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Ground state of charged bosons confined in a harmonic trap
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We study a system composed ofN identical charged bosons confined in a harmonic trap. Upper- and
lower-energy bounds are given. It is shown in the large-N limit that the ground-state energy is determined
within an accuracy of68% and that the mean-field theory provides a reasonable result with a relative error of
less than 16% for the binding energy.
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I. INTRODUCTION

We study a system composed ofN identical bosons inter-
acting via the Coulomb repulsive force that are confined
an isotropic harmonic trap.

Investigations of charged Bose gases have been repo
in a number of papers@1–7#. In a recent paper@6#, the mean-
field theory for bosons in the form given in Ref.@8# was used
to describe the ground state of a bosonic Thomson atom.
equivalence of the Coulomb systems in a harmonic trap
the Thomson atom model@9# was discussed in Refs
@6,10,11#. The model approximately simulates a number
physical situations such as systems of ions in a thr
dimensional trap~radiofrequency or Penning trap! @10,11#,
electrons in quantum dots@12,13#, etc.

Since no exact general solution of theN-body problem
has been found, to investigate the validity of the mean-fi
approximation for the case of systems of charged bos
confined in a trap, we propose in this paper to compare
mean-field energy with lower and upper bounds. Such
approach was used to establish the asymptotic accurac
the Ginzburg-Pitaevskii-Gross ground-state energy for di
neutral Bose gas with repulsive interaction@14#.

We find that our lower and upper bounds provide t
actual value of ground-state energy within68% accuracy.
We also show that, for the case of largeN, the mean-field
theory is a reasonable approximation with a relative erro
less than 16% for the binding energy.

The paper is organized as follows. In Sec. II, we descr
an outline of the mean-field method. Energy and sing
particle density are found analytically in the large-N limit. In
Sec. III, we generalize a lower-bound method developed
Post and Hall@15# for the case of charged bosons confined
a harmonic trap. In Sec. IV, we describe the strong-coup
perturbative expansion method. In Sec. V, we describe
calculation of upper bounds using the effective linear tw
body equation~ELTBE! method@16#. In Sec. VI, we con-
sider the Wigner-crystallization regime. A summary a
conclusions are given in Sec. VII.

II. MEAN-FIELD METHOD

To describe ground-state properties of a system of in
acting bosons confined in a harmonic trap, we start from
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mean-field theory for bosons in the following form given
Ref. @8#:

S 2
\2

2m
D1Vt~rW !1~N21!VH~rW ! DC~rW !5mC~rW !, ~1!

whereC(rW) is the normalized ground-state wave functio
Vt(rW)5mv2r 2/2 is a harmonic trap potential withr 25x2

1y21z2, VH(rW)5*drWVint(rW2rW8)uC(rW8)u2 is the Hartree
potential with an interacting potentialVint(rW), and N is the
number of particles in a trap. The chemical potentialm is
related to the mean-field ground-state energyEM and particle
numberN by the general thermodynamic identity

m5
]EM

]N
~2!

for N→`, where the mean-field ground-state energyEM is
given by

EM5NS ^Cu2
\2

2m
DuC&1^CuVtuC&1

N21

2
^CuVHuC& D .

~3!

We note that the mean-field theory, Eq.~1!, cannot describe
the Wigner-crystallization regime@17# ~see also Ref.@6#!.

We introduce dimensionless units by making the follo
ing transformations: ~i! rW→arW, wherea5A\/(mv), and
~ii ! the energy and chemical potential are measured in u
of \v.

Using the above dimensionless notation, we can rew
Eq. ~1! as

S 2 1
2 D1

r 2

2
1~N21!E drW8Vint~rW2rW8!uC~rW8!u2DC~rW !

5mC~rW !. ~4!

In the limit N@1, the nonlinear Schro¨dinger equation~4!
can be simplified by omitting the kinetic energy, yielding th
following integral equation:

r 2

2
1NE drW8Vint~rW2rW8!uC~rW8!u25m, ~5!

wherer 2,2m̃ anduC(rW)u250; if r 2.2m̃, m̃ is to be deter-
mined from the minimum of the energy functional,
©2001 The American Physical Society03-1



of
or
s

n

ac
a
th
s

-
en

s
g

.

dy

nd
es
ons

YEONG E. KIM AND ALEXANDER L. ZUBAREV PHYSICAL REVIEW A 64 013603
EM5
N

2 E uC~rW !u2r 2drW

1
N2

2 E uC~rW !u2uC~rW8!u2Vint~rW2rW8!drW drW8.

This method@Eq. ~5!# is another possible implementation
the Thomas-Fermi treatment of neutral, dilute vap
@18,19#. For review of the Thomas-Fermi theory of atom
see Ref.@20#.

To make a proper choice for the large-N limit of the
Hamiltonian for bosons interacting via the Coulomb pote
tial

Vint~r !5
gc

r
~6!

with gc5Z2aAmc2/(\v).0, we rescale variablesrW
5(Ngc)

1/3zW. Now we can rewrite Eq.~4! as

S 2
e

2
D1

z22R2

2
1E dzW8

uzW2zW8u
uC~zW8!u2DC~zW !50, ~7!

whereR252m/(Ngc)
2/3, e51/(Ngc)

4/3, andN@1.
In the caseNgc@1, the solution of Eq.~5! is found to be

uC~rW !u25
3

4pNgc
u~2m̃2r 2!, ~8!

whereu denotes the unit positive step function, and

m̃5
m

3
. ~9!

Straightforward calculations withuC(rW)u2 from Eq. ~8!
yield

m5 3
2 ~gcN!2/3,

~10!
EM5 9

10 ~gc!
2/3N5/3.

Equation~8! is obtained by neglecting the~e/2!D C term
in Eq. ~7! and provides an accurate description of the ex
solution where the gradients of the wave function are sm
In a boundary layer of a narrow region near surface,
approximation~8! breaks down. We expect that the thickne
of this boundary layer approaches zero ase→0. Recent nu-
merical calculations@6# support our analytical results. Equa
tion ~10! provides an upper bound for the ground-state
ergy in the large-N limit ~N@1 andNgc@1).

III. LOWER BOUNDS

In this section, we considerN identical charged boson
confined in a harmonic isotropic trap with the followin
Hamiltonian:

H52 1
2 (

i 51

N

D i1
1
2 (

i 51

N

r i
21(

i , j
Vi j , ~11!
01360
s
,

-

t
ll.
e
s

-

where

Vi j 5
gc

urW i2rW j u
. ~12!

Now we introduce the Jacobi coordinateszW15RW

5(1/N)S i 51
N rW i , the center-of-mass coordinate, and (i>2)

zW i5
1

Ai ~ i 21!
S ~12 i !rW i1 (

k51

i 21

rWkD . ~13!

Using

(
i 51

N

r i
25NR21(

i 52

N

z i
2, ~14!

we can rewrite Eq.~11! as

H52
1

2N
DR2 1

2 (
i 52

N

Dz i
1 1

2 NR21 1
2 (

i 52

N

z i
21(

i , j
Vi j .

~15!

Hence we have for the ground-state energy

E5 3
2 1^cuS 2 1

2 (
i 52

N

Dz i
1 1

2 (
i 52

N

z i
21(

i , j
Vi j D uc&, ~16!

where c(rW1 ,rW2 ,...,rWN) is the ground-state wave function
Using symmetric properties ofc, we can rewrite Eq.~16! as

E5 3
2 1^cu~N21!S 2 1

2 Dz2
1 1

2 z2
21

N

2
V12~&z2! D uc&.

~17!

Projecting uc& on the complete basisun&, generated by the
effective two-body eigenvalue problem

H ~0!un&5~N21!F2 1
2 Dz2

1 1
2 z2

21
N

2
V12~&z2!G un&5enun&,

~18!

we get

E5 3
2 1(

n
enz^cun& z2>~ 3

2 1e0!. ~19!

Hence the ground-state energy of the effective two-bo
Hamiltonian H (0),e0 is a lower bound ofE2 3

2 . Equation
~19! is a generalization of the Post and Hall lower-bou
method@15# for the case of a system of interacting particl
confined in a harmonic trap. In the particular case of bos
with the Hooke interaction, this procedure, Eq.~19!, gives
the exact value of the ground-state energy~see the Appendix
for details!.

To find e0 for the Coulomb interaction case, Eq.~6!, we
need to solve the effective two-body problem,

H̃f52
1

2

d2f

dz2 1 1
2 z2f1

l

z
f5 ẽf, ~20!

wherel5Ngc /(2&) and ẽ5e0 /(N21).
3-2
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For the case ofl,1, the weak-coupling-perturbatio
~WCP! calculation leads to the ground-state energyẽ given
by @24#

ẽ5 3
2 11.128 379l20.155 78l21¯ . ~21!

IV. STRONG-COUPLING PERTURBATIVE EXPANSION

The two-body problem with the so-called spiked ha
monic oscillator ~SHO! V(r )5r 21@ l ( l 11)/r 2#1(l/r a),
wherer>0 anda is positive constant, has been the subj
of intensive study@21–28#. The quantityl is a positive-
definite parameter that measures the strength of the pertu
tive potential. It was found@22# that the normal perturbation
theory could not be applied for the valuesa> 5

2 , the so-
called singular spiked harmonic oscillator. In Ref.@21#, a
special perturbative theory was developed for this case
strong-coupling perturbative expansion~SCP! (l.1) was
carried out in Ref.@24#. In Ref. @27#, the SCP was used fo
the case ofa53. In Refs. @23,26#, it was shown that the
SHO problem witha51 is solvable analytically for a par
ticular set of oscillator frequencies. For example, forl51
we have@23#

ẽ5 5
2 , f~z!5ze2z2/2~11z!, ~22!

and forl5A5 we have@26#

ẽ5 7
2 , f~z!5ze2z2/2~11A5z1z2!. ~23!

Equation~20! can be solved for the case of largel using
the SCP@24#. The idea of this method is to expand the p
tential V(z)5(z2/2)1(l/z) around its minimum,

V~z!5 3
2 l2/31 3

2 ~z2l1/3!21(
i 51

`

~21! i
l2 i /3

i 12
~z2l1/3! i 12.

~24!

Substitution of Eq.~24! into Eq. ~20! gives

H̃5H01H8, ~25!

where the nonpertubative HamiltonianH0 is given by

H052
1

2

d2

dz2 1 3
2 l2/31 3

2 z2 ~26!

and the pertubationH8 is given by

H85(
i

`

Hil
2 i /3, ~27!

with Hi5(21)izi 12/( i 12) andz5(z2l1/3).
Now f and ẽ can be written as

f5 lim
n→`

fn ~28!

and
01360
-

t

a-

A

-

ẽ5 lim
n→`

ẽn , ~29!

wherefn5S i 50
n f ( i )l2 i /3 and ẽn5S i 50

n ẽ ( i )l2 i /3. Substitut-
ing Eqs.~26!, ~28!, and~29! into Eq. ~20! gives

(
i 50

n

Hif
~n2 i !5(

i 50

n

e~ i !f~n2 i !. ~30!

The complete oscillator basisuñ&, H0uñ&5enuñ&, where z
5(z2l1/3) is extended to the full real axis, is used to sol
Eq. ~30! with e05 ẽ (0) and u0&5f (0). We note that the re-
gion 2`,z<2l1/3 is spurious. For largel, it is expected
that the harmonic-oscillator basis does not penetrate
much into the forbidden regionz,2l1/3. From Table I, we
can see that the SCP converges very fast forl.2. However,
for the case ofl51, it is certainly outside the convergenc
radius ~see Table II!. Even in this case,ẽ0 is still a good
lower approximation forẽ.

From the SCP expansion in the large-l limit, we obtain in
the large-N limit ~N@1 andNgc@1)

e05 3
4 N5/3gc

2/3. ~31!

Combining Eq.~31! with Eq. ~10!, we get in this limit

3
4 N5/3gc

2/3<E< 9
10 N5/3gc

2/3, ~32!

where E is the leading term of the ground-state energ
Hence the leading term of the ground-state energy in
large-N limit is determined within an accuracy of68%. We
can therefore state that the mean-field theory, Eq.~10!, pro-
vides a reasonable result in this limit for the ground-st
energy.

TABLE I. Results for ground-state energy,ẽ @Eq. ~20!#. We
compare zero-order, second-order, and converged results~10th or-
der! to the exact analytical solution@Eqs.~22! and ~23!#.

l ẽ0 ẽ2 ẽconverged ẽexact

1 2.36603 2.46325 2.5
A5 3.43099 3.48785 3.49954 3.5
10 7.82841 7.84935 7.85061
100 33.18255 33.18705 33.18711
500 95.3601 95.36165 95.36165
1000 150.86603 150.86700 150.86700
5000 439.46869 439.46902 439.46902
10000 697.10435 697.10456 697.10456

TABLE II. Results for ẽn for the l51 case.

l ẽ0 ẽ2 ẽ4 ẽ6 ẽ8 ẽ10

1 2.36603 2.46325 2.48797 2.49716 2.50439 2.51
3-3
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V. UPPER BOUNDS

Our method for obtaining the upper bounds, the equi
lent linear two-body equation~ELTBE! method @16#, con-
sists of two steps. The first is to give theN-body wave func-
tion c(rW1 ,rW2 ,...) aparticular functional form,

c~rW1 ,...,rWN!'
F~r!

r~3N21!/2 , ~33!

wherer5@S i 51
N r i

2#1/2.
The second step is to derive an equation forF~r! by re-

quiring thatc(rW1 ,rW2 ,...) must satisfy a variational principle
d^cuHuc&50 with a subsidiary condition̂cuc&51. H is the
Hamiltonian. This leads to the following equation:

HrF5S 2
1

2

d2

dr2 1 1
2 r21

~3N21!~3N23!

8r2 1
l̃

r
DF5ẼF,

~34!

where

l̃5
2

3A2p
gcN

G~3N/2!

G~3N/223/2!
. ~35!

The lowest eigenvalue ofHr @Eq. ~34!# is an upper bound o
the lowest eigenvalue of the originalN-body problem. Since
a variational estimate of the lowest eigenvalue ofHr is also
an upper bound of the ground-state energy of the orig
N-body problem, we have for this upper bound,Eupper, the
following expression:

Eupper5
^F tuHruF t&

^F tuF t&
. ~36!

Assuming the form for the trial functionF t ,

F t~r!5r~3N21!/2e2rp/~2ap!, ~37!

we obtain

Eupper5
p~3N221p!G@~3N22!/p11#

8G~3N/p!a2

1
G@~3N12!/p#

2G~3N/p!
a21

l̃G@~3N21!/p#

G~3N/p!a
, ~38!

where parametersa andp are to be determined from a solu
tion of the following equations:

]Eupper

]a
5

]Eupper

]p
50. ~39!

From Table III, we can see that for the case ofNgc
<100, the calculated bounds determine the actual valu
the ground-state energy within6D accuracy, withD,9%.
01360
-

al

of

VI. LARGE gc LIMIT

To make a proper choice for the large-gc limit of the
Hamiltonian, Eq.~11!, we rescale variables,rW→gc

1/3rW, and
write the Schro¨dinger equation forN identical charged
bosons confined in a harmonic isotropic trap as

S 2
1

2gc
~4/3! (

i 51

N

D i1
1
2 (

i 51

N

r i
21(

i , j

1

urW i2rW j u
Dc5

E

gc
2/3c.

~40!

Equation ~40! describes the motion ofN particles with an
effective massgc

4/3. Therefore, whengc→`, the effective
mass of the particles becomes infinitely large and then
particles may be assumed to remain essentially stationa
the absolute minimum of the potential energy,

Veff~rW1 ,...,rWN!5 1
2 (

i 51

N

r i
21(

i , j

1

urW i2rW j u
, ~41!

with quantum fluctuations around the classical minimu
Obviously, this assumption fails if the potential energyVeff
does not possess a minimum and~or! gradients of the wave
functions are large. This large-gc limit is the Wigner crystal-
lization regime@6#.

Interest in the investigation of the Wigner-crystallize
ground state has grown as a result of a recently propo
quantum computer by Cirac and Zoller@29#. ~See also Refs.
@30–33#.!

As we have already noted in Sec. II, mean-field theo
Eq. ~1!, cannot describe the crystallized ground state. The
fore, we can only state that the mean-field ground-state
ergy is an upper bound to the exact energy. Straightforw
calculations for the case ofgc@1 give the Thomas-Ferm
upper bound

Eupper5
9

10 N@gc~N21!#2/3. ~42!

From the SCP expansion, Eq.~24!, we obtain in the large-gc
limit a lower bound

TABLE III. Results for upper,Eupper/N, and lower,Elower /N,
bounds of ground-state energy per particle, andD5(Eupper

2Elower)/(2Eupper).

N l5Ngc /(2&) Elower /N Eupper/N D ~%!

10 0.1 1.60015 1.60048 0.02
0.5 1.97272 1.98724 0.4
1 2.4 2.43945 0.8
A5 3.3 3.4478 2.1
10 7.21555 8.18751 5.9
100 30.0184 36.8931 9.3

100 0.1 1.61017 1.61068 0.02
0.5 2.01999 2.03468 0.36
1 2.49 2.52904 0.8
A5 3.48 3.62737 2.0
10 7.7871 8.76512 5.6
100 32.8702 39.8116 8.7
3-4
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Elow5e05 3
4 ~N21!~Ngc!

2/3. ~43!

Therefore, for the leading term of the ground-state energyE,
we have

3
4 ~N21!~Ngc!

2/3<E< 9
10 N@gc~N21!#2/3. ~44!

From Eq.~44!, we can see that in the case of the Wign
crystallization regime,gc@1, our bounds determine th
ground-state energy within6D accuracy, withD'8% for
N>100, D'10% for N510, and D'15% for N53. It
shows that the mean-field theory, Eq.~10!, provides a rea-
sonable upper bound forN.10 even in the large-gc limit.
However, the Thomas-Fermi treatment cannot describe
crystallized ground-state wave function, since a small re
tive error of the mean-field ground-state energy does not n
essarily imply that the mean-field~product! state describes
the actual many-body wave function well.

VII. SUMMARY AND CONCLUSION

In summary, we have generalized the Post and H
lower-bound method@15# for the case of interacting boson
confined in a harmonic trap.

As examples of application, we have studied bosons
teracting with Coulomb forces in a harmonic trapping pote
tial. We have found the upper bounds using the mean-fi
approach and the ELTBE method@16#.

It is shown that the leading term of the ground-state
ergy in the large-N limit ~N@1 andNgc@1) is determined
within an accuracy of68%, and it is also shown that th
mean-field theory provides reasonable results with a rela
error of less than 16% for the leading term of the groun
state energy.
s.
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However, the Thomas-Fermi treatment cannot desc
the crystallized ground-state wave function, since a sm
relative error of the mean-field ground-state energy does
necessarily imply that the mean-field~product! state de-
scribes the actual many-body wave function well.

APPENDIX

In this appendix, we consider the Hamiltonian@34,35#

H52 1
2 (

i 51

N

D i1
1
2 (

i 51

N

r i
21

L

2 (
i , j

~rW i2rW j !
2, ~A1!

which was used for a problem in nuclear physics in R
@36#.

Using Eq.~14! and

(
i , j

~rW i2rW j !
25N(

i 52

N

z i
2, ~A2!

we can rewrite Eq.~A1! as

H52
1

2N
DR1 1

2 NR21(
i 52

N S 2 1
2 Dz i

1
11NL

2
z i

2D .

~A3!

This leads to the ground-state energy

E5 3
2 @11A11NL~N21!#, ~A4!

which is equal to the lower bound, Eq.~19!, with

e05 3
2 A11NL~N21!. ~A5!
ys.
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