

## P3MD Labs

Introduction to the facilities of the Purdue Experimental Particle Physics research groups



### Cleanrooms



- 3000 sq. ft. of clean rooms in 3 labs
- Temperature and humidity control
- ESD protection







## Coordinate Measuring Machine



- Assembly alignment and surveying are done using an optical probe on our Mitutoyo Coordinate Measuring Machine
- Dimensional inspections of fixtures and detector mechanics are done using a touch probe on the CMM







# Semi-automated module assembly station



- Developing a robotic 'pick-and-place' machine for module assembly
- Gantry positioning system integrated with vision, pattern recognition, vacuum tools, adhesive dispenser, electro-valves and sensors
- Demonstrations of 'pickand-place' pixel module assembly posted on YouTube





## Wire bonding





- 2 automated ultrasonic wire bonding machines
- Wire bond pull tester for quality control





## Flip Chip Bonding





 High accuracy bonder for aligning, placing and reworking flip chip and ball grid array modules





### Processing equipment

PURDUE

- Optical inspection stations
- Vacuum oven
- Microwave plasma etcher
- Environmental chamber
- Encapsulation station
- Dry cabinet storage

#### Shared equipment on campus including:

- Mask design, mask & detector fabrication
- SEM, Scanning Auger spectroscopy
- Ion Beam cutting, Reactive Ion Etcher
- Dicing saws
- Ribbon and Ball Wire bonders
- Profilometer, Ellipsometer, Tensile tester









### **Custom Design**







- Design and engineering of detector mechanics
- Expert Purdue machine shops for fabrication





### **Probe Stations**



 2 probe stations for device characterization, design and module de-bug, failure analysis

Thermal chuck (-65°C to 200°C)









# Sensor Development and Testing



- Computer simulation of sensor performance
- DC characterization
- Charge collection efficiency
- Irradiation and aging studies











# Module electrical test station







- Test setup:
  - IRLED
  - IR Pulsed Laser
  - XYZ-axis motion
  - Thermoelectric cooling







## Experience



- Design: CDF Run II Sensors, CMS-FPix sensors
- Fabrication: CLEO III SVX & CMS-FPix plaquettes
- Installation & Commissioning: CLEO III SVX, CDF Run II SVX & L00, CMS FPix
- R&D: Si pixel/strip & MPGD for SLHC and ILC
- Year-round research experience for undergraduate & graduate student instrumentation PhDs.



### **CMS Forward Pixel Detector**

Forward Pixel Disk ~3 million pixels

Purdue will assemble and test ~1000 Plaquettes

- Pixel Sensors bump bonded to Read Out Chips
- Very High Density Interconnects

Pixel Sensor

ROCs

**VHDI** 

**Plaquette** 



Pulsed IR laser scanning



~0.5 million wire bonds in FPix detector







### LSST Instrumentation: Purdue is design & fabrication site for the Corner Rafts of LSST Camera



FE Tower

UNIVERSAL **CRYOGENICS DEWAR** 

Crate

#### Purdue leads mechanical & thermal design work

Control Crate

Corner Raft

Control Crate

- Design for accurate and stable mount for sensors and electronics in the Camera
- Assembly sequence & insertion tooling
- Mechanical & Thermal analysis (FEA & prototype tests)
- risk & cost analysis
- Also contribute to design of overall Camera (Harvard, LLNL, BNL, Penn, Purdue and SLAC)







## CLEO III Silicon Vertex Detector







#### Purdue responsibilities:

- Mechanical design and engineering
- Assembly of silicon strip ladders using CVD diamond for support, wire bonding, module testing
- Kinematic mounting of ladders on end cones
- Cooling system
- Transportation to Cornell, SVX installation into CLEO







Micro Patterned Gas Detector Development





**Purdue Achievements** 

1st in US to fabricate a MPGD in-house

1st triple Gas Electron Multiplier

Most rad hard MPGD

 1<sup>st</sup> mass production of GEMs and Micromesh for MicroMegas detector

 Cornell TPC equipped with Purdue-3M MicroMegas as charge amplification device

#### Facilities:

- X-ray generator for radiation hardness studies
- ultra clean custom stainless steel monitored gas system
- inspection scopes, digital and analog oscilloscopes
- multiple CAMAC/GPIB DAQ systems
- variety of commercial and custom electronics and diagnostics equipment



## Camera for Whipple Observatory





- Designed and managed the fabrication and assembly of an upgrade camera for the Whipple Observatory 10M Telescope.
- The camera was upgraded from the previous 331 pixel camera to a finer resolution 490 pixel camera comprising 379 half-inch and 111 one-inch Photo Multiplier Tubes.
- Each PMT mounted in a spring-loaded, ¼-turn fitting allowing in-situ replacement of individual PMT's in the camera
- Focal plane (front face of PMT's) flat to 50 microns