1)/r?]+(\/r%),
wherer=0 and« is positive constant, has been the subjec
of intensive study[21-28. The quantity\ is a positive-

definite parameter that measures the strength of the perturb%t(—)00

tive potential. It was foundl22] that the normal perturbation
theory could not be applied for the values=2, the so-
called singular spiked harmonic oscillator. In RE21], a

special perturbative theory was developed for this case. A

strong-coupling perturbative expansig8CP (A>1) was
carried out in Ref[24]. In Ref.[27], the SCP was used for
the case ofa=3. In Refs.[23,26], it was shown that the
SHO problem witha=1 is solvable analytically for a par-
ticular set of oscillator frequencies. For example, Xor 1
we have[23]

=5, (O)=Le 1+, 22)
and forx=+/5 we have[26]
e=1, p(O)=Le A1+ B+ ). (23)

Equation(20) can be solved for the case of laryeaising
the SCP[24]. The idea of this method is to expand the po-
tential V(£) = (£?/2)+ (\/{) around its minimum,

—il3

V()= N+ (=N 4 2 (- 1) (L-A)2,
i=1
(24)
Substitution of Eq(24) into Eq. (20) gives
H=Ho+H’, (25)
where the nonpertubative Hamiltoni&ty is given by
2
HOZ—EE—F%)\ZB—F%ZZ (26)
and the pertubatiorl’ is given by
H'=2> H\ B, (27
|
with H;=(—1)'2'"%/(i+2) andz=({—\3).
Now ¢ and’é can be written as
¢=lim ¢, (289

n—oo

and
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TABLE I. Results for ground-state energy,[Eg. (20)]. We
compare zero-order, second-order, and converged re40itls or-
den to the exact analytical solutigrEgs. (22) and (23)].

A

€0 €2 ?converged “€exact

1 2.36603 2.46325 25

J5 3.43099 3.48785 3.49954 35
0 7.82841 7.84935 7.85061
100 33.18255 33.18705 33.18711
{500 95.3601 95.36165 95.36165
000 150.86603  150.86700  150.86700
439.46869  439.46902  439.46902
697.10435  697.10456  697.10456

&= lim%,, (29)

n—oo

where ¢, =3"_ N1 andg, =3 e\ 3. Substitut-
ing Egs.(26), (28), and(29) into Eq. (20) gives

izo Hi¢(n*i):20 e(i)(ﬁ(ﬂ*i)_ (30)

The complete oscillator basig), Hg|fi)=e,|T), wherez
=(¢—\*?) is extended to the full real axis, is used to solve
Eq. (30) with ;=2 and|0)=¢(®). We note that the re-
gion —o<z=<-—\"?is spurious. For larga, it is expected
that the harmonic-oscillator basis does not penetrate too
much into the forbidden region< —\*3. From Table I, we
can see that the SCP converges very fashfor2. However,
for the case ol =1, it is certainly outside the convergence
radius (see Table ). Even in this cas€g, is still a good
lower approximation fofe.

From the SCP expansion in the largdimit, we obtain in
the largeN limit (N>1 andNy.>1)

eo=IN"Z". (3D
Combining Eq.(31) with Eqg. (10), we get in this limit
%N5/3,y§/3$ Eg %N5/3,y§/3' (32)

where E is the leading term of the ground-state energy.
Hence the leading term of the ground-state energy in the
largeN limit is determined within an accuracy af8%. We

can therefore state that the mean-field theory, (E6), pro-
vides a reasonable result in this limit for the ground-state
energy.

TABLE Il. Results foré, for thex=1 case.

€0

A €2 €4 €6 €g €10

1 236603 2.46325 2.48797 2.49716 2.50439 2.5125
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V. UPPER BOUNDS TABLE IlI. Results for upperE ype/N, and lower,Ejqe/N,

. . bounds of ground-state ener er particle, and-(E
Our method for obtaining the upper bounds, the equiva-_ Elower)/(ZEg 9y per b (Eupper

lent linear two-body equatioELTBE) method[16], con-
sists of two steps. The first is to give thebody wave func- N A=Ny./(2v2) Eiower/N EuppedN A (%)
tion ¢(ry,f,,...) aparticular functional form,

uppe)-

10 0.1 1.60015 1.60048 0.02
®(p) 0.5 1.97272 1.98724 0.4
Yy, TN~ a3 (33 1 2.4 2.43945 0.8
P V5 3.3 3.4478 2.1
wherep= [EiNzlriz]m- 10 7.21555 8.18751 5.9
The second step is to derive an equationddp) by re- 100 30.0184 36.8931 9.3
quiring thaty(r,,f5,...) must satisfy a variational principle 100 01 1.61017 1.61068 0.02
S(|H|¥)=0 with a subsidiary conditiofiy| ) =1.H is the 05 2.01999 2.03468 0.36
Hamiltonian. This leads to the following equation: 1 249 2.52904 0.8
NG 3.48 3.62737 2.0
2 (3N-1)(3N-3) X _ 10 7.7871 8.76512 5.6
H,d=| - Ed_;ﬂ+%pz 57 +-|o=E0, 100 32.8702 39.8116 8.7
(34)
VI. LARGE 7y, LIMIT
where ) o
To make a proper choice for the largg-limit of the
Hamiltonian, Eq.(11), we rescale variables— 2%, and
~ 2 I'(3N/2) . L ) . A
\ = Ye (35) write the Schrdinger equation forN identical charged
3\27 I'(3N/2=3/2) bosons confined in a harmonic isotropic trap as
The lowest eigenvalue ¢, [Eq. (34)] is an upper bound of 1 % A 1% 2, 3 1 _E
the lowest eigenvalue of the originatbody problem. Since 2y it 24t + < [F—7 Y= ;gﬁw'
a variational estimate of the lowest eigenvalueHgfis also (40)

an upper bound of the ground-state energy of the original
N-body problem, we have for this upper bour],,,, the  Equation(40) describes the motion dfl particles with an

following expression: effective mass;x‘c"?’. Therefore, wheny,—, the effective
mass of the particles becomes infinitely large and then the
<cI>t|Hp|CDt> particles may be assumed to remain essentially stationary at
upper— (@ |—q) y (360 the absolute minimum of the potential energy,
t t
N
Assuming the form for the trial functio®,, V(71 FN):%E r2+2 1 (41)
LA | | > - 1
i=1 <) |F—T
_ (3N=1)/24—pP/(2aP)
Pilp)=p © ' 37 with quantum fluctuations around the classical minimum.
we obtain Obviously, this assumption fails if the potential eneNy
does not possess a minimum afad) gradients of the wave
functions are large. This large: limit is the Wigner crystal-
:p(3N—2+p)F[(3N—2)/p+1] lization regime[6].
Hppet 8I'(3N/p)a® Interest in the investigation of the Wigner-crystallized
~ ground state has grown as a result of a recently proposed
I'[(3N+2)/p] o2 AT[(3N—1)/p] 38) quantum computer by Cirac and Zollg29]. (See also Refs.
2I'(3N/p) I'(3N/p)a ' [30-33,)

As we have already noted in Sec. Il, mean-field theory,
where parameters andp are to be determined from a solu- EQ. (1), cannot describe the crystallized ground state. There-

tion of the following equations: fore, we can only state that the mean-field ground-state en-
ergy is an upper bound to the exact energy. Straightforward
JE JE calculations for the case of.>1 give the Thomas-Fermi
— - P, (39 upper bound
Jda ap
Eupper %N['VC(N_:L)]ZIS- (42)

From Table Ill, we can see that for the case N,
<100, the calculated bounds determine the actual value dfrom the SCP expansion, E@4), we obtain in the largex.
the ground-state energy withinA accuracy, withA<9%. limit a lower bound
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Etow= €0=3(N=1)(Ny,)%2. (43) However, the Thomas-Fermi treatment cannot describe

the crystallized ground-state wave function, since a small

Therefore, for the leading term of the ground-state endggy, relative error of the mean-field ground-state energy does not
we have necessarily imply that the mean-fielghroduc} state de-

scribes the actual many-body wave function well.
FIN=1)(Ny)P<E<HN[y(N-1)]° (44

From Eq.(44), we can see that in the case of the Wigner- APPENDIX

crystallization regime,y.>1, our bounds determine the In this appendix, we consider the Hamiltonigg#,35
ground-state energy withitt A accuracy, withA~=~8% for

N=100, A~10% for N=10, andA~15% for N=3. It

shows that the mean-field theory, E40), provides a rea- H=—
sonable upper bound fa¥>10 even in the largex, limit.
However, the Thomas-Fermi treatment cannot describe th\(/avhich was used for a problem in nuclear phvsics in Ref
crystallized ground-state wave function, since a small rela—36] P phy :
tive error of the mean-field ground-state energy does not ne(g- U ing Ea.(14) and
essarily imply that the mean-fielgproduc) state describes sing Eq.(14) an
the actual many-body wave function well.

N N A
2 A3 2 S 2 (F-F)? (A

i<j

N[

N
> (ﬂ—ﬂ)"‘=N§2 2, (A2)

VIl. SUMMARY AND CONCLUSION <]

In summary, we have generalized the Post and Hallve can rewrite Eq(Al) as

lower-bound method15] for the case of interacting bosons N

confined in a harmonic trap. 1 —_— L 1+NA

As examples of application, we have studied bosons in- H=-— ﬁAR”LENR +i:22 _EAgRL Tgi
teracting with Coulomb forces in a harmonic trapping poten- (A3)
tial. We have found the upper bounds using the mean-field
approach and the ELTBE meth¢i6]. This leads to the ground-state energy

It is shown that the leading term of the ground-state en-
ergy in the largeN limit (N>1 andNvy.>1) is determined E=3[1+V1+NA(N-1)], (A4)

within an accuracy oft8%, and it is also shown that the
mean-field theory provides reasonable results with a relativevhich is equal to the lower bound, E(L9), with
error of less than 16% for the leading term of the ground-

state energy. €0=3V1I+NA(N—1). (A5)
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