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1 Introduction  

Over the last two decades a substantial number of researchers have studied the causes of anomalous 
dispersion. In the theory of porous media, it is well known that the concept of homogeneity is scale 
dependent; even a medium consisting of relatively uniform shaped and sized particles is not appropriately 
modeled by equations derived from the standardly proposed laws for homogeneous media (i.e. advection 
diffusion equation) until a sufficient portion of the media has been sampled. Cushman and Moroni [1] 
developed an equation governing the displacement of conserved particles under very general conditions 
using what has been termed the generalized hydrodynamic approach, which is based on molecular 
hydrodynamics [2]. The convolution flux presented in [1] is often overlooked in the literature, perhaps due 
to its generality. It is a theory providing a scale-dependent dispersion tensor, and in its most general form, is 
non-local in both space and time. Classical theories are at a fixed scale where required assumptions must be 
met. Due to the freedom from assumptions of scale, the result in [1] can be seen as a universal equation for 
dispersive processes. 

2 Theoretical background  

The transition density function for displacement, G, when appropriately normalized, can be viewed as the 
concentration from a point source. If one assumes all particles are identical then G is simply the expected 
value of a delta distribution: 
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where X(t) is the particle position at time t and  is the average with respect to a probability density on 

phase space. If this density is properly chosen, then G corresponds to the probability of a given particle 
displacement (or concentration for a point source) at a given time. The assumptions made for the following 
results are that the phase space system is incompressible, Hamiltonian, and at local equilibrium. Local 
equilibrium physically means that if an observer travels along the nonequilibrium mean of the trajectory, 

)t(X , then the world viewed from this position appears in equilibrium. At equilibrium the phase space 

probability density is independent of time. More details on the assumptions and derivations can be found in 
[1].  
At local equilibrium, the flux governing G is nonlocal in space and time and takes the form  
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where D(y,t,) is the generalized dispersion tensor. This dispersion tensor represents all observed spreading 
including that caused by diffusion, hydrodynamic dispersion and any other factors not accounted for by 



mean convection. Note this equation contains a spatial convolution term; it is not a convolution in time, 
but is non-local.  
For the purpose of testing the theory, a laboratory experiment was designed to allow the tracking of 
particles within a medium from a Lagrangian perspective. Porous media were constructed using Pyrex beads 
and cylinders in a vertical test section; a medium was classified as 'homogenous' if it was constructed of 
pieces of the same size and shape and otherwise classified as 'heterogeneous'. A mean flow in the vertical 
direction was induced by pumping glycerol into and out of the laboratory-scale medium. The laboratory set-
up and basic statistics from the experiments are fully described in [3, 4], so here we focus only on the results 
and their interpretation. 
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