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Abstract

The ground states a¥-electron parabolic quantum dots in the presence of a perpendicular magnetic field are investigated.
Rigorous lower bounds to the ground-state energies are obtained. It is shown that our lower bounds agree well with the results of
exact diagonalization. Analytic results for the lower bounds to the ground-state energies of the quantum dots in a strong magnetic
field (known as electron molecule) agree very well with numerically calculated lower banr2@€1 Elsevier Science B.V. All
rights reserved.

PACS 03.65.Ge; 05.30.Fk; 73.21.La

1. Introduction A simple way to incorporate the interaction between
electrons is to use the Post model [9], where inter-
electron repulsion is replaced by the harmonic inter-
action [10]. For a critical analysis of this approxima-
tion, see Ref. [11]. The Post model [9] was used for a
problem in nuclear physics in Ref. [12].

Numerical calculations using exact-diagonalization
techniques were carried out in Refs. [13-19]. These
calculations are computationally extensive and limited
to a few (K 6) electrons.

The ground states of a¥-electron QD in magnetic
f fields have been measured upNo< 50 [20].

The purpose of this work is to provide a rigorous
lower bounds to the ground-state energywetlectron

In recent years, there has been intense study of nan-
ostructures such as quantum dots (QD) [1-5], where
guasi-two-dimensional islands of electrons are later-
ally confined by an externally imposed potential that,
in a good approximation, is parabolic. In Ref. [6], the
electronic states of interacting electrons in three-elec-
tron QD are calculated without making assumptions
about the shape of the confining potential and dimen-
sionality of the problem.

Theoretical investigations of the ground states o
QD have been reported in many papers. As for the
standard Hartree and Hartree—Fock (HF) approxima- . Con
tions, there are doubts about their accuracy, since theQD in magnetic fields for any. We show that our

exchange and correlation energies can be significant inIOWer bounds for grc_)und States. agree well with the
QD [7.8]. exact results of the diagonalization method.

This Letter is organized as follows. In Section 2,
we generalize a lower-bound method developed by
G . Hall and Post [21] for the case &f-electron QD in
orresponding author. L .
E-mail addresses: yekim@physics.purdue.edu (Y.E. Kim), a magnetic fieldB. In Section 3, lower bounds are
zubareva@physics.purdue.edu (A.L. Zubarev). found analytically in the larg® limit. In Section 4, we
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describe our calculations. A summary and conclusions is the Zeeman energy, witH, = g*u,BS;. Hem and
are given in Section 5. Hyg| are given by

p2 m*N 22 R? we ;> =

2. Lower bounds Hom = 2m*N * 2 B 7(R 8 P)Z ©)
and
The Hamiltonian forN interacting electrons con-
fined in a parabolic QD, in the presence of a magnetic Hrel = Z Hij, (7)
field B perpendicular to the dot, can be written as i<j
w where
=5 Z + m*QZZ” L P D i Gt
) = 2m*N 2N E|7,'—Z,'|
e
+Zm+g*ﬂh35m 1) ;)N(rlxp,—i—r/xp,—rlxp,
i<j

wherem* is the electron effective mas®? = w3 +
wf/4, wo is the parabolic confinement frequeney,is

— 7 X pi),- (8)
Hence we have for the ground state energy

the cyclotron frequency,; is thez component of the
total orbital momentur is the dielectric constang;*
is the effectiveg-factor, u; is the Bohr magneton, and
S is thez component of the total spin.

In our numerical calculations we use the effective £rel = (V| Hrell¥), (10)

E=h2+ Erel + 8" s BS;, 9)

where

massn™* = 0.067m, (m. is the free-electron mass) of and (71,72, ...,7y) is the ground state wave func-
GaAs QD. tion. Using the symmetric properties @f we can
_ Now we introduce the center-of-mass coordinates, rewrite Eq. (10) as
=(1/N andP =
U(/ )Z 1”1 Z 1Pz N(N — 1)
sing Erel= ———— (V| H12l¥)). (11)
N -
271'2 — NR2 4+ % (7 — ;j)Z, %) Introducing the Jacobi coordinatgsas
i=1 i<j N
N L, P21 o &= ZUijrjv (12)
;pizﬁ—i_ﬁ. '(Pi_Pj) , (3 j=1
= = with
and .
A1 ifj<i+1,
> . Uj=14-1 ifj=i+1, (13)
L=} Fixpi 0 if j>i+1,
i=1
- -1 Lo we have
=RxP+NlZ<;(r,~xp,~+rjxpj—rixpj 2 +m*92§12+e2
. =N T 2N €41
—Fj X pi), 4) ” "
we can rewrite Eq. (1) as - WL <§1 x l—.Vg) ; (14)
z
H = Hem + Hyel + H, (%)

wherely = 71 — 7o.
where the first term is the center-of-mass energy, the  Projecting|y) on the complete basis), generated
second term is the relative energy and the last term by the effective two-body Hamiltoniaf12, Hizn) =
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E,|n), and using
(Y| Hi2l¥) ZZEH|(IM”)(”|W)| > Eg,

we get

N(N —1)
2

where E, is the ground state energy of the effective
two-body HamiltonianH12 (for the completely spin
polarized states§, = N/i/2 andE, is the energy of
the lowest antisymmetric state of the effective two-
body HamiltonianH15). Eq. (15) is a generalization of
the Hall-Post method (which is restricted to the case
with only inter-particle forces present and no external
potential) for obtaining lower bounds to the ground-
state energy olV-electron QD in a magnetic fielA.

E>hQ + Eg+ g 1usBS;, (15)

3. Large B limit

We introduce dimensionless units by making the
following transformation:p = (1/a)21, wherea =
V[ (m*wo).

Using the above dimensionless notation and po-
lar coordinatesp, = psind and p, = pcosh, we
can write the effective two-body eigenvalue problem

H12|¢g> = Eg|¢g> as

- 2 d2 2002 -1/4)
HlZM(p)ZI:_NW‘FTZ/
1 e Ye LA
(14l )Rl 2
+2N< + 4>,0 + , N]M(P)
= Eu(p), (16)

where i = wc/wo, ¢g(p,0) = e““ulp)/ /o, ve
ay/m*c2/(hwo)/2, andE = E,/(hwo).

The two-body equation, Eqg. (16), can be solved
numerically to findE, for any arbitrary value of. The
optimal value, restricted to odd integers for polarized

states, minimizes the energy. The two-electron QD has

been the subject of intensive study [3,4,8,22—-26].

In the large magnetic field limit¢ becomes large
and the term 14 in (¢2 — 1/4) can be neglected [17],
and Eq. (16) can be rewritten as

+ veﬁ<p>}u(p) = Eu(p), 17

2 2
[_Nd_pZ
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where

22 :
+ —),02 127 N
4 P

202 1

Ven() =25 + ﬁ(1
(18)

In the largeB limit the effective potentialVer,
Eq. (18), has a deep minimum, therefore a good
approximation toE can be obtained by making the
Taylor expansion o about its minimum [17]. Thus
the approximate, is

2[3 1
By~ [Z(zyczv)z/3 + E\/AZ + 3]hwo.

Substitution Eq. (19) into Eq. (15) gives

(19)

E>Eow~€&
3 1
=h2+(N-1) |:Z(ZJ/CN)2/3 + > A2+ 3:|ha)o
+g*upBS:. (20)

Note that the largeV limit of Ejow is independent
of magnetic field in this approximation (see also Ref.
[16]).

4. Numerical results

We begin with the single-electron basis functions
xne(0), associated with Hamiltonian
5

)
(21)

These functions were found more than seventy years
ago [27],

d2

?>—-1/4 1
- _l’_ - @
de ,02

+—<1+ 2_2t

Ho= —
0 4

— 2/0\1/2 2
Xnt(p) = Anept T2~ G/HAFATHTEp

1 )\’2 1/2

whereL! are associated Laguerre polynomials and

(22)

1 52\ 1/2
wela(%) wh) )
In order to solve Eq. (16) we introduce
Xhe () = /Bt (Bp) (24)
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Table 1
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Convergence of the method, Egs. (25) and (26), for lower boubigswith increasingM for the three-electron QD with = 13.1 and/iwg =

0.01 meV.S; =3i/2 andB = 0 is assumed [18]

M 1 4 5

6 7 8

Eg (meV) 0.373368 0.336831

0.336681

0.336659 0.336659 0.336659

and expand:(p), Eq. (16), in the basisgfe, i.e., we
seek solution of the form

M
uM(p) =" chxby (o). (25)

n
The conventional choice for the paramegeis g = 1
(see, for example, [4]). However, for finit&/, the
choice 8 = 1 is not the optimal choice. The most
reliables is obtained from
4 M| M) =0,
dp
We apply the method, Egs. (25) and (26), to compute
the lower bounds.

Consider a two-dimensional three-electron QD with
€ =131 andfiwp = 0.01 meV without a magnetic
field, B =0 [18]. Let M be the number of functions
in Eq. (25). Examples of the lower bound to the com-
pletely spin polarized three-electron stafe~= 371/2,
corresponding to the differed are given in Table 1.
The fast convergence is evident. Comparison of the
converging result of Table 1E, = 0.336659 meV
with exact diagonalization calculations of Ref. [18],
E, = 0.3393 meV, shows that our lower bound is a
very good approximation with relative error of about
0.7% for the ground state energy of the three-electron
QD without a magnetic field.

Now consider the GaAs QD with = 124 and
hwo = 4 meV in a strong magnetic field3 =20 T
[19]. Examples of the lower bounds to the completely
spin polarizedN-electron ground statef|qy, for up
to N = 6 electrons are given in Table 2. Numerical
results Ejow agree with largeB approximation, £
(Eg. (20)) to better than.0%.

From Table 2, we can see that the calculated lower
bounds agree well with exact-diagonalization results,
Eeq[19]. The relative errorA = (Eeq— Elow)/(2Eed),
is less than 2%.

We have also calculated the chemical potential of
QD, us(N) = E(N + 1) — E(N). ua(N) is mea-

(26)

Table 2

Results for lower bound%|q,y, chemical potentialx 4, large B
analytical approximatio, Eq. (20), andA = (Eeq [19] — Ejow)/
(2Egq [19]) for N-electron GaAs QD withe = 124 andfiwg =
4 meV in a strong magnetic fiel®d =20 T.S, = Ni/2 is assumed

Number of electrons  Ejgw KA & A

N (meV) (meV) (meV) (%)
1 174810 242141 174810

2 416951 285087 416910

3 702038 320032 701483 Q2
4 102207 351570 102168 Q7
5 137.364 382630 137366 14
6 175627 406922 175482 18

sured by the single-electron capacitance spectroscopy
method [20,28] since the transfer of thi&y + 1)th
electron from the electrode to the QD occurs when
the chemical potential of the electrodeg, is equal
tothewa.

5. Summary and conclusion

In summary, we have generalized the Hall-Post
lower-bound method [21] for the case of theelec-
tron parabolic QD in the presence of a perpendicular
magnetic field.

It is shown that our rigorous lower bounds agree
well with the results of exact diagonalization. For ex-
ample, lower bounds to the completely spin polarized
ground state energy of the three-electron QD agree
with exact-diagonalization results to better than 1%.
For the case of six-electron QD, the relative error is
less than 2%.

Analytic results for the lower bounds to the ground-
state energies of the QD in a strong magnetic field
(the QD analogue of a Wigner crystal [29] known as
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electron molecule [19]) agree with numerical lower
bounds to better than 0.1%.
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